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Abstract: The knowledge of the topological structure and the automatic fare collection systems in
urban public transport produce many data that need to be adequately analyzed, processed and
presented. These data provide a powerful tool to improve the quality of transport services and plan
ahead. This paper aims at studying, from a mathematical and statistical point of view, the Barcelona
metro network; specifically: (1) the structural and robustness characteristics of the transportation
network are computed and analyzed considering the complex network analysis; and (2) the common
characteristics of the different subway stations of Barcelona, based on the passenger hourly entries,
are identified through hierarchical clustering analysis. These results will be of great help in planning
and restructuring transport to cope with the new social conditions, after the pandemic.

Keywords: complex network analysis; centrality measures; network robustness; ridership patterns;
clustering analysis; passenger flow; Barcelona underground

1. Introduction

Sustainable urban mobility is one of the most distinct characteristics of Smart Cities.
Specifically, intelligent public urban transport planning plays an important role in the
design of the future cities and in the sustainable development of the environment (in this
sense, it has become one of the most powerful tools in the fight against air pollution in
cities); moreover, it is well known that efficient mass transit systems have a highly beneficial
impact on economic development and social integration. Particularly, the subway is the best
choice in big cities since it exhibits many advantages including reducing traffic congestion,
saving energy and non-renewable resources, reducing the number of traffic accidents and
therefore deaths, large capacity, time reliability, etc. [1].

Hundreds of millions of passengers commute in public transport daily in large cities,
hence failures in the network can cause major problems to commuters and business activi-
ties with significant economic and social losses. In addition, the COVID-19 pandemic has
changed the security measures on the transport network in order to maintain the sanitary
requirements. Proper social distancing between passengers is hard to ensure in public
transport if it is not well planned (taking into account the different characteristics of the
different stations and lines). To avoid overcrowded stations and trains, it is crucial to know
transit trip patterns. This will also allow better network planning, demand forecasting and,
ultimately, a more effective use of the available resources in general.

Two main goals are addressed in this work: (1) study the structural and robustness
characteristics of Barcelona subway network; and (2) identify ridership patterns at its
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stations. In the first case, the basic techniques of Complex Network Analysis are used
(centrality measures, structural indices, robustness coefficients, etc.), whereas, in the second
case, a hierarchical cluster analysis is performed to group stations according to their
boarding patterns. Barcelona’s metro is Spain’s second largest city subway system: there
are a total of 13 lines and 151 stations in the network. Its length is 119 km, and during 2018
more than 400 million people used it.

In recent years, the complex network approach has been used to analyze the subway
rail networks of several cities around the world. Since 2002, when Latora and Marchiori
studied the topological properties of the Boston subway [2], many other works have
appeared. Lu and Shi found that the public transportation network in China had scale-free
and small world characteristics [3]. Zhang et al. studied the topological characteristics of
some subway networks around the world and investigated network failures to discuss
the vulnerability of these subway networks [4]. Liu and Song [5] studied the topology of
Guangzhou subway network using L-space method, and the value and distribution of the
network’s degree, clustering coefficient and average shortest path length were computed
and analyzed. Cats [6] conducted a longitudinal analysis of the topological evolution of
a multimodal rail network by investigating the dynamics of its topology for the case of
Stockholm during 1950–2025.

The robustness of subway networks has also been discussed by many other researches.
For example, Derrible and Kennedy studied the complexity and robustness of 33 metro
networks [7]. Using network science and graph theory, ten theoretical and four numerical
robustness metrics and their performance in quantifying the robustness of metro net-
works under random failures or targeted attacks were investigated by Wang et al. [8].
Zhang et al. [9] investigated the connectivity, robustness and reliability of the Shanghai
subway network of China. Forero-Ortiz et al. [10] gave insights for stakeholders and
policymakers to enhance urban flood risk management, as a reasonable approach to tackle
this issue for Metro systems worldwide. De Bona et al. [11] proposed a novel methodol-
ogy called Reduced Model as a simple method of network reduction that preserves the
network skeleton (backbone structure) by properly removing 2-degree nodes of weighted
and unweighted network representations. In [12], a new perspective for understanding
vulnerability of metro networks is shown with the aims of improving operation reliability
and stability of the network, designing emergency strategies to protect the network, etc.

In this work, the topological characteristics of the metro network are investigated
considering the complex network approach. Specifically a brief analysis of the Barcelona
subway network is provided from the computation of the most important centrality mea-
sures: (i) degree centrality CD; (ii) average degree E[D]; (iii) degree distribution p(k); (iv)
average path length L; (v) closeness centrality CCL; and (vi) betweenness centrality CB.
In addition, to assess the robustness of the subway network, eight theoretical robustness
metrics are investigated: (i) normalized robustness indicator rT ; (ii) effective graph con-
ductance CG; (iii) average efficiency E[ 1

H ]; (iv) clustering coefficient CCG; (v) normalized
algebraic connectivity µN−1; (vi) average degree E[D], (vii) normalized natural connectivity
λ; and (viii) degree diversity κ.

Most public transit networks use automated fare collection (AFC) systems. The
interest in this kind of technology is because it is perceived as a secure method of user
validation and fare payment. Moreover, it improves the quality of the data, gives transit
a more modern look and provides new opportunities for innovative and flexible fare
structuring [13]. While the main purpose of AFC systems is to collect revenue, they also
produce very large quantities of very detailed data of on-board transactions. These data
are very useful to transit planners, from the day-to-day operation of the transit system to
the strategic long-term planning of the network [14].

AFC systems are classified into two types according to the fare charge mode of transit:
flat-rate fare systems and distance-based fare systems. In flat-rate fare systems, only entry
swipes are registered, while, in distance-based fare systems, entry and exit swipes are
registered. Barcelona metro uses a flat-rate fare system, therefore only metro boarding is
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available in this study. This has the inconvenience of not knowing where the passenger’s
journey ends, e.g., the trip’s purpose. The destination of the trip helps understand peak
hours. For instance, most of the work and education trips start in the morning peak from
home and return back to home in the evening peak. While not within the scope of this
paper, the destination estimation of public transport is one of the major concerns for the
implementation of smart card data and there exist several approaches (see, e.g., [15–18]).

Every day, depending on the size of the network, millions of transactions are registered
by the AFC systems, which can be used to analyze human mobility. It has been determined
that human trajectories and trips generated with human mobility show a high degree of
temporal and spatial regularity [19]. Passenger flow of the urban subway varies according
to time and space, including working days, holidays, seasons, residential areas, business
centers, workplaces and other factors such as weather, as well as other forms of trans-
portation that connect to the subway network. In this regard, several methods have been
developed in the literature for this type of analysis, most using clustering approaches [20].

Two viewpoints can be considered when a cluster analysis using smart card data
is performed. The first one clusters stations based on the temporal-spatial distribution
characteristics of subway ridership. The second one identifies groups of passengers that
have similar boarding times aggregated into weekly profiles [21].

From the first point of view, Chen et al. [22] studied the diurnal pattern of subway
ridership in New York City using the k-means algorithm. Wang et al. [23] analyzed eight
metro stations in the central area of Hong Kong using the hierarchical cluster analysis.
The k-means algorithm was also employed by Kim et al. [24] to identify the daily travel
patterns at subway stations of Seoul Capital Area. Ding et al. [25] applied gradient boosting
decision trees to investigate the non-linear effects of built environment variables on station
boarding in the Washington metropolitan area. Langlois et al. [26] proposed a longitudinal
representation of user’s multi-week activity and identified 11 travel patterns from London’s
public transport network.

The study and analysis of different characteristics of subway networks have been tack-
led by means of other different paradigms. For example, risk analysis has been addressed
in some recent works (see, e.g., [10,27–29]), the GIS-based technologies improves the anal-
ysis performed using mathematical methods [30], modern statistical and mathematical
techniques can be also applied [31–34], the study of bus–metro transfers is considered
in [35,36], etc. Moreover, techniques based on the Artificial Intelligence paradigm have
also been used to study different aspects of subway networks (see, e.g., [37–39]).

The rest of the paper is organized as follows. Section 2 describes the data used in the
study. Section 3 is devoted to presenting the methodology used for the analysis of travel
patterns. Finally, the results obtained and the discussion are presented in Section 4 and the
conclusions in Section 5.

2. Structural and Transit Data of Barcelona Subway Network
2.1. Study Area

Barcelona is considered a significant success in urban development across Europe.
As the second largest city of Spain, it has been growing and transforming itself to be a
knowledge-intensive city and, more importantly, a pioneer in being a smart city [40]. In
addition, it has been one of the Spanish cities with the most confirmed cases of coronavirus.
This is why it is an excellent case to explore.

Barcelona has an area of 102 km2 and a resident population of more than 1.62 million.
The city has a diverse public transport system composed of metro, urban and intercity
buses, commuter trains, tramway, funicular cable tramway and taxis.

The Barcelona Metro is a metropolitan railway network that gives service to Barcelona
and the municipalities of its metropolitan area: Badalona, Cornellà de Llobregat, L’Hospitalet
de Llobregat, Montcada i Reixac, El Prat de Llobregat, Sant Adrià de Besòs , Sant Boi de
Llobregat and Santa Coloma de Gramanet. It comprises 13 lines with a length of 119 km
(see Figure 1):
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• L1: Hospital de Bellvitge–Fondo
• L2: Paral-lel–Badalona Centre
• L3: Zona Universitària–Trinitat Nova
• L4: La Pau–Trinitat Nova
• L5: Cornellà Centre–Vall d’Hebron
• L6: Plaça Catalunya–Reina Elisenda
• L7: Plaça Catalunya–Avinguda Tibidabo
• L8: Plaça Espanya -Molí Nou Ciutat Cooperativa
• L9 Nord: La Sagrera–Can Zam
• L9 Sud: Aeroport T1–Zona Universitària
• L10 Nord: La Sagrera–Gorg
• L10 Sud: Foc–Collblanc
• L11: Trinitat Nova–Can Cuiàs

Figure 1. The 2019 Barcelona subway (Available online: https://www.metrobarcelona.es/mapas.html (accessed on 15
February 2021)).

2.2. Transit Data

The data used in this research correspond to the ridership (number of entries) in each
station from 5 March 2018 to 11 March 2018. The reason this week was selected is because
it is a week without public holidays or summer or winter holidays, and, therefore, it can
reflect the general station ridership characteristics under normal circumstances. There
was no extreme weather associated with that week either (e.g., heavy storms or very hot
temperatures).

A statistical analysis of daily transit data was performed to analyze hourly inbound
ridership of the 151 stations of Barcelona subway. The Barcelona metro operates from
Sunday to Thursday from 5:00 to 24:00. On Fridays, the metro schedule is extended until
2:00, while on Saturdays it offers continuous service for 24 h. Thus, there are 140 variables
for each station.

There are some aspects that need to be taken into account when addressing the
analysis. First, it is important to notice there are two time-related patterns: the inbound
ridership patterns on weekdays and at weekends. While they are both highly correlated
on their own, the correlation between the ridership on weekdays and on the weekend is

https://www.metrobarcelona.es/mapas.html
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relatively low (see Figure 2). Second, from the analysis of the inbound ridership, it can
be deduced that the highest peak hour during weekday mornings is between 7:00 and
8:00. During the evening rush hour, the highest peak hours are between 14:00 and 15:00
and between 18:00 and 19:00. Meanwhile, the rush hours during the weekend are from
13:00 to 14:00 and from 18:00 to 19:00 (see Figure 3). Figure 4, where the total number
of entries at each hour is added up for all the days in the selected week for 35 randomly
selected stations, illustrates how the different rush hours change depending on the station,
and that both the time and the number of validations that represent a peak for a station
vary. In addition, the total number of passengers significantly differs from one station to
another. For instance, taking the daily ridership of 5 March, Diagonal station has a total of
54,636 passengers, while, at Casa de l’agua, there were only 207 boardings that day. These
are the stations with the maximum and minimum total number of boardings and illustrate
the huge difference there can be. Finally, as shown in Figure 5, the distribution of passenger
flow decreases significantly on Saturdays and Sundays, which is why it was decided to
focus on the data from Monday to Friday.

Figure 2. Pearson’s correlation coefficients of daily ridership.
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Figure 3. Time-varying diagram of passenger flow (total counts of boarding).

Figure 4. Heatmap with the total number of validations per hour for 35 randomly selected stations.
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Figure 5. Passenger flow boxplots.

3. Methodology
3.1. Complex Network Analysis

In this study, the L-space representation of the network is considered. Hence, the
stations of the subway network are represented by nodes of a graph and the tracks con-
necting two stations are represented by edges of the graph. Therefore, the subway network
is represented by a undirected graph G = (V, E) where V = {v1, v2, . . . , vN} is the set of
nodes, and E = {eij =

(
vi, vj

)
, vi, vj ∈ V} is the set of edges, where |E| = M.

The adjacency matrix of G, AG =
(
aij

)
1≤i,j,≤N , is a N × N symmetric matrix such that

the coefficient aij takes the value 1 or 0 depending on whether or not there is a link between
nodes vi and vj. The degree of a node vi is the number of adjacent nodes to vi and can be
computed as follows: di = ∑N

j=1 aij.
The Laplacian matrix QG = ∆− AG is an N×N matrix, where ∆ = diag(d1, . . . , dN) is

the N × N diagonal degree matrix. The eigenvalues of QG play a very important role in ro-
bustness analysis; they are non-negative and can be ordered as 0 = µN ≤ µN−1 ≤ . . . ≤ µ1.

3.1.1. Centrality Measures

The analysis of a complex network is performed through the computation and analysis
of several structural coefficients of the network topology. Specifically, the most important
are the following [41]: degree centrality, average degree, degree distribution, average path
length, closeness centrality and betweenness centrality.

The degree centralityof vi is the average number of incident edges to vi:

CD(vi) =
di
N

, (1)

and the normalized average degree of the network G is given by:

E[D] =

N
∑

i=1
di

N(N − 1)
. (2)
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Moreover, the degree distribution of the network, P(k), is the probability distribution
of degrees over the whole network.

The shortest path length or distance between two nodes vi, vj ∈ V is denoted by
d
(
vi, vj

)
and is defined as the minimum number of links necessary to go from node vi

to node vj. The average path length of the network is defined as the average distance
between two nodes:

L =
2

N(N − 1) ∑
1≤i<j≤N

d
(
vi, vj

)
. (3)

The diameter D of G is the greatest distance between any pair of nodes:

D = max{d
(
vi, vj

)
, vi, vj ∈ V}. (4)

The closeness centrality of the node vi measures the mean distance from vi to the rest
of the nodes of the network:

CCL(vi) =
1

∑
i 6=j

d
(
vi, vj

) . (5)

The greater is the value of closeness centrality, the smaller is the length of the shortest
paths to all other nodes.

Finally, the betweenness centrality of the node vi ∈ V measures the number of shortest
paths between two nodes that run through node vi. Mathematically it is defined as follows:

CB(vi) =
2

(N − 1)(N − 2) ∑
r 6=s 6=i

`rs(vi)

`rs
, (6)

where `rs is the total number of shortest paths from vr to vs and `rs(vi) is the the number
of shortest paths between vr and vs that pass through vi. In networks, the greater is the
number of paths that pass through a node, the greater is the importance of this node and
more central it is.

3.1.2. Theoretical Robustness Metrics

Robustness can be defined as the network’s ability to survive random failures or delib-
erate attacks consisting of the elimination of nodes and/or edges [42]. In this sense, several
robustness measures have been proposed to quantitatively determine this characteristic.
The most important ones are described in what follows:

The normalized robustness indicator rT measures the ratio between the number of alter-
native paths in the network topology and the total number of stations [8]:

rT =
ln(M− N + 2)

ln
(

N(N−1)
2 − N + 2

) . (7)

Note that rT is higher in the case there are alternative routes to reach a destination and
it is smaller in large systems.

The effective graph resistance RG estimates the robustness of a network from the number
of parallel paths (i.e., redundancy) and the length of each path between each pair of nodes.
The effective graph resistance is calculated in terms of the eigenvalues of the Laplacian
matrix as follows:

RG = N
N−1

∑
i=1

1
µi

. (8)

In this work, the normalized version of the the effective graph resistance, called
effective graph conductance [43], is used:

CG =
N − 1

RG
. (9)
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Note that 0 ≤ CG ≤ 1 and a larger CG indicates a higher level of robustness.
The average efficiency E[ 1

H ] is defined as follows [44]:

E[
1
H
] =

2
N(N − 1)

N

∑
i,j=1,i 6=j

1
d(vi, vj)

. (10)

Note that the greater is the value of the average efficiency, the greater is the robustness
of the network (recall that the global efficiency of the complete network is 1).

The clustering coefficient is used to assess how the neighbors of a node are connected
with one another [41]. For node vi, it is mathematically defined as follows:

CC(vi) =
2Ei

di(di − 1)
, (11)

where Ei is the number of edges linked to the neighbors of node vi. The clustering coefficient
shows the fault tolerance characteristic: in a subway network, when one station is out of
function, the traffic will not be affected if the neighboring stations are connected. Thus, a
larger value of CC implies a better tolerance to fault in a local scale. The average clustering
coefficient is the average of all the individual clustering coefficients:

CCG =
1
N

N

∑
i=1

CC(vi). (12)

The algebraic connectivity µN−1 is the second smallest eigenvalue of the Laplacian
matrix AG. It has been shown that the larger µN−1 is, the higher the robustness of a
network is [43]. The normalized algebraic connectivity is obtained dividing by the total
number of nodes: µN−1 = µN−1

N .
The normalized natural connectivity λ is defined as:

λ =

ln[ 1
N

N
∑

i=1
eλi ]

N − ln N
, (13)

where λi is the ith eigenvalue of the adjacency matrix AG. It measures the redundancy in
terms of alternative paths and is considered as a measure of structural robustness [45].

Finally, the degree diversity κ is defined as:

κ =

N
∑

i=1
d2

i

N
∑

i=1
di

. (14)

The greater κ is, the more nodes must be removed from the network to disintegrate
it [46]. In this work, we take the inverse of the degree diversity κ = 1

κ in order to scale the
value in the interval [0, 1].

3.2. Normalization and Dimensionality Reduction

Given the large differences in the number of passengers from station to station, the
entries are normalized. The normalization consists in using the ratio of hourly passengers
to the total number of passengers that day at each station, instead of the total amount of
passengers per hour [24].

On the other hand, the number of variables used to classify the stations is large
and they are also highly correlated; therefore, it was decided to perform a Principal
Component Analysis (PCA). PCA is a technique for reducing the dimensionality of large
datasets, increasing interpretability and minimizing information loss [47]. PCA is defined
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as an orthogonal linear transformation which transforms the data into a new system of
coordinates such that the first coordinate (called the first principal component) represents
the largest variance, the second coordinate the second greatest, etc. PCA can be thought of
as fitting an n-dimensional ellipsoid to the data, where each axis of it represents a principal
component. If an axis of the ellipse is small, then the variance along that axis is also small.
To find the axes of the ellipse, first the mean of each variable from the dataset must be
subtracted to center the data around the origin. Then, the covariance matrix of the data is
computed. The covariance between two data is calculated as:

σjk =
1

n− 1

n

∑
i=1

(xij − x̄j)(xik − x̄k) (15)

The principal components are calculated from the eigen-vectors and eigenvalues of
this matrix. The eigenvectors represent the directions, whereas the eigenvalues are the
numbers representing how much variance there is in the data in each particular direction.
The eigenvector with the highest eigenvalue is taken as the first principal component. More
details can be found in the work of Dunteman [48].

3.3. Clustering Analysis

Cluster analysis is an exploratory technique which is used to classify objects into
groups, known as clusters, in such way that observations belonging to a cluster are more
similar to each other than observations assigned to different clusters. Nevertheless, clus-
tering is rather a subjective statistical analysis and there are several possible algorithms
that may be used. The decision of which technique to apply should be made depending on
the kind of data or the type of problem to be solved. The k-means algorithm is known to
be computationally fast and has the ability to handle large datasets. However, one needs
to know the number of clusters in advance, it is sensitive to outliers and different initial
centroids produce different results [49]. Hierarchical clustering is one of the most popular
clustering techniques. Although it may be computationally slower when the dataset size
increases and clusters depend on the distance metric used, the authors consider that the
result of a hierarchical clustering is a structure that is more informative and interpretable
than the unstructured set of flat clusters returned by k-means. Hence, it is easier to de-
termine the optimal number of clusters by looking at the dendrogram of a hierarchical
clustering than trying to predict this optimal number in advance in case of k-means. For
these reasons, the agglomerative hierarchical clustering technique is used [50]. The basic
algorithm consists of the following steps:

1. Initially, each observation is considered as a single-element cluster.
2. An iterative process is then initiated in which the two clusters that are the most similar

are combined into a new bigger cluster. This is done by computing the dissimilarities
between every pair of observations. This procedure is iterated until all points are
members of one single big cluster.

3. Finally, one needs to determine where to cut the hierarchical tree into clusters. This
creates a partition of the data.

The distance between clusters can be calculated using different methods [51,52]. In
this study, the Ward method was used, which has been very widely used since its first
description by Ward Jr [53], it and has outperformed other methods in several comparison
studies [54,55]. The Ward method is the only one among the agglomerative clustering
methods that is based on a classical sum-of-squares criterion, producing groups that
minimize within-group dispersion at each binary [56]. In the Ward method, the distance
between two clusters, A and B, is how much the sum of squares will increase once they are
merged:
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∆(A, B) = ∑
i∈A∪B

‖−→x i −−→m A∪B‖2 − ∑
i∈A
‖−→x i −−→m A‖2 −∑

i∈B
‖−→x i −−→m B‖2

=
nAnB

nA + nB
‖−→m A −−→m B‖2, (16)

where −→m j is the center of cluster j and nj is the number of points in it. ∆ is called the
merging cost of combining the clusters A and B. In this method, in each step, the variability
within clusters is minimized.

In addition, the agglomerative coefficient (AC), measuring the clustering structure of
the dataset, is calculated [57]. For each observation i, let m(i) represent its dissimilarity to
the first cluster it is merged with, divided by the dissimilarity of the merger in the final
step of the algorithm. The AC is the average of all 1−m(i). Generally speaking, the AC
describes the strength of the clustering structure that has been obtained by group average
linkage. However, the AC tends to become larger when n increases, so it should not be
used to compare datasets of very different sizes. The coefficient takes values from 0 to 1,
and it is actually the mean of the normalized lengths at which the clusters are formed. A
coefficient close to 1 points to a pretty reasonable cluster structure in the data.

4. Mathematical and Statistical Analysis
4.1. Structural Network Analysis

As previously mentioned, the topology of Barcelona subway network is established
using the L-space method, where each station stands for a node of the graph and the edges
are defined by means of the direct connections by rail ways between the stations. The
number of nodes is N = 151 and the number of edges is M = 177 and therefore the density
of the subway network is d ≈ 0.0157. In Figure 6, the graph corresponding to Barcelona
subway network using Mathematica is shown (note that the exact placing and positioning
of the stations is not taken into account).

Figure 6. The graph representing the Barcelona subway network using Mathematica.

4.1.1. Basic Structural Characteristics

In this subsection, the most usual coefficients and centrality measures, introduced in
Section 3.1.1, are computed and associated to the Barcelona subway network.

As shown in Table 1 the five stations with the highest degree are “Passeig de Gràcia”
with degree 6 and “Diagonal”, “Espanya”, “Catalunya” and “La Sagrera” with degree 5.
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Note that the first four stations belong to Line 3; in addition, three of the top five are on
Line 1.

Table 1. The five stations with the highest degree.

Station Subway Lines Degree

Passeig de Gràcia 2, 3, 4 6
Diagonal 3, 5 5
Espanya 1, 3 5

Catalunya 1, 3 5
La Sagrera 1, 5, 9N, 10N, 5

The average degree of the network is E[D] ≈ 2.2649 and the degree distribution p(k)
is shown in Figure 7, while the cumulative degree distribution is illustrated in Figure 8.
A simple calculus shows that the fitting function of the cumulative degree distribution is
h(x) = 4.0834e−1.4796x.

1 2 3 4 5 6
k0.0

0.2

0.4

0.6

P(k)
Degree distribution, P(k)

Figure 7. Degree distribution of Barcelona subway network.

1 2 3 4 5 6
k0.0

0.2

0.4

0.6

0.8

Probability
Cumulative degree distribution, P(K>k)

Figure 8. Cumulative degree distribution of Barcelona subway network.

The maximum travel distance of the network is no more than 31 stops (diameter),
while the average shortest path is 11.0032 stops.

Table 2 shows the results obtained from the computation of the closeness centrality.
The station with the highest closeness centrality is “Diagonal” with CCL ≈ 0.1424, and the
next four stations (“Verdaguer”, “Hospital Clìnic”, “Passeig de Gràcia” and “Provença”)
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have similar closeness centrality. In this case, the most centrality subway line is Line 5 and,
to a lesser extent, Line 3.

Table 2. The five stations with the highest closeness centrality.

Station Subway Lines Closeness Centrality

Diagonal 3, 5 0.1424
Verdaguer 4, 5 0.1372

Hospital Clìnic 5 0.1362
Passeig de Gràcia 2, 3, 4 0.1358

Provença 3, 5, 6, 7 0.1323

Finally, the results obtained when the betweenness centrality was computed are
displayed in Table 3. It is important to note that all the stations with the highest coefficient
belong to Line 5.

Table 3. The five stations with the highest betweenness centrality.

Station Subway Lines Betweenness Centrality

Diagonal 3, 5 0.4298
Verdaguer 4, 5 0.3333

Sants Estaciò 3, 5 0.2610
Hospital Clìnic 5 0.2593

Entença 5 0.2553

From these results, it can be seen that some specific stations play a central role in the
structural definition of the network. For example, “Diagonal” and “Verdaguer” are very
important structural pieces of the subway network since they have the highest values of
closeness and betweenness centralities. In addition the most central lines are Lines 5, 3 and 1.

4.1.2. Network Robustness

Failures of subway networks can have enormous impact on our society, so the analysis
of the robustness is very important when studying subway networks. The robustness
of networks reflects the extent to which the networks can solve possible (intentional or
unintentional) failures by offering alternative routes that overcome the attacked edges or
nodes.

In this section, eight robustness metrics (introduced in Section 3.1.2 are computed for
the Barcelona subway network and compared with those obtained for the Madrid subway
network.

In Table 4, the stations with the highest clustering centrality are illustrated. The most
central are “Catalunya” (CC = 0.2), “Universitat” and “Urquinaona” with CC ≈ 0.1666
and “Passeig de Gràcia” with CC ≈ 0.1333. As a consequence, they have better tolerance
to fault in a local scale. The first three stations belong to Line 1, and Lines 2–4 have a
couple of stations on this list. Moreover, the mean clustering coefficient is 0.0044, which is
significantly lower than that of other metro networks such as London (CC = 0.0409), Tokyo
(CC = 0.0285) or Paris (CC = 0.0163) [58].

Table 5 shows the values of the eight robustness metrics computed using Equations (7)–(14)
for the Barcelona subway network and the Madrid subway network [59].

According to the reduced robustness indicator rT , the Barcelona metro network is
slightly more robust than the Madrid metro network, probably because there are more
alternative paths between any pair of nodes.
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Table 4. Stations with non-zero clustering centrality.

Station Subway Lines Clustering Centrality

Catalunya 1, 3 0.2
Universitat 1, 2 0.1666
Urquinaona 1, 4 0.1666

Passeig de Gràcia 2, 3, 4 0.1333

According to the effective graph conductance CG, the Barcelona subway network also
has a slightly higher value than that of Madrid. Note that the effective graph conductance
takes into account not only the number of alternative paths but also the length of each
alternative path, hence effective graph conductance favors networks with the smallest
length of the shortest paths.

In general, according to all the metrics except the clustering coefficient CCG and the
normalized degree diversity κ, Barcelona has a higher robustness level than Madrid.

Table 5. Robustness metrics in Barcelona and Madrid subway networks.

Coefficients Barcelona Subway Madrid Subway

Nodes, N 151 243
Edges, M 177 280

Normalized robust indicator, rT 0.35747 0.35635
Efective graph conductance, CG 0.00221 0.00086

Average efficiency, E[ 1
H ] 0.13524 0.10533

Average clustering coefficient, CCG 0.00441 0.00774
Normalized algebraic connectivity, µN−1 0.00006 0.00001

Normalized average degree, E[D] 0.01562 0.00952
Normalized natural connectivity, λ 0.00770 0.00441

Normalized degree diversity, κ 0.35975 0.37135

4.2. Data Analysis Results

Principal component analysis was performed to study the data from the working
days (Monday to Friday) of the selected week. The first three principal components are
able to explain 66.32% of the variability in the data (PC1 = 46.56%, PC2 = 12.88% and
PC3 = 6.89%). Figure 9 shows the total variability explained by each principal component.

Figure 9. Total variance explained by each principal component (weekdays).
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In Figure 10, the top plot shows the contributions of 18 variables to the first three
components. The six variables which most contribute to each component are chosen.
In the bottom plot, the correlations of these 18 variables to each component are shown.
The contribution is represented both by the color scale and the circle size, while, for the
correlation, the direction of the correlation is represented by color and the circle size
represents the strength of the relationship. The variables which contribute the most to
the first component are those corresponding to 7 a.m., and they are strongly negatively
correlated with it. Regarding the second component, the variables which contribute the
most are the ones corresponding to 11 a.m. and noon. Finally, the variables contributing to
the third component are the ones from 1 and 11 p.m. The second and third components
have a positive correlation with the variables that contribute the most to them.

Figure 10. Contributions (top) and correlation (bottom) for the first three components.

A hierarchical cluster analysis was performed over the coordinates from the first three
principal components. The resulting AC is 0.9811, which indicates a pretty reasonable
cluster structure in the data. The dendrogram in Figure 11 shows that two clustering
solutions are possible. The four-cluster solution is chosen as it provides a more detailed
segmentation of the stations.

Statistical properties of the four clusters are summarized in Table 6. The diameters
represent the maximum within cluster distances. The average and median distances are
the within cluster average and median distances. Separation is the minimum distance of a
point in the cluster to a point of another cluster and average to other is the average distance
of a point in the cluster to the points of other clusters.

Table 6. Statistical properties of the four clusters (weekdays).

Cluster 1 2 3 4

Size 49 41 35 4
Diameter 17.49 9.39 9.32 8.46

Average distance 7.55 4.15 3.58 5.42
Median distance 7.30 4.05 3.45 5.21

Separation 1.64 1.08 1.08 7.70
Average to other 12.76 9.32 11.79 19.93

In Table 7, the stations belonging to each cluster are listed. For a better understanding
of the clusters, the different stations of each cluster are located in the Barcelona map,
making use of a Voronoi diagram (based on Euclidean distance) to partition the city map.
In Figure 12, each Voronoi cell representing a station is colored by cluster. It may be noted
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that stations from the same cluster are not necessarily close in space, but their behavior
pattern is similar. This may be due to, e.g., the business activities taking place in the area or
being residential neighborhoods.

Figure 11. Clusters: Hierarchical clustering.
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Figure 12. Map of the different stations colored by cluster (weekdays).

In the case of Cluster 1, most of the stations are located in the district of L’Eixample,
Ciutat Vella and Sant Martí, where some of the most popular beaches of Barcelona are
located, as well as important monuments such as Casa Milà, popularly known as La Pedrera,
the Cathedral, Park Güell and Casa Batlló. Moreover, this cluster includes the zoo, the
Maritime Museum of Barcelona and the museum Poble Espanyol. The hospital stations
Vall d’Hebron, Hospital Cliníc, Sant Pau and Hospital de Bellvitge are included in this
cluster too, as well as those belonging to university campuses, such as Mundet, Palau Reial,
Universitat and Zona Universitària. There are also two stations from the airport and some
stations from the districts Les Corts, Sants, Montjuic and Gracia, all of them located in
the city center. In Figure 13, passenger flow per hour is shown for some of the stations in
Cluster 1. All of them have peak hours at 8 a.m., 2 p.m. and 7 p.m.
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Table 7. Results of station classification.

Cluster Stations Number

Cluster 1 Aeroport T1, Aeroport T2, Arc de Triomf, Barceloneta, Bogatell, Casa de l’aigua, Catalunya,
Ciutadella, Diagonal, Drassanes, El Maresme-Fórum, Entença, Espanya, Europa-Fira,
Fontana, Girona, Gloriès, Guinardó, Hospital Cliníc, Hospital de Bellvitge, Hospital de
Sant Pau, Hostafrancs, Jaume I, Joanic, Les Corts, Lesseps, Liceu, LLacuna, Maria Cristina,
Marina, Monumental, Mundet, Palau Reial, Parallel, Passeig de Gràcia, Penitents, Poble-
nou, Rocafort, Sagrada Familia, Sant Antoni, Selva de Mar, Tetuan, Universitat, Urgell,
Urquinaona, Vall d’Hebron, Verdaguer, Verneda, Zona Universitària

49

Cluster 2 Alfons X, Av. Carrilet, Bac de roda, Badal, Badalona - Pompeu Fabra, Baró de viver,
Bellvitge, Bon pastor, Camp de l’arpa, Can tries - Gornal, Clot, Collblanc, Congrés, Cornellà
Centre, El Coll - La Teixonera, Encants, Fabra I Puig, Horta, La Pau, Les Moreres, Llucmajor,
Maragall, Mercat Nou, Montbau, Navas, Onze De Setembre, Parc Nou, Plaça De Sants,
Plaça Del Centre, Poble Sec, Rbla. Just Oliveras, Sagrera, Sant Andreu, Sant Martí, Santa
Eulàlia, Sants Estació, Tarragona, Torras I Bages, Torre Baró - Vallbona, Vallcarca, Virrei
Amat

41

Cluster 3 Artigues - Sant Adrià, Besòs, Besòs Mar, Can Boixeres, Can Cuiós, Can Peixauet, Can Serra,
Can Vidalet, Can Zam, Canyelles, Cèntric, Ciutat Meridiana, El Carmel, El Prat Estació,
Església Major, Florida,Fondo, Gavarra, Gorg, La Salut, Llefià, Pep Ventura, Pubilla Cases,
Roquetes, Sant Ildefons, Sant Roc, Santa Coloma, Santa Rosa, Singuerlín, Torrassa, Trinitat
Nova, Trinitat Vella, Valldaura, Via Júlia, Vilapicina

35

Cluster 4 Fira, Mas Blau, Mercabarna, Parc Logístic 4

Figure 13. Pattern of boardings in stations of Cluster 1 (weekdays).

The stations in Cluster 2 are mainly around the central area of Barcelona, with some
in the north and some in the south. These are traditional, residential, well-communicated
neighborhoods, with many markets and shops. The stations in the north are from the
districts Sant Andreu, Horta-Ginardó and Nou Barris. The stations in the south belong to
L’Eixample and are the furthest from the city center together with the stations from Sant
Andreu, one of the entrances to Barcelona with a large cultural and sports offer. The hours
with the largest number of passengers in this cluster are 7 a.m., 8 a.m. and 6 p.m. The
pattern of boarding per hour for some stations in this cluster is shown in Figure 14.
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Figure 14. Pattern of boarding in stations of Cluster 2 (weekdays).

Cluster 3 contains mostly stations located outside of the city. There are two stations
in El Prat de Llobregat and eight bordering the north side of L’Hospitalet de Llobregat.
The rest are gathered in the north urban periphery of the city, linking to different small
municipalities or towns, such as Badalona, Santa Coloma de Gramenet or Sant Adrià de
Besòs. These belong to what is known as the metropolitan area of Barcelona, which is a
geographical area that goes beyond the administrative area. Given the growth of the city of
Barcelona, some of these municipalities are now essentially suburbs of Barcelona. Badalona
is, however, the third largest city in Catalonia. Moreover, there are also stations in Ciutat
Meridiana, which is the poorest neighborhood of the city. In Figure 15, the peak hours of
the stations of this cluster can be seen. The hours with the highest number of boardings are
8 a.m., 2 p.m. and 6 p.m.

Figure 15. Pattern of boarding in stations of Cluster 3 (weekdays).

The stations that form Cluster 4 have the particular characteristics of the area they give
access to: Fira is the entry to one of the largest and most modern fairgrounds of Europe;
Mas Blau corresponds with the industrial park closest to Barcelona’s airport; Mercabarna
is considered the most important central market in Europe, as it is a reference center in the
Mediterranean Sea for the distribution of fresh products at the international level; and Parc
Logístic serves the logistics park of the city’s Free economic zone. Overall, 2 p.m., 5 p.m.
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and 6 p.m. have the highest number of boardings. The peak hours of these stations are
shown in Figure 16.

All the analysis here presented were performed with RStudio Team [60].

Figure 16. Pattern of boarding stations of Cluster 4 (weekdays).

5. Conclusions

In Barcelona, as in any major urban area, many people use the public transport
network, which is why it is necessary to have as much information as possible to forecast
and plan the subway trip.

Moreover, in the bibliography studied, there are no previous studies that analyze not
only the structural and robustness characteristics but also travel patterns of the Barcelona
metro network.

In this study, a detailed analysis of Barcelona subway network was done using Com-
plex Network Analysis. To achieve this goal, the most important centrality measures and
coefficients were computed. In this sense, the important role of stations such as “Diagonal”
and “Verdaguer” to control the flow of passengers was shown. It was also shown that
the stations “Catalunya”, “Universitat”, “Urquinaona” and “Passeig de Gràcia” have high
fault tolerance in a local scale. Moreover, L5 and L3 are the most central subway lines.

In addition, the robustness of the Barcelona subway network was investigated by
analyzing several robustness metrics and compared with the robustness of the Madrid
subway network. The results indicate that the Barcelona subway network is slightly more
robust than the Madrid subway network according to most of the robustness metrics. A
previous study [8] analyzed Barcelona subway robustness using ten theoretical robustness
metrics, but only taking into account terminals and transfer stations. The results in the
former study cannot be compared with ours since in our study all Barcelona subway
stations are used.

The data collected at the entry of the metro stations in Barcelona provide a vast
quantity of data with very valuable information about the ridership patterns in them.
The set of real data was provided by the Barcelona Metropolitan Network, providing
information on the number of entries per hour in each of the 151 stations. There are no
data related to the passenger’s journey or personal data (age, sex, fare, etc.).

The statistical techniques used in this study allowed observing the following: in
the first place, there are differences in behavior between working days, which are highly
correlated with each other, and over the weekend, with which the correlation decreases.
The hours with the highest number of passengers correspond mainly to the hours of entry
and exit of work and school hours. However, these rush hours are not the same at all
stations, nor are the number of passengers each have, reaching a difference of more than
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54,000 daily entries between some stations. It is because of this reason that the data were
normalized, using the proportion of passengers per hour with respect to the total number
of entries in that particular day at each particular station.

The principal component analysis performed reduced the dimensionality of the
dataset. The first three principal components explain most of the variability in the data.
Moreover, it was observed which hours have a higher effect in each of them.

The cluster analysis carried out revealed, for working days, the existence of four
groups with similar characteristics. The first conglomerate gathers the stations of the
downtown area, the most touristic and monumental. In the second cluster, the stations
that surround the center of Barcelona are grouped. They are, mainly, traditional and
residential neighborhoods. The periphery stations, which link the center with the nearest
municipalities, are those found in the third cluster. In the fourth cluster, the stations of the
fairgrounds, large markets and logistics parks appear. Within each cluster, one can see the
same pattern of behavior that reflects the similarities of the stations that form it, as can be
seen at peak times, which differ between clusters.

The patterns observed reflect the daily activities of the urban area of Barcelona, which
are related to the spatial structuring of the city and its characteristics, and are highly
correlated with general daily routines.

The results of this work provide relevant information for the “Transports Metropolitan
of Barcelona” company for public transport planning. These studies allow us to discover
patterns of behavior needed to make decisions to improve the metro service. Nowadays,
in the new post-pandemic normality, it is imperative to travel safely so as to stop the
coronavirus spreading. It is important to avoid rush hours travels; people may choose to
get on and off at subway stations with fewer travelers and do part of their journey by foot.
Moreover, it is the task of public transport companies to increase the number of subway
cars at a certain time if it gets too crowded, improve the infrastructure of stations with
high passenger flow and reduce the time in-between metro services, among other security
measures. For instance, the station “Sant Andreu”, from Cluster 2, has the highest number
of passengers between 7:00 and 8:00 a.m., and, therefore, it is one of the stations where
increasing the number of subway cars or the frequency of the service would be imperative.
On the other hand, the station “Fira”, from Cluster 4, has peak hours at 14:00, 17:00 and
18:00 (p.m.), although with a much smaller number of passengers than “Sant Andreu”, and,
thus, depending on the capacity of the station, the measures may not be as crucial as in the
first one.

Future work involves relating these results to population, climate and economic vari-
ables that reflect other social circumstances that may influence the characteristics of the
metro network stations. Moreover, annual data shall be analyzed to detect seasonality in
behavior patterns. Further lines of investigations will also include a structural and robust-
ness analysis of the network, using complex network analysis to determine critical nodes
using different centrality measures. In addition, a detailed analysis of the structural char-
acteristics of this subway network considering other different topological representations
such as reduced L-space, P-space, C-space, etc. must be tackled. In addition, a theoretical
framework must be proposed in which the notion of “subway line” is used as the basis
to define new structural and robustness coefficients. Furthermore, additional transport
lines (light rail network, bus network, etc.), can be considered in the analysis to obtain
more realistic results. It would also be interesting to analyze the data post-COVID-19 and
compare how the use of the public transport has changed, once the data become available.
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