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Abstract: Four models for predicting Photosynthetically Active Radiation (PAR) were obtained
through MultiLinear Regression (MLR) and an Artificial Neural Network (ANN) based on 10 meteo-
rological indices previously selected from a feature selection algorithm. One model was developed
for all sky conditions and the other three for clear, partial, and overcast skies, using a sky classifi-
cation based on the clearness index (kt). The experimental data were recorded in Burgos (Spain) at
ten-minute intervals over 23 months between 2019 and 2021. Fits above 0.97 and Root Mean Square
Error (RMSE) values below 7.5% were observed. The models developed for clear and overcast sky
conditions yielded better results. Application of the models to the seven experimental ground sta-
tions that constitute the Surface Radiation Budget Network (SURFRAD) located in different Köppen
climatic zones of the USA yielded fitted values higher than 0.98 and RMSE values less than 11% in all
cases regardless of the sky type.

Keywords: photosynthetically active radiation; kt sky classification; ANN; multilinear regression
models

1. Introduction

Photosynthetically Active Radiation (PAR) is a key factor for photosynthesis, vege-
tation growth, and climate change. The importance of its measurement and modelling is
widely recognized [1–3], as PAR has a major influence on plant canopy growth, agricultural
yields, and other environmental variables. Measurement of the PAR band is needed for
sky-modelling of biomass growth and forestry production [3–6] and in natural greenhouse
illumination [7]. Moreover, PAR affects the relationship between atmospheric systems and
plants, so much so that its availability is a regulatory factor in the natural carbon cycle and
in CO2, water, and energy exchanges within the atmosphere [8].

Within the solar radiation spectrum, PAR is the portion with a wavelength between
400 and 700 nm [9]. Unfortunately, PAR sensors are not commonly found at ground meteo-
rological stations [10]. It is therefore usually measured on the basis of other meteorological
parameters and variables. The relationship between two different variables and PAR has
been analyzed in different works, obtaining mathematical models of greater or lesser accu-
racy. Many of these models described in the literature for modelling PAR are based on linear
regressions of global horizontal radiation [3,11,12], optical air mass [1], and the clearness
index [13]. Other authors modelled PAR by simultaneously taking several variables into
account: solar radiation, solar zenith angle, columnar perceptible water vapour, and aerosol
optical depth [14]. Wang et al. [13] estimated PAR with the clearness index, day length, and
zenith angle. Ferrera-Cobos et al. [15] used Global Horizontal Irradiance (RaGH), Global
extraterrestrial irradiance (G0), atmospheric Temperature (T), and Relative Humidity (RH)
as input variables for their models. These relationships have been analysed in most studies
as a function of sky conditions [16] to estimate PAR for clear skies where the most important
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variable is the solar zenith angle. The brightness index indicates whether the model is
used in the presence of clouds. In several studies, PAR has been treated as a variable that
depends on the location where it is measured or estimated [17]. As regards measurement
temporality, the ratio of PAR and insolation in both tropical and arctic regions has been
observed to remain fairly constant on different days and over longer time scales, regardless
of cloud cover, atmospheric composition, surface type, season, and day length [18].

Ferrera-Cobos et al. [15] modeled PAR in oceanic and Mediterranean climates, testing
22 (11 multi-linear regression and 11 artificial neural network) models, using RaGH, G0,
T, and RH as their input variables. They concluded that areas with different climatic
conditions needed different models. The Mediterranean climatic models showed better
fits, and the models for oceanic climates needed some corrections depending on their
geographical location, as the higher humidity of an oceanic climate, due to higher levels
of atmospheric water vapour, means more radiation in the infrared spectrum, increasing
the PAR to G0 ratio. Although the combination of using geostationary and polar-orbiting
satellites is an optimal solution for estimating PAR, a network of PAR sensors is necessary
for better validation [18]. Sudhakar et al. proposed a PAR estimation model for India at
six latitudes between 9◦ to 34◦, based on hourly and monthly averages of daily global
radiation and a power regression model that accounted for different solar angles, cloud
cover, and climatic conditions, which they linked to RaGH [3].

Several researchers have used data from different satellites, supplied from CM-SAF,
to develop their PAR models, although field data had to be used for validation in each
study [12,15]—a need that Vindel et al. [19] considered when presenting methodology to
determine optimal locations for PAR measurement stations. This methodology is based on
a clustering process applied to the kt, PAR, calculated by dividing the PAR at the Earth’s
surface by the part of the spectrum corresponding to the PAR band at the top of the
atmosphere (39.8% of the total).

In recent years, machine learning techniques have been used to develop algorithms for
estimating PAR. The most decisive variable for PAR estimation was RaGH when comparing
MLR and ANN models, regardless of climate [15]. Even when ANN models were run,
their results clearly worsened without RaGH. In this sense, Jacovides [20] used the sunshine
fraction (nN), T, RaGH, G0, and RH as input variables for the ANN models. They found that
sunshine duration plays an important role in obtaining acceptable model predictions and
that the model that best predicted PAR values combined sunshine duration and RaGH.

Lopez et al. [10] presented a model using PAR data collected at radiometric stations
using a neural network. They estimated PAR with RaGH as the only measured variable.
A second ANN model based on sunshine duration measurements was shown to be an
acceptable alternative for calculating PAR. In contrast, Pankaew et al. [21] developed an
ANN model for estimating hourly PAR data using seven atmospheric parameters (cosine
of solar zenith angle, cloud index, precipitable water content, and aerosol optical depth)
as the input collected from satellite data. They concluded that PAR estimation with an
ANN model presented a good fit with a root mean square difference of 10.2%. Qin et al. [2]
tested eight artificial intelligence models, among which the BackPropagation neural net-
work model yielded the highest accuracy. Wang et al. [22] proposed three improved ANN
models: MLP, Generalized Regression Neural Network (GRNN), and Radial Basis Neural
Network (RBNN) for PAR estimation, from long-term hourly observations of RaGH and
meteorological variables (air temperature, relative humidity, dew point temperature, water
vapour pressure, air pressure). They found that different meteorological parameters influ-
enced PAR estimation in accordance with each particular (agricultural land, soil, forest, bay,
prairie, desert, and lake) ecosystem.

Yu et al. [23] studied the relationship between hourly PAR and RaGH from data
collected over three years at the Bondville, IL, and Sioux Falls, SD, ground weather stations
(United States). From these data, they determined the temporal variability of the PAR
fraction and its dependence on different sky conditions (defined by the clearness index (kt)).
Furthermore, the results in terms of the normalized Root Mean Square Error (nRMSE), the
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(R2) coefficient of determination, the Mean Percentage Error (MPE), and Relative Standard
Error (RSE) from the ANN-based models were compared with the same results from four
existing conventional regression models. The authors found that the ANN model could
accurately predict hourly PAR, especially under cloudy and clear sky conditions.

In general, as the literature review has highlighted, research on the modelling of dif-
ferent components of solar radiation has focused on obtaining models at specific locations,
which can rarely be applied directly to other locations and usually requires local recalibra-
tion to achieve adequate results. In this study, our aim is to extend locally obtained models
for PAR estimations as a function of the sky type to other locations. The sky conditions
were determined from the clearness index (kt). Three different PAR models, one for each
sky type (clear, overcast, and partial), were developed from experimental data collected
over ten-minute intervals at Burgos, Spain. The meteorological indices had previously
been selected as the model inputs. Multi-Linear Regression (MLR) and ANN were the
two modelling procedures. Both models were applied to experimental PAR data from
all seven ground stations that form the SURFRAD network, corresponding to various
Köppen–Geiger climate classification types [24].

The structure of this paper is as follows: after the Introduction Section, the databases,
including the meteorological measurement stations, are described in Section 2. This section
also includes the definition and description of the meteorological indices used for mod-
elling PAR. In Section 3, the feature selection algorithm is described and PAR modelling
is introduced using MLR and ANN models. In Section 4, the adjustment of the models
obtained in Burgos for their application to the seven SURFRAD meteorological stations
located in the United States is described. Finally, the main results and conclusions are
presented in Section 5.

2. Description of the Experimental Data

Figure 1 shows the location of the weather station in Burgos, Spain (42◦21′04′′ N,
3◦41′20′′ W, 856 metres Above Mean Sea Level) (AMSL) where the data were collected for
this study. The prevailing climate in Burgos, both oceanic and Mediterranean, is classified
as Csb in the Köppen climate classification system This weather station, described in
previous work [25], is situated on the flat roof of a building at the University of Burgos,
with no external obstructions or reflections from other surfaces. In addition, data were
collected from all seven stations within the Surface Radiation Budget Network (SURFRAD),
dependent on the National Oceanic and Atmospheric Administration (NOAA): Bondville
station, Sioux Falls station, Boulder station, Desert Rock station, Fort Peck station, Goodwin
Creek Station, and Penn State station. Figure 2 shows the location of the weather station in
Burgos and the location of the seven SURFRAD weather stations.

In Burgos, RaGH and Diffuse Horizontal Irradiation (RaDH) were measured in W·m−2

using a Hukseflux pyranometer, model SR11, and a Hukseflux pyrheliometer, model
DR01, respectively. PAR was measured from Photosynthetic Photon Flux Density, Qp
(µmol·s−1·m−2), data and was then converted into PAR data (W·m−2) using McCree’s
conversion factor (4.57 µmol·J−1) [26] using a EKO quantum sensor, model ML-020P. All
meteorological and radiometric data were recorded every ten minutes (averages from 30 s).
The experimental campaign took place from April 2019 to February 2021. Experimental
data were analyzed and then filtered using conventional quality criteria [27]. If a dataset
failed to pass the quality criteria, then all simultaneous datasets were rejected. The original
dataset counted 71,600 datums (ten-minute datasets), 36% of which were eliminated after
the filtering procedure. In the USA, PAR, global, and diffuse irradiance values are given
in W·m−2. The PAR values were measured employing a LI-COR Quantum sensor, while
the RaGH values were measured using a pyranometer Spectrolab SR-75, and RaDH was
measured with an Eppley, Model 8–48 pyranometer. The experimental campaign spanned
10 years, from January 2009 to December 2018 at each station, with a temporal resolution
of 1 min, moving to ten-minute values by calculating the average of the values within
that interval.
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Figure 2. Location of the weather stations (Burgos and USA).

Burgos University, Spain. The Qp, RaGH, and RaDH sensors are shown in the de-
tailed pictures.

Each Meteorological Index (MI) shown in Table 1 was determined at the single Spanish
station and the seven meteorological stations in the USA. The following meteorological
indices were directly obtained from the experimental measurements: T, P, RaGH, and
PAR, obtained from Qp, which were measured with pyranometers and a quantum sensor,
respectively. The solar azimuth cosine (cosZ) was calculated from the geometrical data of
the location, using well-established mathematical relationships [28]. Finally, the dew point
temperature (Td) was calculated from the vapour water pressure [29] and RH. The other
indices, kt [28], the horizontal diffuse fraction, kd [30], and Perez’s clearness index, ε, and
Perez’s brightness factor, ∆ [31], were calculated using equations described elsewhere [32].
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Table 1. Meteorological indices (MIs) measured in Burgos.

MI MI Expression Ref.

RaGH Global Horizontal Irradiance recorded

kd Horizontal diffuse fraction kd = RaDH
RaGH [30]

Qp Photosynthetic photon flux density recorded

PAR Photosynthetically active radiation PAR = Qp/4.57 µmol·J−1 [26]

kt Clearness index kt =
RaGH

Bsc ·ε0·cosZs
[28]

T Air temperature recorded

P Pressure recorded

Td Dew point temperature Td =
35.859·logPv−21.48.496

logPv−10.2858
[29]

cosZ Solar azimuth cosine cosZ = sinδ·sinφ + cosδ·cosφ·cosω [28]

ε Perez’s clearness index ε =
RaDH+RaB

RaDH +k·Z3
s

1+k·Z3
s

[31]

∆ Perez’s Brightness factor ∆ = m·RaDH
Bsc ·ε0·cosZs

[31]

ε0 = 1 + 0.033·cos[2·π·dn/365] is the average value of the orbital eccentricity of the Earth. dn is the day of the
year. Bsc is the extraterrestrial irradiance constant (1361.1 W·m−2 [33]). k = 1.04 (or 5.56 × 10−6 if Zs is expressed
in degrees). Zs is the angle between the sky zenith and sun. δ, φ, ω are the respective declination, hour angle, and
geographic latitude of the specific location.

3. Methodology

The dataset was distributed into three categories of sky conditions based on the
clearness index, kt, [28] and the values adapted by Suarez-García [34] considering clear
[0.65, 1), partial (0.35, 0.65), and overcast (0 < 0.35] skies. Figure 3 shows the Frequency Of
Occurrence (FOC) of the different sky types in Burgos during the experimental campaign,
which extended from April 2019 to February 2021. As can be seen, in Burgos, the clear sky
conditions were prevalent except from November to January, when cloudy sky conditions
occur more frequently.
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3.1. Feature Selection

The meteorological indices with the greatest influence on the PAR estimation models
were selected to improve the precision and reduce the complexity of obtaining the models
in Burgos, regardless of whether all sky types that can appear in Burgos were considered
or whether the data were classified into clear, partial, and overcast skies. The first step
determines the relationship of the different MIs to the PAR. The Pearson criterion, based
on the Pearson correlation coefficient (r), was used to determine the influence or weight
that each of index has on the PAR component. The criteria are as follows: if r is close to 0,
the corresponding MI has a very weak relationship with PAR, whereas if it is close to 1, or
−1, the relationship is very strong. The Thumb rule [35] established five r intervals for the
correlation: direct (1 ≥ |r (PAR, MIi)| ≥ 0.9), strong (0.9 > |r (PAR, MIi)| ≥ 0.7), moderate
(0.7 > |r (PAR, MIi)| ≥ 0.5), weak (0.5 > |r (PAR, MIi)| ≥ 0.3), and negligible (|r(PAR,
MIi)| < 0.3). Table 2 shows the different intervals of Pearson’s coefficients for the different
MIs according to the classification of skies over Burgos with the kt sky classification (clear,
partial, and overcast).

Table 2. Pearson’s r (PAR, MIi) based on the sky conditions according to the kt sky classification (clear,
partial, and overcast).

|r (PAR, MIi)|

kt Sky Type [1–0.9] (0.9–0.7] (0.7–0.5] (0.5–0.3] (0.3,0]

All sky conditions RaGH cosZ, kt kd, ε T ∆, P, Td

Clear RaGH, cosZ kt, ε T kd, ∆, P, Td

Partial RaGH, cosZ T kt, kd, ∆, ε, P, Td

Overcast RaGH cosZ kt, ∆ kd, ε, P, T, Td

From the results shown in Table 2, it can be observed that RaGH is the MI that has a
very strong and direct influence on PAR for all types of skies, coinciding with the results
obtained by Ferrera-Cobos et al. [15]. Likewise, for all-sky types, cosZ and kt also have
a strong relationship, and kd and ε have a moderate relationship with PAR. In the case
of analyzing clear skies, there is a direct and strong relation with RaGH and a moderate
relation with, kt, cosZ, and, ε. For partial skies, there is also a direct and strong relation, in
addition to RaGH, with cosZ. For overcast skies, there is also a direct and strong relation
with cosZ and a moderate relation with kt, and ∆. The rest of the indices (T, kd, P, Td)
presented a weak or negligible relation with PAR, so these MIs were discarded as inputs for
modelling PAR. These results agree with the literature, insofar as RaGH and cosZ are two of
the variables with the strongest influence on PAR measurements [17,36].

3.2. Multilinear Regression Models

Once the meteorological indices with high influence on the PAR component were
determined, taking into account all the sky types and the three sky types (clear, partial, and
overcast), four MLR models were developed with which to estimate PAR: one MLR model
for all sky types and one for each sky type. The indices selected with Pearson’s correlation
coefficient (r) were taken as input variables in all models.

The working method to obtain the MLR models was as follows: the experimental
dataset was divided into two groups. The first group contained 85% of the data and was
used to fit the models. The other group, with the remaining 15% of the data, was used
to validate the models using the conventional statistics corresponding to the coefficient
of determination (R2), the normalized Mean Bias Error (nMBE), and the normalized Root
Mean Square Error (nRMSE), calculated from Equations (1) and (2):

nMBE =
1

PARexp

∑n
i=1
(

PARmod − PARexp
)

n
× 100 (%) (1)
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nRMSE =
1

PARexp

√
∑n

i=1
(

PARmod − PARexp
)2

n
× 100 (%) (2)

where n represents the amount of experimental data used for fitting the models; PARexp is
the experimental value of PAR, and PARmod is the modelled PAR value. Table 3 shows the
mathematical expressions of the four regression models and the fit of each one with their
mean square error. As Table 3 shows, the model fitting results presented good correlations
with the experimental data, given R2 > 0.97 and nRMSE lower than 8% The small and
negative values of nMBE indicated that the models presented a good fit although they
tended to underestimate the PAR values. It can be seen that the model for clear skies
showed the highest accuracy with an R2 of 0.99 and had the lowest errors, for nRMSE and
for nMBE.

Table 3. Multilinear regression models of PAR.

Sky Conditions Multilinear Regression Model R2 nRMSE (%) nMBE (%)

All skies (MLR1) PAR = 12.12 + 0.40·RaGH +
15.74·cosZ − 11.44·kt− 10.64·kd− 0.47 ·ε 0.994 4.37 −2.74 × 10−13

Clear skies (MLR2) PAR = −18.12 + 0.33·RaGH +
83.15·cosZ + 24.19·kt + 0.71 ·ε 0.990 3.27 −1.45 × 10−14

Partial skies (MLR3) PAR = −1.81 + 0.40·RaGH + 13.75 ·cosZ 0.977 6.80 −5.32 × 10−13

Overcast skies (MLR4) PAR = −0.03 + 0.42·RaGH + 6.88·cosZ +
1.58 ·kt− 6.12·∆ 0.978 7.33 1.87 × 10−13

3.3. Artificial Neural Network Model

Another PAR estimation method used an ANN trained with the Levenberg–Marquardt
Back-Propagation (LMBP) algorithm [37]. In this case, a 3-layer configuration was chosen:
the input layer, with each MI for each model, the hidden layer with the information
processing centres (neurons), and the output layer, with the results. The explanation of the
iterative process and the fitting are explained elsewhere [32].

For this purpose, four networks were developed and tested in this work, one for all
skies and another three for each sky type, based on each selected MI with its previously
determined Pearson’s correlation coefficient shown in Table 2. The R2, the nMBE, and the
nRMSE statistics, previously defined above, were used for the validation of the models.
Table 4 summarizes the statistical results of each ANN. It can be seen that a very good fit
was obtained for each ANN with an R2 > 0.97 and nRMSE < 8%.

Table 4. Statistical results of the ANN models.

Sky Conditions R2 nRMSE (%) nMBE (%)

All skies (ANN1) 0.994 4.22 2.84 × 10−3

Clear skies (ANN2) 0.992 3.01 −4.68 × 10−2

Partial skies (ANN3) 0.977 6.80 4.06 × 10−3

Overcast skies (ANN4) 0.978 7.28 −3.50 × 10−2

A check was performed with 15% of the values not used in the generation of the
models to validate the results of both the MLR and ANN models, which confirmed the
good fit of the models for all sky types, both for the regressions and the neural networks.
The results, presented below in Table 5, show the MLR results on the left and ANN results
on the right.

As can be seen from the data in the table, both “data treatment” methods are optimal,
as the R2 is greater than 0.97 and the errors are less than 7%. The best-fitting model in both
cases is the one applied to clear skies with fit values of 0.99 and mean square errors of less
than 3%.
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Table 5. Validation of MLR and ANN models.

Sky
Conditions R2 nRMSE (%) nMBE (%) Sky

Conditions R2 nRMSE (%) nMBE (%)

All skies
(MLR1) 0.994 4.48 −5.20 × 10−3 All skies

(ANN1) 0.994 4.35 −4.00 × 10−3

Clear skies
(MLR2) 0.992 3.00 1.21 × 10−1 Clear skies

(ANN2) 0.993 2.782 4.89 × 10−2

Partial skies
(MLR3) 0.978 6.72 −6.02 × 10−2 Partial skies

(ANN3) 0.978 6.71 −5.26 × 10−2

Overcast
skies (MLR4) 0.982 6.63 −4.84 × 10−2 Overcast

skies (ANN4) 0.982 6.59 −5.10 × 10−1

4. Extension of the Models to Other Locations

The final objective of this work was to verify whether the models obtained with the
experimental values obtained in Burgos (Spain) were valid for other climatic zones, for
which purpose all seven SURFRAD stations in the USA were selected and the multilinear
regression and neural network models were applied with the coefficients obtained for
Burgos to check their fit.

The seven American stations are at the geographical locations shown in Table 6. The
type of climate at each station was also included in this table, according to the Köppen
climatic classification [38]: hot desert climate (Bwh); hot-summer humid continental climate
(Dfa); warm-summer humid continental climate (Dfb); humid subtropical climate (Cfa);
cold semi-arid climate (BSk).

Table 6. Geographical data of SURFRAD weather stations.

Latitude (◦N) Latitude (◦W) Altitude (m.a.s.l.) Climate

Bondville, Illinois 40.05192 88.37309 230 Dfa
Table Mountain, Boulder, Colorado 40.12498 105.2368 1689 Bsk
Desert Rock, Nevada 36.62373 116.01947 1007 Bwh
Fort Peck, Montana 48.30783 105.1017 634 Bsk
Goodwin Creek, Mississippi 34.2547 89.8729 6 Cfa
Penn State, Univ. Pennsylvania 40.72012 77.93085 376 Dfb
Sioux Falls, South Dakota 43.73403 96.62328 473 Dfa

(m.a.s.l.: meters above sea level).

The models based on the data collected at Burgos were applied to the seven American
meteorological stations and compared with their own primary data. For this purpose, the
R2 coefficient and the nRSME and nMBE errors were obtained for all stations, both with the
MLR and the ANN models for all sky types and for each particular sky type, as shown in
Table 7.

Observing Table 7, it can be seen that the fit values were also very good with an R2

greater than 0.99 for all stations and both the MLR and ANN models. The nRMSE was
always less than 7%, and all nMBE values showed that all the models overestimated the
PAR values, albeit with minimally higher values. The station with the lowest nRMSE and
the best fit was Penn State, for both the MLR and ANN results.

If the results for clear skies are analyzed (Table 8), it can be observed that the fit was
also very good with an R2 higher than 0.98 (although slightly lower than the study carried
out for all types of sky conditions). In this case, the nRMSE was lower, and at no station
did it exceed 6%.

When the study was centred upon partial skies (Table 9), the R2 values were greater
than 0.99 and the errors were less than 9.5%. Finally, when the study was performed with
overcast skies (Table 10), the R2 value was greater than 0.98 and the errors with MLR were
less than 8%. In this case, the nRMSE at the Desert Rock station where the climate is hot
and arid was slightly higher than the rest (11.07%) in the ANN study.
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If the results are analysed by climatic zones, it can be seen that there were hardly
any differences in the fit (R2); all values were higher than 0.98 regardless of the sky type
analysed. Figures 4 and 5 show the nRMSE values for the four sky categories (all-sky
type, clear, partial, and overcast) at all stations, for the MLR and the ANN models. When
analysing the results for all sky types, the highest error occurred in the cold semi-arid zone
(Bsk) (far from the climatic zone for which the regression and ANN models were obtained)
and the lowest RMSE in continental zones with greater similarity to the climatic zone in
which the models were obtained in Burgos. For clear skies in both the MLR and ANN
models, the errors were slightly lower at all stations; the lowest RMSE was also obtained in
continental climate zones (Dfb and Dfa) and the highest error in desert zones (Bwh).

Table 7. Model fit values for MLR models (left) and for ANN models (right) for all-sky types.

MLR ANN

USA Stations R2 nRMSE (%) nMBE (%) R2 nRMSE (%) nMBE (%)

Bondville,
Illinois 0.994 4.62 1.89 0.994 4.90 2.54

Table Mountain, Boulder,
Colorado 0.996 4.93 3.48 0.996 5.48 4.18

Desert Rock,
Nevada 0.997 6.10 5.36 0.997 6.75 6.04

Fort Peck,
Montana 0.994 6.46 4.94 0.994 6.87 5.45

Goodwin Creek,
Mississippi 0.995 4.66 2.48 0.995 5.15 3.33

Penn State,
Univ. Pennsylvania 0.995 4.35 1.34 0.995 4.62 2.07

Sioux Falls,
South Dakota 0.995 6.34 5.00 0.995 6.84 5.59

Table 8. Model fit values for MLR (left) and ANN (right) models under clear sky conditions.

MLR ANN

USA Stations R2 nRMSE (%) nMBE (%) R2 nRMSE (%) nMBE (%)

Bondville,
Illinois 0.985 4.05 1.61 0.985 4.13 1.28

Table Mountain, Boulder,
Colorado 0.993 4.50 3.30 0.992 4.67 3.13

Desert Rock,
Nevada 0.994 5.50 4.87 0.994 5.77 4.77

Fort Peck,
Montana 0.988 5.41 4.16 0.987 5.31 3.74

Goodwin Creek,
Mississippi 0.985 4.25 2.37 0.984 4.46 2.06

Penn State,
Univ. Pennsylvania 0.987 3.77 1.20 0.986 4.02 0.95

Sioux Falls,
South Dakota 0.991 5.44 4.49 0.990 5.36 4.03
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Table 9. Model fit values for MLR (left) and ANN (right) under partial sky conditions.

MLR ANN

USA Stations R2 nRMSE (%) nMBE (%) R2 nRMSE (%) nMBE (%)

Bondville,
Illinois 0.990 5.66 3.15 0.990 5.67 3.19

Table Mountain, Boulder,
Colorado 0.994 6.21 4.67 0.994 6.24 4.72

Desert Rock,
Nevada 0.996 9.29 8.23 0.996 9.33 8.31

Fort Peck,
Montana 0.991 8.06 6.51 0.991 8.08 6.56

Goodwin Creek,
Mississippi 0.992 5.87 4.00 0.992 5.90 4.04

Penn State,
Univ. Pennsylvania 0.991 5.00 2.27 0.991 5.00 2.30

Sioux Falls,
South Dakota 0.992 7.62 6.22 0.992 7.64 6.26

Table 10. Model fit values for MLR (left) and ANN (right) under overcast sky conditions.

MLR ANN

USA Stations R2 nRMSE (%) nMBE (%) R2 nRMSE (%) nMBE (%)

Bondville,
Illinois 0.984 6.29 −0.23 0.984 7.13 3.32

Table Mountain, Boulder,
Colorado 0.992 4.60 0.70 0.992 6.23 4.18

Desert Rock,
Nevada 0.993 7.91 5.81 0.993 11.07 9.40

Fort Peck,
Montana 0.989 6.11 2.61 0.988 8.48 6.37

Goodwin Creek,
Mississippi 0.987 5.75 0.19 0.986 6.82 3.48

Penn State,
Univ. Pennsylvania 0.987 6.11 −1.67 0.987 6.15 1.91

Sioux Falls,
South Dakota 0.989 6.07 1.88 0.988 8.14 5.54

The errors at all stations were somewhat higher for overcast skies ranging from 4.6
to 11.07, although the ANN model still yielded the highest RMSE for the hot desert zone
(Bwh). The overcast skies can present very different conditions depending on parameters
such as the degree of cloud cover, its thickness, and the presence of aerosols, which have a
great influence on the phenomena of absorption and dispersion of solar radiation.



Appl. Sci. 2022, 12, 2372 11 of 14Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 
Figure 4. nRMSE (MLR) values (%) for all sky type categories at the SURFRAD stations. 

 
Figure 5. nRMSE (ANN) values (%) for all sky type categories at the SURFRAD stations. 

5. Conclusions 
A set of MLR and ANN models were obtained to model PAR from a set of meteoro-

logical indices in Burgos. It was determined that the most influential variable when mod-
elling PAR, both when analysing all-sky types and for each particular type (clear, partial, 
and, overcast skies) was RaGH. For clear and partial skies, cosZ also had a very strong 
influence, while this same MI also had a strong relationship with PAR for all-sky types 
and for overcast skies. The MI kt had a strong relationship with PAR for all-sky types, 
while the relationship was moderate for clear, partial, and overcast skies. Perez’s clearness 
index, ε, showed a moderate relationship with PAR for all-skies and clear skies, and Δ 
was the MI with a moderate relationship for overcast skies. 

Four PAR estimation models were obtained with MLR models that yielded an R2 > 
0.97, reaching an R2 > 0.99 in the cases of all-skies types and clear skies; the mean square 
errors were lower than 8%, although this error was 3.27% for clear skies. The statistical 
coefficients of the ANN model were also very well adjusted because the R2 value was in 

Figure 4. nRMSE (MLR) values (%) for all sky type categories at the SURFRAD stations.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 
Figure 4. nRMSE (MLR) values (%) for all sky type categories at the SURFRAD stations. 

 
Figure 5. nRMSE (ANN) values (%) for all sky type categories at the SURFRAD stations. 

5. Conclusions 
A set of MLR and ANN models were obtained to model PAR from a set of meteoro-

logical indices in Burgos. It was determined that the most influential variable when mod-
elling PAR, both when analysing all-sky types and for each particular type (clear, partial, 
and, overcast skies) was RaGH. For clear and partial skies, cosZ also had a very strong 
influence, while this same MI also had a strong relationship with PAR for all-sky types 
and for overcast skies. The MI kt had a strong relationship with PAR for all-sky types, 
while the relationship was moderate for clear, partial, and overcast skies. Perez’s clearness 
index, ε, showed a moderate relationship with PAR for all-skies and clear skies, and Δ 
was the MI with a moderate relationship for overcast skies. 

Four PAR estimation models were obtained with MLR models that yielded an R2 > 
0.97, reaching an R2 > 0.99 in the cases of all-skies types and clear skies; the mean square 
errors were lower than 8%, although this error was 3.27% for clear skies. The statistical 
coefficients of the ANN model were also very well adjusted because the R2 value was in 

Figure 5. nRMSE (ANN) values (%) for all sky type categories at the SURFRAD stations.

5. Conclusions

A set of MLR and ANN models were obtained to model PAR from a set of meteorolog-
ical indices in Burgos. It was determined that the most influential variable when modelling
PAR, both when analysing all-sky types and for each particular type (clear, partial, and,
overcast skies) was RaGH. For clear and partial skies, cosZ also had a very strong influence,
while this same MI also had a strong relationship with PAR for all-sky types and for overcast
skies. The MI kt had a strong relationship with PAR for all-sky types, while the relationship
was moderate for clear, partial, and overcast skies. Perez’s clearness index, ε, showed a
moderate relationship with PAR for all-skies and clear skies, and ∆ was the MI with a
moderate relationship for overcast skies.

Four PAR estimation models were obtained with MLR models that yielded an R2 > 0.97,
reaching an R2 > 0.99 in the cases of all-skies types and clear skies; the mean square errors
were lower than 8%, although this error was 3.27% for clear skies. The statistical coefficients
of the ANN model were also very well adjusted because the R2 value was in all cases
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greater than 0.97 and the nRMSE was also less than 8%. In this case, the model fitted clear
skies better than any other, obtaining an R2 > 0.99 and an nRMSE of 3.01%.

These models obtained in Burgos were directly applied to seven SURFRAD stations in
the USA to verify their utility, obtaining a very good fit for all of them for all sky conditions,
with both MLR and ANN models, as the R2 values were greater than 0.98 and the mean
square errors were less than 11%. It is worth noting that clear skies were the sky type
condition where the nRMSEs were the lowest, between 3 and 5%. Models for overcast
sky conditions presented worse results, mainly due to the variability of the phenomena of
absorption and dispersion of solar radiation that can appear under cloudy sky conditions
and that cannot be characterized by a single parameter such as kt. It was also noteworthy
that the models showed a worse fit at Desert Rock station under all sky conditions, each
with an nRMSE at around 9–10% for partial and overcast skies. There were no significant
differences when the data were studied by climatic zones, which in all cases showed a good
fit with an R2 higher than 0.98, a lower nRSME in continental zones (Dfa and Dfb), and
higher errors in semi-arid and desert zones (Bsk and Bwh).

Both the MLR and ANN models that were used to estimate PAR on the basis of
experimental data collected at Burgos may be used in other locations independently of
the climatology, insofar as they yielded very good statistical coefficients across the seven
meteorological stations representative of very different climates within the United States.
They also fitted well for different climates, although in the case of a hot arid climate, the
models presented the largest quadratic errors for each type of sky.
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Abbreviation

Acronyms
ANN Artificial Neural Network
MPE Mean Percentage Error
MI Meteorological Index
MLR MultiLinear Regression
m.a.s.l. meters above sea level
NOAA National Oceanic and Atmospheric Administration
nRMSE Normalized Root Mean Square Error
nMBE Normalized Mean Bias Error
RSE Relative Standard Error
SURFRAD Surface Radiation Budget Network
Meteorological variables
cosZ Solar azimuth cosine (◦)
∆ Perez’s brightness factor (dim)
ε Perez’s clearness index (dim)
RaGH Global Horizontal Irradiance (W·m−2)
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RaDH Diffuse Horizontal Irradiance (W·m−2)
RaB Beam Irradiance (W·m−2)
kd Horizontal diffuse fraction (dim)
kt Clearness Index (dim)
P Atmospheric Pressure (kPa)
PAR Photosynthetically Active Radiation (W·m−2)
Qp Photosynthetic photon flux density (µmol·s−1·m−2)
r Pearson correlation coefficient (dim)
RH Relative Humidity (%)
T Atmospheric Temperature (◦C)
Td Dew point temperature (◦C)
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