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Abstract: An important way considered to control malware epidemic processes is to take into account
security measures that are associated to the systems of ordinary differential equations that governs
the dynamics of such systems. We can observe two types of control measures: the analysis of the
basic reproductive number and the study of control measure functions. The first one is taken at the
beginning of the epidemic process and, therefore, we can consider this to be a prevention measure.
The second one is taken during the epidemic process. In this work, we use the theory of optimal
control that is associated to systems of ordinary equations in order to find a new function to control
malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental
malware model that considers carrier devices.

Keywords: optimal control; epidemic model; malware propagation

1. Introduction

Nowadays, malware is one of the most important threats to security of information. The study and
analysis of mathematical models to simulate malware propagation is an important task. In this sense,
several mathematical models to study malware propagation have appeared in the scientific literature
(see, for example, [1–11]). These are compartmental models that, in most cases, are based in differential
ordinary equations (as a consequence, they are deterministic and global models). Usually, each model
exhibits two equilibrium points: a disease free-equilibrium point and an epidemic equilibrium point.
The qualitative study of the systems shows that the basic reproductive number R0 plays a fundamental
role in the analysis of the convergence of the system to one of these equilibrium points. Therefore,
by analyzing the R0, one could consider control measures at the beginning of the malware epidemic
outbreak in order to determinate the evolution of the solutions and the final equilibrium reached.
On the other hand, using control theory, we can find a suitable function to control the epidemic process.
This function is part of the system and we can observe its influence through time (that is, we are able
to control the epidemic during the time t).

The theory of the optimal control is a classical theory [12,13] that has several applications in Economy,
Epidemiology, etc. [14]. This theory allows for one to obtain the solutions of a system of ordinary
differential equations under some conditions by finding the minimum cost of some parameters and
variables that are controlled. Therefore less control measures can be used considering this method.
This problem is tackled by means of the maximum Pontryagin Principle. In this principle, several
hypothesis and formulations are introduced with the aim to calculate a function to simulate these
control measures. Moreover, it is possible to define the equations of the new control model taking this
optimal function into account.
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This approach is also used when malware propagation models are studied. Usually, compartmental
models are proposed and analyzed; that is, the devices are classified into different compartments
depending on their status with respect to malware -susceptible S, infectious I, exposed E, recovered R,
etc. The dynamics between different compartments are ruled by means of epidemiological coefficients
and, in this sense, several types of models can be proposed while taking into account the evolution
of such compartments: SIR (Susceptible-Infectious-Recovered), etc. For example, in [15], a vaccination
strategy to determine the optimal control is presented. In [8], two types of compartments are considered to
construct the functional objective: the latent devices and breaking out devices. In [5] an analysis in order
to minimize the infectious and dead devices through a optimal control is introduced. In [9], it is used the
infectious devices and a delitescent strategy to remove the malware. In [1,4,6,7,10,13], the optimal control
is calculated based on a SIR model. In [11], the theory of control is used in a SI1I2R model. In [3], it is
presented the optimal control of a SAI model. In [2], it is studied a control strategy of a SS̃I ĨRR̃D model.

Furthermore, there exists several malware environments where this theory is used: in [1], this
theory is used to simulate malware in mobile ad hoc networks. In [2,5,6], it is used to simulate malware
propagation in wireless sensor networks. In [3], it is presented a model taking into account an alert
system. In [8], it is considered scale-free networks. In [10], it presented a information network to
simulate malware.

In [16], a compartmental SCIRS model for malware propagation was proposed and analyzed
from a qualitative perspective. Furthermore, some control measures based in the analysis of the basic
reproductive number were proposed. In this article, we focus on the use of control measures that
are developed over the time t. We use the theory of optimal control to do this work in this article.
This control measure is different in this occasion due to it affects the system over all time t. This permits
to have a new control tool to combat malware epidemics and improve the security of computers.

In Section 2, the model compartmental model is reviewed. In Section 3, the basis of the control
functions is shown. The optimization problem and its analysis are presented in Section 4. Section 5 is
devoted to illustrate the theory with some simulations. Finally, Section 6 presents the conclusions.

2. Relations between the Equations to Prevention and the Equations to Control

2.1. Autonomous Model for Malware Propagation

In this section, we review the deterministic and global mathematical model that simulates malware
propagation using carrier compartment presented in [16]. This model consider four compartments:
susceptible devices S(t), carrier devices C(t), infectious devices I(t), and recovered devices, R(t).
Constant population is considered: S(t) + I(t) + C(t) + R(t) = N > 0, with t > 0. Carrier are those
devices that can be infected by malware, but the malicious code is not able to perform its payload due
to some reasons—for example, the device is not running on the targeted OS—although they can serve
as transmission vectors.

In this model, it is supposed that carrier and infectious devices can both infect susceptible devices
by malware at rate a. The fraction of vulnerable susceptible devices endowed with the targeted
operative systems that the malware can infect is given by δ and they become infected. Because of
security countermeasures, susceptible devices can be temporally immunized at vaccination rate v.
Carriers and infectious devices can recover due to the security measures: the rates bC and bI represent
these rates, respectively. Recovered devices can lose their temporal immunity at rate ε (in Table 1 these
coefficients are illustrated). As a consequence, the dynamic of the epidemic model is governed by the
following system of ordinary differential equations:

Ṡ(t) = −aS(t) (I(t) + C(t))− vS(t) + εR(t),
Ċ(t) = a(1− δ)S(t) (I(t) + C(t))− bCC(t),
İ(t) = aδS(t) (I(t) + C(t))− bI I(t),
Ṙ(t) = vS(t) + bCC(t) + bI I(t)− εR(t),

(1)
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Table 1. Parameters of the model.

Parameter Description Range

v Vaccination rate (0, 1)
a Transmission rate (0, 1)
bC Recovery rate of carriers (0, 1)
bI Recovery rate of infectious (0, 1)
ε Rate of lose of immunity of recovered (0, 1)
δ Rate of fraction of devices based on the targeted OS (0, 1)

Figure 1 shows the compartmental transition diagram of the dynamic model.

Susceptible

Carrier

Infectious

Recovered

(1− δ)a

δa

v

bC

bI

ǫ

Figure 1. Transition diagram corresponding to the dynamic model.

As S(t) + I(t) + C(t) + R(t) = N, we can simplify the system of ordinary differential equations,
as follows: 

Ṡ(t) = −aS(t) (I(t) + C(t))− vS(t) + ε ((N − S(t)− C(t)− I(t)) ,
Ċ(t) = a(1− δ)S(t) (I(t) + C(t))− bCC(t),
İ(t) = aδS(t) (I(t) + C(t))− bI I(t),

(2)

where the feasible region is Ω = {(S, C, I) ∈ R+
3 : 0 ≤ S + C + I ≤ N}, with x(t) = (S(t), C(t), I(t)).

This model has two equilibrium points: the disease free equilibrium point P0 and the epidemic
equilibrium point P?:

P0 =

(
εN

v + ε
, 0, 0

)
, (3)

P? =

(
bCbI

Z
,

bI(1− δ)D
ZY

,
bCδD
ZY

)
, (4)

where:

Z = abI + abCδ− abIδ, (5)

Y = bI(1− δ)ε + bC(bI + δε), (6)

D = abI N(1− δ)ε + bC(aNδε− bI(bI + ε)). (7)

The system converges to a equilibrium point, depending on the basic reproductive number:

R0 =
aN(bI + bCδ− bIδ)ε

bCbI(v + ε)
. (8)

as is stated in the following [16]:

Theorem 1. The following results holds:
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1. The solutions of the system of equations exists and are unique in Ω.
2. There exits a disease-free equilibrium P0, which is global asymtotically stable for R0 ≤ 1.
3. The disease-free equilibrium P0 is unstable for R0 > 0.
4. There exits an epidemic equilibrium P?, which is locally asymptotically stable for R0 > 1.
5. The epidemic equilibrium P? is globally asymptotically stable for R0 > 1, initiating in Ω◦ under the

following two conditions:

−v− a(1− δ)
c2

N
− 2ac +

aδN
v + ε

(δ + 2) + ε < 0, (9)

−bI − a(1− δ)
c2

N
+

aδNε

v + ε
+ a(2N − 4c)max{(1− δ), δ} < 0. (10)

where c is the constant of persistence.

2.2. Variables of the Control Model

We have to difference two types of variables in our optimization problem: state variables and
control variables. The state variables are those that represent the general situation of the phenomenon
that we want to study; in our case, they correspond with the variables of the distinct compartments of
malware. We refer to these variables using the following notation:

• State variables: x1(t), x2(t), . . . , xn(t) ∈ R. These describe the situation of each variable through
time t.

• State vectors: x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn which describes the general situation of
the system.

The control variables are those variables that we can control:

• Control variables: u1(t), u2(t), . . . , um(t). These variables control the the system of ordinary
differential equations along the time t.

• Control vectors: u(t) = (u1(t), u2(t), . . . , um(t)) ∈ Rm. These describe the situation of control
in general.

In our case, there exist three types of devices while taking into account their epidemiological
status: S-susceptibles-, C-carriers-, and I-infected-. Therefore, n = 4 with x1(t) = S(t), x2(t) = C(t),
x3(t) = I(t), and m = 1 with u1(t) = u. Moreover, we consider that the state and control variables are
defined in some feasible regions M ⊂ Rn y U ⊂ Rm, respectively. In fact, in the next section, we will
consider both the recovery rate bI and the vaccination coefficient v as control variables.

However, the system totally changes its structure due to the consideration of new control variables.
In this case, we consider u as a function u(t). Subsequently, the equations that describe the system are
detonated by movement equations:

ẋ(t) = f (x(t)) =⇒ ẋ(t) = f (x(t), u(t), t). (11)

where x(t) = (S(t), C(t), I(t)). This new situation leads to a different system because of variables of
control. Moreover, the measures that we can obtain allows for controlling the evolution of the system
through time. Moreover, we consider the region of control, as follows:

U = {uk measurable, 0 < u < 4 with t ∈ [0, T]}. (12)

3. Strategy of Control

The methods employed to apply the control theory are similar in several papers. The main
difference is based on the definition of the functional objective that uses the control strategy to eliminate
the malware. We can distinguish two types of expressions: the compartments and parameters we can
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control. In this work, we have considered the infectious devices in the functional objective, since we
want to maintain the number of devices as low as possible. Some works have also considered the
infectious devices in this function (see, for example, [9,15]). However, other deal with more than one
type of compartment to define this function (see, for example, [3,8,11]). Moreover we will consider two
independent strategies of control, recovery strategy and vaccination strategy, to make a comparison
between these. Other works take into account the vaccination strategy [15] or several parameters
together [3,8,11], where the recovery coefficient is also used among others. These parameters are part
of this function, since our purpose is to take the smallest number of measures against the epidemic to
remove it.

In this new problem, we can find a new objective that is different to the control measure based
on considering the basic reproductive number under a numerical threshold that usually is R0 ≤ 1,
which depends on taking measures of prevention and control. This objective is used to control the
evolution of the system in each step of the time by the control variables. Subsequently, we can consider
an objective in each instant of time t. We use the Lagrangian function L to define that objective:

L : M×U ×R → R (13)

(x(t), u(t), t) 7→ L (x(t), u(t), t) (14)

These functions determinate the best form of obtained the final objective. Moreover, we define an
intertemporal objective by the integral of L in the interval [t0, T], obtaining the functional objective
J(t). Therefore, J(t) represents the cost of taking control measures through time. The minimization of
the functional J is used to optimize the problem and it is denoted by V:

J(u) =
∫ T

t0

L(x(s), u(s), s)ds, (15)

V = min
u
{J(u)}. (16)

The objective is to optimize the control measures and, in this sense, we can consider the equations
of movement as a restriction. This restriction shows the influence of the state variables and supposes a
price to our problem. The Hamiltonian represents this idea:

H : M×U ×R×R+ ×Rn → R (17)

(x, u, t, λ0, λ) 7→ λ0L (x(t), u(t), t) + λ(t) f (x(t), u(t), t) (18)

where λ0 ∈ R+ and λ : [t0, T] → Rn. In this way, λ(t) is denoted as the multipliers vector, and this
marks the price of the restriction of the movements equations.

In our case, we consider two strategies to remove the malware:

1. Recovery strategy: u = bI .
2. Vaccination strategy: u = v.

In both cases, the Lagrangian function has the same form:

L = I + α
u2(t)

2
. (19)

The associated functional objective J(u) =
∫ T

t0
I + α

u2(t)
2

is interpreted, as follows (see [15]):

• Keep the number of infect devices as low as possible to reduce the epidemic outbreak.
• Use the control measures as low as possible.

Moreover, we can consider the following Hamiltonian in each strategy:
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1. Vaccination strategy:

H1 = I(t) + α
u2(t)

2
+ λ1[−aS(t) (I(t) + C(t))− uS(t) + ε (N − S(t)− C(t)− I(t))]

+λ2[a(1− δ)S(t) (I(t) + C(t))− bCC(t)] + λ3[aδS(t) (I(t) + C(t))− bI I(t)] (20)

2. Recovery strategy:

H2 = I(t) + α
u2(t)

2
+ λ4[−aS(t) (I(t) + C(t))− vS(t) + ε (N − S(t)− C(t)− I(t))]

+λ5[a(1− δ)S(t) (I(t) + C(t))− bCC(t)] + λ6[aδS(t) (I(t) + C(t))− uI(t)] (21)

where λ1, λ2, λ3, λ4, λ5, and λ6 are the adjoins functions.

4. Optimization Problem

In this section we introduce the optimization problem P which considers the following conditions:

1. Some border conditions: x(t0) = x0 and N.
2. A restriction: ẋ(t) = f (x(t), u(t), t) with t ∈ [t0, T].
3. A function to optimize: V.

A solution of this problem has an optimal control u?(t) and an optimum trajectory x∗(t). When we
find the optimal control, there exists an unique optimum trajectory. The existence of such solution is
given by the following result:

Theorem 2. A solution of the problem P exists if the following statements hold:

1. The set of controls and their state variables exist.
2. The admissible control set is closed and convex.
3. Every right hand side of the ordinary differential equations is continuous and bounded above by a sum of

the bounded control and state. Moreover, this has to be written as a linear function of u with time and
state coefficients.

4. The Lagrangian function is concave.
5. There exists a constant ` > 1 and two positive numbers41 y42, such that:

L (I(t), u(t)) ≥ 41 +42(|u(t)|)`/2. (22)

Proof. It’s easy to check that a set of controls and state variables exists. Moreover, the
solutions are bounded, which implies that the admissible control set is closed and convex.
Assume f (x, u, t) = AX + F(X), where:

X = (S, C, I), (23)

A =

−v− ε −ε −ε

0 −bC 0
0 0 −bI

 , (24)

F(X) =

−aS(I + C) + εN
a(1− δ)S(I + C)

aδS(I + C)

 . (25)
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Subsequently, if we consider x1 = (S1, C1, I1) and x2 = (S2, C2, I2), the following is satisfied:

|F(x1)− F(x2)| ≤ q(|S1 − S2|+ |I1 − I2|+ |C1 − C2|), (26)

where q ∈ R is a constant. Thus:

| f (x1, u, t)− f (x2, u, t)| ≤ P|x1 − x2| (27)

where P = max{||A||, q} < ∞. This is satisfied in both strategies, u = bI and u = v.
If we consider the constant p ∈ (0, 1) and the functions r(t), s(t) ∈ U, we have:

L (t, z(t), (1− p)r(t) + ps(t)− (1− p)L(t, z(t), r(t))− pL(t, z(t), s(t))

=
1
2

(
(1− p)2r2(t) + p2s2(t) + 2p(1− p)r(t)s(t)

)
− 1

2
r2(t)− 1

2
s2(t)

=
1
2
(p2 − p)(r(t)− s(t))2 < 0

As a consequence, the Lagrangian is concave. Furthermore, the following holds:

I(t) + α
u2(t)

2
≥ 41 +42(|u|)`/2, (28)

considering ` = 4 and41 and42 small enough. Thus, a solution of our problem exists.

Taking into account the maximum Pontryagin Principle (see [12]), we have a solution of the
system with some conditions. These solutions verify the following:

λ̇1 = −∂H1

∂S
, (29)

λ̇2 = −∂H1

∂I
, (30)

λ̇3 = −∂H1

∂C
, (31)

λ̇4 = −∂H2

∂S
, (32)

λ̇5 = −∂H2

∂I
, (33)

λ̇6 = −∂H2

∂C
, (34)

where

1. Vaccination strategy:
λ̇1 = λ1a(I + C) + λ1u + λ1ε− λ2(a(1− δ)(I + C))− λ3(aδ(I + C)),
λ̇2 = λ1aS + λ1ε− λ2(a(1− δ)S− bC)− λ3(aδS),
λ̇3 = −1 + λ1(aS + ε)− λ2(a(1− δ)S)− λ3(aδS− bI),

(35)

2. Recovery strategy:
λ̇4 = λ4a(I + C) + λ4v + λ4ε− λ5(a(1− δ)(I + C))− λ6(aδ(I + C)),
λ̇5 = λ4aS + λ4ε− λ5(a(1− δ)S− bC)− λ6(aδS),
λ̇6 = −1 + λ4(aS + ε)− λ5(a(1− δ)S)− λ6(aδS− u).

(36)

Moreover, if we consider the minimum condition of the Pontryagin Maximum Principle, we have:
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1. Vaccination strategy:
∂H1

∂u
= αu− λ1S = 0. (37)

2. Recovery strategy:
∂H2

∂u
= αu− λ6 I = 0. (38)

Subsequently,

1. Vaccination strategy: 

u∗1(t) = 0 if
λ1S

α
≤ 0,

0 ≤ u∗(t) ≤ ∆ if 0 <
λ1S

α
< ∆,

u∗2(t) = ∆ if
λ1S

α
≥ ∆.

(39)

2. Recovery strategy: 

u∗1(t) = 0 if
λ6 I
α
≤ 0,

0 ≤ u∗(t) ≤ ∆ if 0 <
λ6 I
α

< ∆,

u∗2(t) = ∆ if
λ6 I
α
≥ ∆.

(40)

We can reformulate this, as follows:

1. Vaccination strategy:

u∗1(t) = min{max{λ1S
α

, 0}, ∆}. (41)

2. Recovery strategy:

u∗2(t) = min{max}λ6 I
α

, 0{, ∆}. (42)

Afterwards, we obtain the following optimal systems:

1. Vaccination strategy:
Ṡ∗ = −aS(I + C)−min{max{λ1S

α
, 0}, ∆}S + ε(N − S− C− I),

Ċ∗ = a(1− δ)S(I + C)− bCC,
İ∗ = aδS(I + C)− bI I.

(43)

2. Recovery strategy: 
Ṡ∗ = −aS(I + C)− vS + ε(N − S− C− I),
Ċ∗ = a(1− δ)S(I + C)− bCC,

İ∗ = aδS(I + C)−min{max{λ6 I
α

, 0}, ∆}I.
(44)

5. Representations of the Models

In this section, we analyze some simulations with our control measures, when considering
the derivatives of the adjoin functions and the movement equations as an unique system ordinary
differential equations with the optimal control. Moreover, the following numerical values of the
parameters are considered: T = 50, ∆ = 0.2, α = 100, a = 0.0002, ε = 0.004, δ = 0.9, v = 0.1, bI = 0.03,
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bC = 0.004, S(0) = 1000, I(0) = 1, C(0) = 0 and N = 1001. The solutions of the system are shown in
Figures 2–10. The simulations have been obtained using the computer algebra system Mathematica
and, specifically, the function NDSolve used to solve in a numerical way the systems of ordinary
differential equations.

In Figures 2–4, we can observe the evolution of the susceptible devices. The number of susceptible
devices S decreases through time with the exception of the vaccination strategy, where the susceptible
devices increase in the end. The evolution of S when considering optimal control strategies is very
similar to those without control strategies.

Figures 5–7 show the evolution of carrier devices. When recovery strategies are considered, the
graphic first increases and then decreases. However, in the case of considering vaccination strategies
and no optimal control measures, the carrier devices increase a bit less than 0.5.

Finally, in Figures 8–10, the evolution of infectious devices is shown. In both cases,
with vaccination strategy and without control measures, the infectious devices increase first and
then decrease. Nevertheless the infectious devices only decrease with recovery strategy. The increase
is fewer than three devices. Therefore both strategies are efficient to remove the malware.

10 20 30 40 50
t

200

400

600

800

1000

S

Figure 2. Evolution of S without optimal control.

10 20 30 40 50
t

200

400

600

800

1000

S*

Figure 3. Evolution of S with vaccination strategy.
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Figure 4. Evolution of S with recovery strategy.
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C

Figure 5. Evolution of C without optimal control.
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Figure 6. Evolution of C with vaccination strategy.
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10 20 30 40 50
t

0.05

0.10

0.15

C*

Figure 7. Evolution of C with recovery strategy.
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2.5

3.0

I

Figure 8. Evolution of I without optimal control.

10 20 30 40 50
t

1.1

1.2
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1.4

1.5

1.6

1.7

I*

Figure 9. Evolution of I with vaccination strategy.

On the other hand, the evolution of the optimal control is illustrated in Figures 11 and 12.
We can observe how the function is constant and then it decreases considering both control strategies.
This permits consider less recovery and vaccination rates through time and eliminate the epidemic.



Mathematics 2020, 8, 1518 12 of 16

Therefore, the measures to control the epidemic are high at the beginning and we can then consider
lower measures. This can help to save control measures to eliminate the epidemic without consider
the same value during all the epidemic for bC or v, like taking into account prevention measures.

10 20 30 40 50
t

0.4

0.6

0.8

1.0

I*

Figure 10. Evolution of I with recovery strategy.
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t

0.05

0.10

0.15

0.20

u1
*

Figure 11. Evolution of u∗1 with vaccination strategy.

10 20 30 40 50
t

0.05

0.10

0.15

0.20

u2
*

Figure 12. Evolution of u∗2 with recovery strategy.

To sum up, both of the strategies are efficient in this example. However, the propagation of the
adjoins functions is different in both models, as it is shown in Figures 13–18. This indicates that the



Mathematics 2020, 8, 1518 13 of 16

cost of the state variables is different in both control strategies. Moreover the adjoin functions satisfy
the final condition λi(T) = 0 for all i = 1, 2, . . . , 6, as illustrated in Figures 13–18.
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*

Figure 13. Evolution of λ1.
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Figure 14. Evolution of λ2.
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*

Figure 15. Evolution of λ3.
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10 20 30 40 50
t
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*

Figure 16. Evolution of λ4.
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Figure 17. Evolution of λ5.

10 20 30 40 50
t

5

10

15

20

λ6
*

Figure 18. Evolution of λ6.

6. Conclusions

In this work, a control analysis of a model (that considers carrier devices) to simulate malware
spreading is done. This permits to control the measures of recovery and vaccination; that is, we have
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obtained a control function that help us to decrease the number of infectious with the minimum control
measures of recovery and vaccination strategies.

Note that, in this model, all of the epidemiological parameters are constant during the whole
evolution. However, during the epidemic, we can apply different measures to modify some of them,
while considering the control of some of this parameters. Therefore, we do not need to maintain high
prevention measures in order to eliminate the malware outbreak, but we might only apply high levels
at the beginning of the epidemic process. However, this kind of models are not autonomous and are
more difficult to trait.

Taking into account the simulations, we can observe the behavior of the evolution of the system
and the control function. Additionally, we have obtained very similar control measures with both
strategies (vaccination strategy and recovery strategy). Therefore, both strategies seem to be efficient.
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