
REINFORCEMENT LEARNING FOR TRAFFIC SIGNAL 
CONTROL: COMPARISON WITH COMMERCIAL 

SYSTEMS 

Alvaro Cabrejas Egea 
The Alan Turing Institute, MathSys CDT, University of Warwick, United Kingdom 

Raymond Zhang 
The Alan Turing Institute, United Kingdom; Ecole Normale Superieure de Paris-Saclay, 

France 
Neil Walton 

The Alan Turing Institute, University of Manchester, United Kingdom 

ABSTRACT 

In recent years, Intelligent Transportation Systems are leveraging the power of increased 
sensory coverage and available computing power to deliver data-intensive solutions 
achieving higher levels of performance than traditional systems. Within Traffic Signal 
Control (TSC), this has allowed the emergence of Machine Learning (ML) based systems. 
Among this group, Reinforcement Learning (RL) approaches have performed particularly 
well. Given the lack of industry standards in ML for TSC, literature exploring RL often lacks 
comparison against commercially available systems and straightforward formulations of 
how the agents operate. Here we attempt to bridge that gap. We propose three different 
architectures for RL based agents and compare them against currently used commercial 
systems MOVA, SurTrac and Cyclic controllers and provide pseudo-code for them. The 
agents use variations of Deep Q-Learning (Double Q Learning, Duelling Architectures and 
Prioritised Experience Replay) and Actor Critic agents, using states and rewards based on 
queue length measurements. Their performance is compared in across different map 
scenarios with variable demand, assessing them in terms of the global delay generated by all 
vehicles. We find that the RL-based systems can significantly and consistently achieve lower 
delays when compared with traditional and existing commercial systems. 

1. INTRODUCTION

Traffic Signal Control (TSC) can be used to ensure the safe and efficient utilisation of the 
road network at junctions, where traffic can change directions and merge, having to manage 
conflicting individual priorities with the global needs of the network. Traffic congestion has 
a major financial impact. A study by (INRIX 2019) shows that traffic congestion in 2019 
cost £6.9 billion in the UK alone, with similar patterns being observed in other developed 
countries. 



2674 PREMIOS A JÓVENES INVESTIGADORES - FINALISTAS 

Cities around the globe are starting to explore the deployment of smart Urban Traffic 
Controllers (UTCs) that use real time data to adjust their stage schedule and green time 
duration. Traditionally, fixed time plans have been used. Those fixed time plans can be 
managed by systems that try to optimise the green time splits in a deterministic manner such 
as TRANSYT (Robertson 1969). These types of systems require costly site-specific 
knowledge of the traffic lights placement and typical demand profiles to be able to provide 
effective control. These methods are not easily scalable and deteriorate over time as the 
traffic demand changes as explained by (Bell and Bretherton 1986). With the development 
of induction loops, real time actuated UTCs were created in two variants: those that optimize 
single isolated intersections with systems such as MOVA (Vincent and Peirce 1988), and 
those that cover multiple intersections such as SCOOT (Hunt et al. 1982). To remedy the 
scalability problem, other systems based on local rules that generate self-organising area 
traffic controllers were developed, such as SurTrac (Smith and Barlow 2013), which solves 
a forward implementation of Dynamic Programming. 

With the recent breakthrough of Deep Reinforcement Learning (DRL) on complex problems 
such as Atari games or Go (Mnih et al. 2013; Silver et al. 2017; Hessel et al. 2018), attention 
has turned towards adapting these approaches to generate industry-grade controllers for 
traditionally noisy and difficult to control systems such as TSC. 

The purpose of this paper is to reproduce some of the results of the main and most successful 
RL approaches on intersections of increasing complexity, while comparing different 
architectures of DRL TSC agents, since, given the complexity of their implementation, most 
available literature only deals with a single class. 

2. STATE OF THE ART

2.1 Previous Work 
Reinforcement Learning (RL) is an area of Machine Learning that tries to imitate how 
biological entities learn. In it, an independent agent evolves in an unknown environment and 
learns how to perform a task for which no prior information is given based on its interactions 
said environment via a set of allowed actions. The agent aims to maximise the total reward 
signal it receives as a feedback for each of its actions. 

RL methods have been applied to TSC in experimental setups. A good review of early 
methods can be found here (Mannion, Duggan, and Howley 2016). More recent works 
(Liang et al. 2018; Genders 2018; Liu, Liu, and Chen 2018) use neural networks as function 
approximators to avoid the dimensionality and computing time limitations of table based 
methods in large state-action spaces, and show that DRL TSC can be more efficient than 
some earlier methods. 
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While there is a variety of approaches in the literature that craft successful RL-based TSC 
systems, most of them do no present direct comparisons against commercial systems that are 
the concern of this paper. Gao et al. (2017) used a Convolutional Neural Network (CNN) 
and discrete cell encoding with a Target Network for a value-based agent. The results were 
compared against a fixed time and a heuristic system (longest queue first), finding RL to 
perform better. In Mousavi, Schukat, and Howley (2017), raw pixels were used as input for 
a CNN that parametrises two agents: a policy-gradient agent and a value-based agent. The 
variation in the delay between actions was used as reward, and while both agents were found 
to have near-identical performance, they were not compared against any reference system. 
Later, in Wan and Hwang (2018) a DQN using discrete cell encoding as state was 
implemented. It used a CNN architecture and a delay-based reward. It was compared against 
a fixed time system, obtaining better performance. Liang et al. (2018), used the same 
approach and included speed information in the state, using a reward based on variations on 
aggregated wait time for all vehicles. It compared against two different fixed-time systems, 
ranking better than both and providing some early evidence of the benefits of using Double 
DQN, Duelling architecture and Prioritised Experience Replay. In Genders and Razavi 
(2018) different state spaces were evaluated using a policy-gradient algorithm, including: 
occupancy and speed for each incoming road, queue and a measure of density of incoming 
roads, and Discrete Cell Encoding, partitioning the incoming roads into cells of fixed 
lengths, in this case 2.5 metres. Genders found little difference in the performance of the 
agents as a result of the change in the magnitudes observed, but it could be argued that a 
discrete cell encoding would greatly benefit from a Convolutional Neural Network (CNN) 
architecture in the agent, which is not used. 
 
Regarding comparisons with established systems, in Stevanovic and Martin (2008) the 
authors compare SCOOT with a Genetic Algorithm-based control method. It is shown that 
SCOOT’s performance can be surpassed by more adaptive Genetic Algorithms that, in turn, 
tend to be less effective at learning than RL methods. 
 
Despite these previous works, most results are hard or impossible to reproduce given the 
lack of industry standards in terms of simulators, performance metrics, the lack of 
availability of commercial algorithms for comparison and the fierce protection of their 
internal workings, and the lack of open-source code of proposed RL models. 
 
2.2 Commercial Traffic Signal Control Optimisers 
MOVA (Microprocessor Optimised Vehicle Actuation, (Vincent and Peirce 1988)) is a 
traffic controller designed by TRL Software. It aims to reduce delay on isolated junctions. 
The basic functioning of MOVA involves two induction loop detectors estimating the flow 
of vehicles in each lane. The system makes a virtual cell representation of the lanes within 
MOVA, and then it computes a performance index based on the delays calculated. If the 
index results lower than a certain threshold, the signal is changed to the next stage, otherwise 
the stage it is extended. 
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Surtrac (Scalable URban TRaffic Control, (Smith and Barlow 2013)) is an adaptive TSC 
system published in 2013. A real-world deployment on 20 intersections in Pennsylvania 
showed a performance improvement of 20-40% in performance. Its operation is 
decentralised, each intersection allocates green time independently and asynchronously 
based on incoming flows. Each intersection is controlled by a local scheduler and 
communicates projected outflows to the downstream neighbouring junctions, modelling 
vehicles as a sequence of clusters. This communication allows for locally balancing 
competing flows while creating larger "green corridors" by finding an optimal sequence such 
that the input jobs (ordered clusters) are cleared while minimising the joint waiting time of 
all vehicles. 
 
3. METHODS 
 
3.1 Traffic Control as a Markov Decision Process 
The control problem can be formulated as a Markov Decision Process (MDP) defined in 
terms of a 5-tuple:  
 

 A set of possible environment states 𝑠 ∈ 𝒮. 
 A set of available actions to the agent 𝑎 ∈ 𝒜. 
 A stochastic transition function ∀𝑎 ∈ 𝒜,𝒯௦,௦ᇱ

 ≜ ℙሺ𝑠௧ାଵ ൌ 𝑠′|𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሻ. 
 A scalar real valued reward function 𝑅ሺ𝑠௧ , 𝑠௧ାଵ,𝑎௧ሻ providing a performance 

measure to the transition generated by progressing into the state 𝑠௧ାଵ after taking 
action 𝑎௧ while in state 𝑠௧ 

 A discount factor 𝛾 that will provide the balance between immediate exploitation and 
approaches that aim to maximise returns over time. 

 
Each time an action is required, the agent will receive a state vector 𝑠௧ from the environment. 
Based on this state, the agent will produce an action 𝑎௧, which will be implemented in the 
simulator. The environment will then advance time until a next action is required, according 
to its dynamics represented by 𝒯௦,௦ᇱ

 . At this point, the next state 𝑠௧ାଵ will be observable. Both 
states will be used to generate a reward 𝑟௧ to serve as feedback to the agent. The agent will 
receive the state observation 𝑠௧ାଵ and the cycle will start again. 
 
In the case of TSC, the MDP is modelled as partially observable, following an unknown 
stochastic transition function. From here on, it is assumed that the traffic environment 
displays the Markov property, i.e. the process is memoryless, with the next state only 
depending on the current state and the action taken. 
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3.2 Reinforcement Learning 
The goal of the agents will be to maximise their future discounted return, 𝐺௧ ൌ
∑ 𝛾௧ାஶ
௧ୀ 𝑟ሺ𝑠௧ , 𝑎௧ሻ with � ∈ ሾ0,1ሿ. This is done by learning a policy 𝜋, parametrised by the 

weights 𝜃 of the neural network performing the approximation of the reward function and 
mapping states to actions: 𝜋: 𝑓ଵሺ𝑠ሻ → 𝑎. The reward function maps an action given a state to 
a reward scalar value: 𝑟: 𝑓ଶሺ𝑠,𝑎ሻ → ℝ. The action-value function or Q-value is 𝑄గሺ𝑠, 𝑎ሻ ൌ
𝔼గሾ𝐺௧|𝑠௧ ൌ 𝑠, 𝑎௧ ൌ 𝑎ሿ. It represents the total episodic return by following policy 𝜋 after 
being in state 𝑠 and taking action 𝑎. 
 
3.3 Value-based Reinforcement Learning Methods - DQN 
Tabular value-based methods, such as Q-Learning, attempt to learn an optimal policy 𝑄గ∗ ൌ
maxగ𝔼ሾ𝑟௧|𝑠௧ ൌ 𝑠,𝑎௧ ൌ 𝑎ሿ by iteratively performing Bellman updates on the Q-values of 
the individual state-action pairs: 
 
𝑄గሺ𝑠௧ ,𝑎௧ሻ ← 𝑄గሺ𝑠௧ ,𝑎௧ሻ  𝛼൫𝑦௧ െ 𝑄గሺ𝑠௧ାଵ, 𝑎௧ାଵሻ൯,  (1) 
 
where 𝛼 is the learning rate and 𝑦௧ is the Temporal Difference (TD) target for the value 
function 
 
 𝑦௧ ൌ 𝑟௧  𝛾max

శభ
𝑄గሺ𝑠௧ାଵ,𝑎௧ାଵ,𝜃′ሻ. (2) 

 
Deep Q-Network (DQN) agents are an evolution of Q-Learning. The purpose of the agent is 
to find an approximation of 𝑄గ∗  by tuning the weights 𝜃 of a neural network. The agent keeps 
a second neural network, the target network, parametrised by the weights vector 𝜃′ which is 
used to generate the TD targets: 
 
The experience replay memory is used to increase training stability, obtaining samples that 
cover a wider number of situations. It can also increase the data efficiency since the same 
transition can be used several times for gradient descent. Three additional modules have 
been applied to the basic agent to improve performance, Double Q Learning (Hasselt 2010), 
Prioritised Experience Replay (Schaul et al. 2016), and Dueling Architecture (Wang et al. 
2015). 
 
Two variants of the DQN agent have been implemented, being described on the algorithms 
displayed in Figs. 1 and 2. The agents implemented used the hyperparameters described in 
Fig. 4. 
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Figure 1 – DQN Agent Pseudocode. 

Figure 2 - DDQN Agent Pseudocode. 
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3.4 Policy Gradient Reinforcement Learning Methods - A2C 
Policy Gradient in RL is based on the idea that obtaining a direct policy 𝜋ሺ𝑠ሻ mapping states 
to actions can be easier than estimating the value function or the state-action values. It has 
an added benefit in that it can learn stochastic policies, generating a probability distribution 
over the potential actions. The goal is to find the policy that maximises the reward. To do so 
one has to perform gradient ascent on the performance measure 𝐽 ൌ ∑ ሾ𝑄ሺ𝑠,𝑎ሻ𝜋ሺ𝑎|𝑠ሻሿ . 
The Synchronous Advantage Actor Critic (A2C) method tries to reduce the variance in the 
policy method by combining the direct mapping from actions with the value-based 
approximation method. The goal is to learn an actor 
 
 𝜋ఏ ൌ ℙఏሾ𝑎௧ ൌ 𝑎|𝑠௧ ൌ 𝑠ሿ,     and a critic    𝑉గఏሺ𝑠ሻ ൌ 𝔼ఏሾ𝐺௧|𝑠௧ ൌ 𝑠ሿ, (3) 
 
both of which are parametrised by the neural network weights vector 𝜃. 
 

 
Figure 3 - A2C Pseudocode. 
 

 
Figure 4 - DQN/DDQN and A2C Hyperparameters. 
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3.5 State, Action and Rewards of the agents 
The experiments presented in the following sections all use the same descriptions for 
simulator state and reward calculation, although they differ in the number of actions 
available to them. 

The state of an intersection of 𝑙 lanes will be presented to the agents as a state vector 𝑠 ∈
ℝାଵ. Each component will contain the length of the queue of vehicles measured upstream 
from the traffic light in metres. The last component will be the numeric ID of the current 
stage that the agent is implementing. 

While marginal improvements in performance can be obtained by using different variables 
for reward (Cabrejas Egea et al., 2020.; Cabrejas-Egea and Connaughton 2020b), as per the 
discussion of Heydecker (2004), queues can be a reasonable choice for states and rewards, 
being able to transmit useful information to the agent relative to the mean rate of delay of 
the system. Based on this, the reward after an action will be calculated as the negative sum 
of the length of the queues of all lanes immediately upstream from the intersection:  

𝑟௧ ൌ െ∑ 𝑞
௧

 .  (4)

The agent has a set of actions 𝒜 that varies depending on the intersection being controlled. 
Once the agent chooses an action 𝑎, the stage corresponding with the ID of 𝑎 is implemented. 
Green stages are set to a minimum of 6 seconds. Once this time has passed, the agent is 
requested a new action. If the agent chooses the same action again, the current stage is 
extended for a further 3 seconds. There are no inbuilt limitations as to how many times an 
agent can extend a stage, leaving it for the agents to learn. If the agent chooses a different 
action than the currently active one, a 3 seconds amber stage is implemented in the lights 
that were green, after which, the new stage is implemented. 

3.6 Agent Benchmarking 
In order to compare the agents’ performance, a testing framework was defined. For each 
model, a demand profile will be created, following the shape found in a typical day as 
described by using the methodology introduced in (Cabrejas Egea, De Ford, and 
Connaughton 2018) and expanded in (Cabrejas-Egea and Connaughton 2020a). The profile 
will be split on 10 segments of length 6 minutes. Each of these segments will correspond 
with a level of demand. The levels of demand are obtained by setting out what will be the 
maximum demand the intersection will suffer, setting that magnitude to coincide with the 
peaks of the distribution that could be found on said typical day and are specified in each 
experiment’s section. 
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Random seeds are changed and updated after every simulation episode, training or testing. 
The quantitative metrics on which the system will be evaluated are the Global Cumulative 
Delay (accounting for any deviations from the maximum speed) and the Average Queue 
Length generated by all vehicles during the execution of the evaluation. 
 
4. EXPERIMENTAL RESULTS 
 
4.1 Experiment 1: Cross Straight 
The first test is conducted on the simplest junction, shown in Fig 5. The junction referred to 
as Single Cross is composed on 4 lanes distributed in 4 arms coinciding with the cardinal 
directions of the model. The controller for the junction has two stages, a north-south stage 
and an east-west stage, and turning is not allowed. The testing aim was to perform an initial 
performance comparison of DRL algorithms against MOVA, SUTRAC, and a cyclic 
controller. Here the goal for the agent was to exert fine adaptive timing control while 
extrapolating, rather than using complicated transitions between stages that would rarely, if 
ever, appear in sequence in cyclic control. MOVA was configured using loop detectors set 
in accordance to its manual, the implementation of Surtrac follows the work of Xie et al. 
(2012), and the cyclic controller was set on a 56 second cycle following both the 
methodology presented in (Salter 1996) and a parallel optimisation process, reaching the 
same result. 
 

 
Figure 5 - Cross Straight Map. 
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The agents were trained using a fixed vehicle demand of 400 vehicles per hour on each of 
the incoming lanes. Both DQN variants were trained for 400 episodes, using an 𝜖 
geometrically annealed from 1 to 0.001. The A2C agents were trained for 100 episodes until 
they converged. Best performing agents in each class were selected for benchmarking and 
evaluated in scenarios lasting one hour, as described in the previous section with the 
demands shown in Table 1. During evaluation, an average of 2120 vehicles are inserted in 
the model, with 2 peaks of demand of 3000 vehicles/hour for 6 minutes each. 
Figure 6 and 7 and Table 2 show the Global Cumulative Delay and average queue length for 
the network. As expected, the cyclic solution is outperformed by all adaptive controllers. 
The different controllers are on a par with a slight advantage for the DuelingDDQN which 
saves the community an average of 3000 seconds compared to MOVA on this hour of 
simulation, which represents on average 1-2 seconds per vehicle. RL agents also seem 
slightly more robust against changes in demand, producing lower slopes in the delay graphs 
in sections of extreme demand. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1 - Demand in vehicles/hour per cardinal direction over the benchmark in Cross 
Simple. 
 
The cyclic controller resulted in saturated lanes during both peaks and queues in excess of 
150 metres during a great part of the simulation. MOVA suffered two moments in which at 
least a sensor was saturated coinciding with the peaks in demand, however the queues were 
close to lengths of around 50 metres during the most part of the simulator. Surtrac followed 
a similar pattern, having a single lane saturated coinciding with the second peak in demand. 
RL agents as suffered no saturation in any of their lanes during the length of the evaluation. 
They all managed a more balanced distribution of queues in their respective lanes, displaying 
a higher ability to balance loads during peak times. 
 
 
 

Time period [min] North East South West 
0-6 200 200 200 200 
6-12 400 400 400 400 
12-18 900 500 900 500 
18-24 1000 500 1000 500 
24-30 700 500 700 500 
30-36 500 700 500 700 
36-42 500 1000 500 1000 
42-48 500 900 500 900 
48-54 400 400 400 400 
54-60 200 200 200 200 
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Figure 6: Global Cumulative Delay in Single Cross for DQN variants, A2C, Surtrac, 
MOVA and the reference Cyclic controller. 
 

 
Figure 7: Global Cumulative Delay in Single Cross for DQN variants, A2C, Surtrac, 
MOVA and the reference Cyclic controller. 
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Figure 8: Queue length by demand level in Single Cross 

When comparing the systems that obtain the best performance, RL agents and MOVA, 
across different constant demand profiles, we observe that MOVA obtains a small advantage 
at the extreme low and high demand levels, but this difference is overcome by the RL based 
systems in the middle demand levels. This gives another indication that while MOVA can 
obtain really good results, especially at constant demand, it is not optimal, having room for 
improvement in the control exerted while in situations of varying demand. 

Controller Cumulative Delay [s] Average Sum of Queues [m] 
Cyclic 143660.50 132.37
MOVA 27187.53 60.59

SURTRAC 29008.36 72.41 
A2C 26382.14 56.07

DDQN 28303.94 50.11
DDDQN 21286.86 49.42

 Table 2 - Cumulative Delay and Cumulative Stop Delay in seconds across 
Controllers on Single Cross Straight. 

Because of the simplicity of this 2 actions intersection, there is not a lot of delay difference 
between adaptive UTCs. As it will be appreciated shortly, these results will change when we 
consider more complex junctions. 

Given the difference in performance between the adaptive and cyclic controllers, which is 
expected to become greater on more complex intersections, and the increasing difficulty in 
setting them in large intersections, the cyclic controller will be omitted for the next examples. 
Given that the A2C agent has been clearly outperformed in this experiment by those based 
on the DQN architecture, the following experiments will focus on the performance of this 
last architecture compared with commercial systems. 
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4.2 Experiment 2: Cross Triple - 4 actions 
This junction, as shown in Fig. 9, displays a much higher complexity than the intersection 
presented in the previous section. It is composed of 4 incoming links of 3 lanes each. In each 
incoming link, the left lane serves a dedicated nearside turning lane, the central allows for 
forward travel and the right lane allows for both offside turning and going straight. Due to 
limitations in how Vissim internally treats the queues, it is not possible to obtain a 
straightforward measurement of the lane queues in links that have more than one lane. To 
mitigate this, the first experiment was run with agents that would take 4 queue inputs (one 
for each incoming link), plus the state of the traffic signal as state input. The action set was 
consequently limited to 4 different actions, being allowed only those that set to green the 3 
traffic lights serving the lanes of the same incoming link. This allows for turning vehicles 
but prevents more sophisticated stages from happening. 
 

 
Figure 9 - Cross Triple Map. 
 
The agents were trained on a fixed demand of 400 vehicles per hours on each incoming link. 
The DQNs were trained for 400 episodes of one hour of simulated time, with 𝜖 annealed 
geometrically between 1 and 0.001. A2C agents were trained for 100 episodes until they 
converged. During the hour of evaluation, the demand profile from the last experiment was 
used with a scaling factor of 1.5, an average of 3180 vehicles were introduced to the model, 
with 2 peaks of demand of 4500 vehicles/hour for 6 minutes each, as shown in Table 3. 
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As it can be seen in Figure 10 and Table 4 the UTC using MOVA performs poorly compared 
to the DQN-based agents. During this hour of simulation RL agents halve the cumulative 
delay, saving over 27 hours of travel time for all vehicles involved, an average of over 32 
seconds of per vehicle. The length of the queues in those intersections controlled by RL 
agents during the test scenario were lower than the ones controlled by MOVA. Additionally, 
it can be seen that the agent using Dueling Q-Learning has a better performance than that 
Dueling Double Q-Learning. 

Table 3 - Demand in vehicles/hour per cardinal direction over the benchmark in 
Cross Triple. 

Figure 10 - Global Cumulative Delay in Single Cross Triple - 4 actions. 

Time period [min] North East South West 
0-6 300 300 300 300
6-12 600 600 600 600
12-18 1350 750 1350 750
18-24 1500 750 1500 750
24-30 1050 750 1050 750
30-36 750 1050 750 1050
36-42 750 1500 750 1500
42-48 750 1350 500 1350
48-54 600 600 600 600
54-60 300 300 300 300
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Controller Cumulative Delay [s] Average Max Queue Length [m] 
MOVA 260257.65 179.27 
DDQN 135220.91 153.58 

DDDQN 155563.22 128.20 
Table 4 - Cumulative Delay in seconds and Average Sum of Max Queue length in 
meters on Single Cross Triple - 4 actions. 
 
4.3 Experiment 3: Cross Triple - 8 actions 
In order to allow the use of a higher variety of stages in the controllers the map was reworked. 
All original lanes were partitioned into their own independent links, allowing extra space for 
lane changes. While these modifications allowed using information from all lanes in an akin 
manner to what modern sensors would achieve, due the limitations to lane changing, direct 
comparisons with Experiment 2 must be handled with care. Both models share name and 
rough geometry, but the layout of lanes is changed and so are the routing possibilities open 
to the vehicles. 
 
The results presented below, use DQN agents taking 12 queue length inputs plus the state 
of the signal. Here, 8 different stages are available as represented in Fig. 11. No specific 
stage order is enforced, and the agents are free to change between any combination of stages. 
 

 
Fig 11 - Allowed stages of the Single Cross Triple model and allowed transitions 
between stages. 
 
The RL agents display a similar, yet wider gap in performance with MOVA as in the 
previous experiment, with both classes benefiting from the increased actions pool. RL agents 
manage to generate about a third of the delay produced by MOVA. While this appears to be 
a great success, these results must be put into context. MOVA has a lot of internal parameters 
meant to be fine-tuned by a traffic engineer with site-specific knowledge. Our settings did 
produce a successful control loop, operating in line with what was expected of the 
configuration process. None of the RL agents has been fine tuned to the level that would be 
expected during commercial operation. The layers and neuron distribution weren’t 
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optimised, nor were the activation functions, meaning that the RL agents can still be 
improved upon. 

Figure 12 - Global Cumulative Delay in Cross Triple - 8 actions. 

When we look at how the performance of the different systems scales as the demand 
increases, we can observe in Fig. 13 that in the complex intersection where the RL agents 
have the ability to freely switch between stages, they obtain better performance than MOVA 
across the board. In the scenarios covering low demand levels, where in simple intersections 
MOVA was obtaining marginally better performance, now the situation is reversed, mostly 
due to the previously mentioned ability to switch to the most suitable stages in absence of a 
predefined order, which was not the case in the intersection with 2 stages. 

As the demand increases, the performance gap becomes wider, reaching a very significant 
advantage for the RL agent at high demand levels. This is consistent with the results 
presented in Fig.12 and Table 5. 

Table 5 Cumulative Delay and Cumulative Stop Delay in seconds across Controllers 
on Single Cross Triple - 8 actions. 

Controller Cumulative Delay [s] Average Sum of Queues [m] 
MOVA 165456.44 339.41
DDQN 72642.59 123.52

DDDQN 71245.61 119.86
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Figure 13 - Queue length by demand level in Cross Triple - 8 actions. 
 
5. DISCUSSION AND FUTURE WORK 
 
Several neural network architectures for RL controllers were tested. The agents did not 
require extensive or complex configurations to adequately control traffic junctions, 
outperforming the commercial controllers in terms of average queue length and delay, 
calculated as deviation from free-flow times. RL agents showed great stability and 
robustness to control situations within their training envelope as well as outside of it. 
Additionally, agents trained on relatively low uniform demand showed they can perform 
better than commercial systems during evaluation tests that included variable demand 5 
times higher than anything experienced during training. 
 
Experiment 1 provided evidence that fixed time systems perform worse than adaptive and 
RL UTCs in simple intersections. In this case, MOVA and the RL agent following a 
DuelingDDQN architecture obtained very similar results, with a slight advantage for the RL 
agent. 
 
Experiment 2 provided similar evidence about a smaller number of controllers, in a situation 
where queues were measured on a per-link basis rather than per-lane. This implies less 
granularity in the data and makes the control task more challenging. The results followed 
the same pattern with a DuelingDQN agent obtaining the best performance, despite the lower 
quality of the input data. 
 
Experiment 3 required modifications of the map in order to obtain said per-lane queues. This 
model saw the introduction of a much more complex intersection, with a multitude of actions 
available to the agent, some of them serving the same lanes in different ways, and letting the 
agent decide on the sequence of actions. Once again RL agents obtained better results than 
MOVA, with the DuelingDDQN agent obtaining the lowest global delay and average queue 
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length. The gap between the performance of MOVA and RL agents is increased here with 
respect to the last experiment. Most likely reasons are higher granularity in the data and extra 
actions being available to the agent, allowing it to display more complex sequences of 
actions. 
 
Reinforcement Learning applied to UTC keeps demonstrating that it can be a real-life 
solution to improve traffic conditions in urban environments, even though the sensors 
required are more sophisticated than simple induction loops. These experiments provide 
further evidence that Reinforcement Learning based UTCs could be the next generation 
solution for reducing traffic congestion. 
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