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Abstract
The combined application of several soft-computing and statistical techniques is proposed for the characterization of atmo-
spheric conditions in two European regions: Madrid (Spain) and Prague (Czech Republic). The resulting Hybrid Artificial
Intelligence System (HAIS) combines projection models for dimensionality reduction and clustering, combining neural and
fuzzy paradigms, in a decision support tool. In present article, this proposed HAIS is applied to analyse the air quality in
these two geographical regions and get a better understanding of its circumstances and evolution. To do so, real-life data
from six data-acquisition stations are analysed. The main pollutants recorded at these stations between 2007 and 2014, their
geographical locations and seasonal changes are all studied, in a research that shows how such factors determine variations in
air-borne pollutants. Furthermore, neural projections of the clustering results from data on atmospheric pollution are studied.

Keywords: Hybrid systems, clustering techniques, air quality, projection models, artificial neural networks.

1 Introduction

In recent years, our knowledge of atmospheric pollution and our understanding of its effects have
advanced greatly. Air pollution has, for some years now, represented more than a health risk. Other
serious consequences may be mentioned such as acid rain, corrosion, climate change, extreme
weather events and global warming. So, all efforts directed towards the study of these matters [33],
will improve our understanding and help us to prevent the serious problematic hazards associated
with atmospheric pollution. Systematic measurements, usually recorded within large cities in Spain,
are fundamental, due to the health risks caused by high levels of atmospheric pollution. Recent
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high-impact weather events justify the continued enlargement of the network of weather stations
that are continuously recording data. Thanks to the open data policy that the public institutions [36]
have adopted, these data are available for further study and analysis.

Dimensionality reduction techniques [10] transform high-dimensional data into meaningful rep-
resentations of reduced dimensionality. These techniques have previously been widely applied to
the field of Environmental Conditions (EC) [5, 6, 21]. A wide range of dimensionality reduc-
tion techniques, such as Principal Component Analysis (PCA) [1], Local Linear Embedding (LLE)
[25], Isometric Mapping (ISOMAP) [34] and Cooperative Maximum Likelihood Hebbian Learning
(CMLHL) [8] have previously achieved very good results in the EC field [2, 3]. In [2], statistical
and neural models are presented for analysing data on the emissions of atmospheric pollution in
urban areas. The main target was to classify the levels of atmospheric pollutants according to the
day of the week, differentiating between working days and non-working days. In [3], atmospheric
pollution conditions at two different places in the Czech Republic were analysed. Seven variables
with atmospheric pollution information were considered and dimensionality reduction techniques
(PCA, LLE and CMLHL) were applied, to show the variability of atmospheric pollution conditions
between each place, as well as the significant variability of air quality over time. One characteristic
of the proposed techniques is that clusters may be identified in the graphical representation with the
naked eye, without any label or assignment of samples to a certain group of data. These techniques
are very useful as pre-processors for the application of other machine learning paradigms, or as the
final step in the visualization task.

Clustering or grouping techniques [23] divide a dataset into groups of similar objects, according
to one of several ‘similarity’ measures. In most cases, the number of desired clusters and the func-
tion determines the assignment of each sample to a certain cluster. These sets of techniques have
previously been applied to EC [24, 30]. PCA and Cluster Analysis (CA) were applied in [24] for
the analysis of the mass concentrations of Sulphur Dioxide (SO2) and Particulate Matter (PM10)
in Oporto over 3 years. In [30], a method for the clustering of multidimensional non-stationary
meteorological time series is presented and the results are compared with standard fuzzy clustering
techniques for a dataset with temperatures in Europe ranging over forty years. Most of the previous
studies apply clustering techniques and only a few of them have considered dimensionality reduction
techniques. So, to the best of the authors’ knowledge, this is the first time that those techniques have
been applied in unison and their results compared.

In this study, differentiating from previous works, dimensionality reduction techniques and clus-
tering techniques are combined to categorize the air quality in two capital cities in Europe.

Unlike previous work, [4] a wider time window is used for data analysis in this study, running
between 2007 and 2014. Additionally, two case studies are analysed and two paradigms of soft-
computing techniques are combined in the proposed Hybrid Artificial Intelligent System (HAIS),
described in Section 3. The main idea of this work is to analyse data describing air pollution from
two case studies in the regions of Madrid (Spain) and Prague (Czech Republic). Two objectives are
set for this analysis: first, carry out an air-quality comparison between these two European capitals
and then, validate the proposed HAIS for the analysis of multidimensional data on air pollution. This
HAIS analyses high dimensional datasets in a graphical and numerical way, finding relationships
and special situations, supporting human decision making.

The rest of this study is organized as follows. Section 2 presents the combined and applied tech-
niques. Section 3 presents the proposed HAIS. Section 4 details the real-life case studies addressed
in the present work, while Section 5 describes the experiments and results. Finally, Section 6 sets
out the conclusions, discussion and future work.
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2 Transformation techniques and clustering methods

2.1 Transformation techniques

The problem of dimensionality reduction can be expressed as follows: for each sample i determine
a selection or transformation of attributes so that:

xij −→yik , j=1,...,n; k =1,...,l,l <n, (1)

where: xij represents each data in the input space, yik represents each data in the output space, and
n and l are the number of dimensions in the input and output spaces, respectively.

From among the wide range of neural projection techniques, three different ones are applied here:
PCA, as a standard projection technique, LLE and CMLHL, as advanced techniques, also applied
for comparative purposes.

PCA. PCA [29] is a well-known method that gives the best linear data compression in terms of
least mean square error by addressing the data variance. Although proposed as a statistical method,
its implementation by several Artificial Neural Networks has been proven [27, 28]. The basic PCA
network is described by ‘Eq. (2)’ and ‘Eq. (3)’: an n-dimensional input vector at time t, x(t), and an
l-dimensional output vector, y, with Wij being the weight linking input j to output i, and η being the
learning rate. Its activation and learning may be described as follows:

Feedforward step:

yi =
N∑

j=1

Wijxj,∀i. (2)

Feedback step:

ej =xj −
M∑

i=1

Wijyi. (3)

LLE. LLE [32] is an unsupervised learning algorithm that computes low-dimensional,
neighbourhood-preserving embedding of high-dimensional inputs [35]. LLE attempts to discover
non-linear structures in high-dimensional data by exploiting the local symmetries of linear recon-
structions. Notably, LLE maps its inputs into a single global coordinate system of lower dimension-
ality, and its optimizations—though capable of generating highly non-linear embedding—do not
involve local minima.

Suppose the data consist of N real-valued vectors x, each of dimensionality n, sampled from some
smooth underlying manifold. Provided there is sufficient data (i.e. the manifold is well-sampled), it
is expected that each data point and its respective neighbours will lie on or close to a locally linear
patch of the manifold. The method can be defined as follows:

(1) Compute the neighbours of each vector, x.
(2) Compute the weights Wij that best reconstruct each vector x from its neighbors (the num-

ber of neighbours is the only free parameter in the implementation) minimizing the cost by
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constrained linear fits:

ε(W )=
∑

i

∣∣∣∣∣∣
xi −

∑

j

Wijxj

∣∣∣∣∣∣

2

. (4)

(3) Finally, find point yi in a lower dimensional space to minimize:

�(Y )=
∑

i

∣∣∣∣∣∣
yi −

∑

j

Wijyj

∣∣∣∣∣∣

2

. (5)

This cost function in (5), as the previous one in (4), is based on locally linear reconstruction errors,
but here the weights Wij are fixed while optimizing the coordinate yi. The embedding cost in (5)
defines a quadratic form in the vectors y. Data points are reconstructed from their K nearest neigh-
bours, as measured by Euclidean distance or normalized dot products. For such implementations of
LLE, the algorithm has only one free parameter: the number of neighbours, K .

Subject to constraints that make the problem well-posed, it can be minimized by solving a sparse
n x n eigenvector problem, whose bottom d non-zero eigenvectors provide an ordered set of orthog-
onal coordinates centered on the origin.

Low-dimensional embedding in the dimensional embedding space is computed to best preserve
the local geometry represented by the reconstruction weights.

CMLHL. CMLHL [7] is an extended version of Maximum Likelihood Hebbian Learning (MLHL)
[9] that incorporates lateral connections, derived from the Rectified Gaussian Distribution. The
resultant net can find the independent factors of a data set, but does so in a way that captures some
type of global ordering in the data set.

Consider an n-dimensional input vector x, an l-dimensional output vector y and a weight matrix
W , where the element Wij represents the relationship between input xj and output yi, then as shown
in [7], CMLHL can be performed as a four-step procedure:

Feed-forward step, where outputs are calculated according to:

yi =
n∑

j=1

Wijxj, ∀i. (6)

Lateral activation passing step, where lateral connections of output neurons are given by:

yi(t+1)=[yi(t)+τ (b−Ay)]+. (7)

Feedback step:

ej =xj −
l∑

i=1

Wijyj, ∀j. (8)

The function to be approximated is clearly sufficiently smooth, the learning rate is acceptable and
the rule is as follows in the weight update step, where the following learning rule is applied:

�Wij =η ·yi ·sign(ej)|ej|p−1, (9)
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where η is the learning rate, τ is the ‘strength’ of the lateral connections, b the bias parameter, p a
parameter related to the energy function which relates the pdf to the learning rule, ej is the activation
of the neuron and A is a symmetric matrix used to modify the response to the data. The effect of
this matrix is based on the relation between the distances separating the output neurons.

2.2 Clustering methods

Cluster analysis organizes data by abstracting underlying structures either as a grouping of individ-
uals or as a hierarchy of groups. The representation can then be investigated, to observe patterns in
the data group that will confirm preconceived ideas or suggest new experiments [7, 23]. Intuitively,
two elements in a valid cluster will share greater similarity than those in different groups. Some
clustering methods, from the wide range of clustering techniques, have been applied in the present
work and are described below.

K -means. The standard k-means [17] is an algorithm for grouping data points into a given number
of clusters. Its application requires two input parameters: the number of clusters, k , and their initial
centroids, which can be chosen by the user or obtained through some pre-processing. Each data
element is assigned to the nearest group centroid, thereby obtaining the initial composition of the
groups. Once these groups are obtained, the centroids are recalculated and a further reallocation takes
place. The process is repeated until there are no further changes in the centroids. Given the heavy
reliance of this method on initial parameters, a reliable measure of the goodness of the grouping is
simply the sum of the proximity Error Sums of Squares (SSE) that it attempts to minimize:

SSE=
k∑

j=1

∑

x∈Gj

p(xi,cj)

n
, (10)

where, p is the proximity function, k is the number of groups, cj are the centroids, and n the number
of rows. In the case of working with Euclidean distance, the expression is equivalent to the global
mean square error.

Fuzzy c-means (fcm). Conventional clustering approaches (such as k-means) assume that an object
can belong to only one cluster. In practice, the separation of clusters is a fuzzy notion. Fuzzy clus-
tering algorithms are an extension of traditional clustering techniques applying Fuzzy-Sets theory,
which outperform conventional clustering algorithms by allowing each object to be assigned to one
or more clusters. According to Fuzzy Logic, the membership function is not a crisp value (0, 1) but
it is now defined as a percentage.

The c-means clustering algorithm [20] is a clustering method that lets one piece of data belong to
two or more clusters. Let X =[x1,x2,... ,xm] be a set of numerical data in RN . Let c be an integer,
1<c<M . Given X , it can be said that c-fuzzy subsets {uk :X→[0,1]} are partitions of X , if the
following conditions are satisfied:

0�ukj � 1 ∀k,j (11)

c∑

k=1

ukj =1∀j (12)
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0<

M∑

j=1

ukj <n∀k, (13)

where ukj =uk (Xj), 1 � k �c and 1 � j � M

3 Proposed hybrid artificial intelligent system

A hybrid system combining dimensionality reduction techniques and clustering techniques is pro-
posed for the analysis of data sets with atmospheric pollution information.

A HAIS combines different paradigms in Artificial Intelligence for solutions to real-world prob-
lems. In this case, different ways of combining and testing clustering dimensionality reduction
techniques and clustering techniques are investigated, for the analysis of air pollution records in the
two case studies described in Section 4. The hybrid system is described in the following subsections.
In Figure 1, the three steps for the proposed hybrid model are shown alongside a graphic example
of each step to its right.

Step 1: Data structure identification. Several dimensionality reduction techniques are applied
to the original dataset, to discover the internal structure of the data under analysis. In addition,
experimentation with different graphical representations sought to capture the main directions and
data groups in this structure.

Step 2: Clustering visualization. In the second step, clustering techniques are applied to the original
data set. Different values of the parameter k (number of target clusters) are tested, according to the
number of previously identified groups from the projections obtained by the dimensionality reduction
methods applied in Step 1.

After that, the dimensionality reduction techniques are once again applied, taking the sample
assignment results of the clustering method as the labels in the projection. By doing so, deep
knowledge is gained about the criterion that determines how the original data will be grouped,
being possible to observe the coupling or similarity between the results obtained by the clustering
techniques and the graphical view offered by the dimensionality reduction techniques.

Step 3 Clustering Optimization 

A. On projected data B. On original data 

Step 1 

Step 2 Clustering Visualization 

Data-Structure Identification 

FIG. 1. Proposed HAIS.
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The main idea behind the present study is to characterize the atmospheric pollution of different
locations by applying clustering techniques, so the final step is mainly focused on the optimization
of such clustering. To do so, various techniques are applied to different data as described below
(Steps 3.A and 3.B).

Step 3.A: Clustering on projected data. In this step, the clustering techniques presented in
Section 2.2 are applied to a low-dimensionality data set. To do so, PCA, LLE and CMHL reduce
the dimensionality of the original data set to a number of dimensions equal to two and three. After
that, k-means and fcm are applied to the low-dimensionality data set, with values of k similar to
those that achieved the best results in Step 2. The main idea of this step is to check the performance
of clustering techniques working on (previously projected) datasets of reduced dimensionality.

Step 3.B: Clustering on original data. Clustering techniques (described in Section 2.2) are applied
to the original data set. The range of values for the k parameter in Step 3.B is similar to those
previously selected in Step 3.A.

By comparing the results from Step 3.A and Step 3.B, interesting conclusions can be obtained
about the differences in the sample allocation process of clustering techniques, depending on the
input data (original datasets versus low-dimensionality datasets).

4 Data for the case studies

In this Section, the two real case studies analysed in this study are presented. Three reasons motivate
the selection of the stations, in both cases of study: the selected pollutants are the most interesting
ones, to study the environmental conditions. The second reason is that each station is in an area quite
unlike the others in relation to traffic density, population and geographical location. The third reason
is that both regions are important capital cities in Europe, with relevant air-pollution monitoring
networks and with air-pollution problems, both in the past and in the present. These air-pollution
monitoring networks are in many ways similar to the classification of the stations (urban, suburban,
high-traffic density, vegetation protection, …), the recorded parameters and the number of available
data acquisition points. Figure 2 shows the six selected locations (three from the region of Madrid
and three from the region of Prague).

4.1 Case study I: region of Madrid (Spain)

The first study is focused on the analysis of air pollution data recorded in the region of Madrid
(central Spain) [26, 31]. According to Köppen’s climate classification criteria [18], the climate of
Madrid is classified as a Mediterranean climate type (mild with dry and hot summer), in a highly
urban environment. The Gross Domestic Product (GDP) of Madrid city in 2011 was estimated
at 124,780 million Euros, which represents 65.9% of the total GDP of the region of Madrid and
11.6% of Spanish GDP, of which its industrial contribution was 7.9% and construction accounted for
6.1%. However, it is the service sector, which accounts for 85.9% of total economic activity, which
defines the city of Madrid’s production structure [11]. Sources of atmospheric pollutants are not the
same everywhere and pollution varies greatly in the atmosphere, depending on the characteristics of
each area. More precisely, the main sources of pollution in the city are: road transport, combustion
plants (industrial and non-industrial), other means of transport and mobile machinery, and the use
of non-industrial solvents and products [31].
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FIG. 2. Location of the two case studies in Europe, by Google Maps.

The data were selected from 2007 to 2014, at the start of the economic crisis in Spain; a fact that
implies a significant variation in the levels of air pollution compared with other periods of time.
Over these years, economic activity in strategic fields, such as building, was significantly reduced.
The data were gathered from stations located in the following areas:

1. Casa de Campo in Madrid city centre. Longitude: 3º 44’ 50” W, latitude: 40º 25’ 68” N, meters
above sea level (masl): 645. Full station specification can be found in [26].

2. Aranjuez: an urban background station. Longitude: 3º 32’ 46” W, latitude: 40º 2’ 2” N, masl:
501. The full station specification can be found in [31].

3. El Atazar: a vegetation protection station. Longitude: 3° 28’ 13” W, latitude: 40° 56’ 4” N,
masl: 995. Full station specification can be found in [31].

There are a total of 287 samples, as one sample per month (monthly daily average) was collected
for the twelve months of every year, between 2007 and 2014, and the 3 stations analysed in this
study. Some corrupted values were omitted because any value was missing (leaving 287 samples
rather than 288). The following parameters (four air pollutants and four meteorological variables)
were analysed:

1. Nitric Oxide (NO)—μg/m3, primary pollutant. NO is a colourless gas which reacts with ozone
undergoing rapid oxidation to NO2, predominant in the atmosphere.

2. Nitrogen Dioxide (NO2)—μg/m3, a primary pollutant. From the standpoint of health protec-
tion, nitrogen dioxide has set exposure limits for long and short duration.

3. Particulate Matter (PM10)—μg/m3, primary pollutant. These particles remain stable in the air
for long periods of time without falling to the ground and can be moved significant distances
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by the wind. Defined by the ISO as follows: ‘particles which pass through a size-selective
inlet with a 50 % efficiency cut-off at 10 μm aerodynamic diameter. PM10 corresponds to
the ‘thoracic convention’ as defined in ISO 7708:1995, Clause 6’ [22].

4. Ozone (O3)—μg/m3, secondary pollutant. Ozone is an odourless, colourless gas composed
of three oxygen atoms. It occurs both in the Earth’s upper atmosphere and at ground level. It
can be ‘good’ or ‘bad’ for people’s health and for the environment, depending on its location
in the atmosphere.

5. Relative Humidity (RH)—%.
6. Atmospheric Pressure—mbar.
7. Wind Speed Module—m/s.
8. Air Temperature—°C.

4.2 Case study II: region of Prague (Czech Republic)

The second study is focused on the analysis of air pollution data recorded in the region of Prague
(Czech Republic) [12]. The city of Prague has a Continental climate with marked temperature
differences between winter and summer and between day and night.

Approximately, a quarter of the Czech Republic’s GDP (24.6% in 2012) is generated in Prague.
GDP per capita in Prague reached 20% of the Czech Republic’s average. At present, values in Prague
are well above the average values for the entire EU-28 (GDP per capita in Prague was 68.9% higher).
The city is one of the most affected European regions from the perspective of low air quality. Its air
quality is mainly influenced by traffic flows, electricity production and heat generation. The heating
plant in Malešice and the cement factory in Radotín are the main sources of emissions. The limit
values fixed by the European Union in all cases, exceeded in air-quality measurements by inmission:
especially SO2 concentrations, suspended PM10 particulate matter and benzopyrene [16]. As in the
case study presented in Section 4.1, data were selected from 2007 to 2014. The data were gathered
from stations located in the following areas:

1. Aleg: a traffic/urban/residential/commercial station. Longitude: 50° 4’ 20” W, latitude: 14° 25’
50” N, masl: 219. Full station specification in [13].

2. Arie: a background/urban/residential station. Longitude: 50° 4’ 53” W, latitude: 14° 26’ 33” N,
masl: 256. Full station specification in [15].

3. Alib: a background/suburban/residential station. Longitude: 50° 0’ 26” W, latitude: 14° 26’
45” N, masl: 301. Full station specification in [14].

There were a total of 281 samples as one sample per month (monthly daily average) was collected
for the twelve months of every year between 2007 and 2014 and the three stations analysed in this
study. Some samples were removed as they contained missing values. The following parameters
(five air pollutants) were analysed:

1. Nitric Oxide (NO)—μg/m3, secondary pollutant.
2. Nitrogen Dioxide (NO2)—μg/m3, secondary pollutant.
3. Nitrogen Oxides (NOx)—μg/m3, secondary pollutant. Consisting of nitric oxide (NO), nitro-

gen dioxide (NO2) and nitrous oxide (N2O), formed when nitrogen (N2) combines with oxygen
(O2).

4. Particulate Matter (PM10)—μg/m3, primary pollutant.
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TABLE 1. Parameter values for the models associated with the projections shown in Figures 3–7

Technique Output dimensions Neighbours Iterations Learning rate p τ

LLE 2 35
CMLHL 2 1000 0.0008 2.5 2.5

FIG. 3. Projections of case study I, by station (Step 1): Left: LLE, Right: CMLHL. ‘*’ Aranjuez, ‘+’
El Atazar, ‘o’ Casa de Campo.

5. Particulate Matter (PM2.5)—μg/m3, primary pollutant. Defined by the ISO as follows: ‘par-
ticles which pass through a size-selective inlet with a 50 % efficiency cut-off at 2.5 μm aero-
dynamic diameter. PM2.,5 corresponds to the ‘high-risk respirable convention’ as defined in
ISO 7708:1995, 7.1. Stands for Particulate Matter of less than 2.5 millionths of a metre in
diameter’ [22].

5 Evaluation of the case studies using the proposed HAIS

The Steps described in Section 3 were applied to both case studies presented in Section 4 and the
results are discussed below.

5.1 Case Study I: region of Madrid (Spain)

Step 1. In this first step, the three dimensionality reduction techniques described in Section 2.1 are
applied to the original data set, seeking a possible structure in the data. In this step, the best possible
data projection is aimed to reach and the different dimensionality projection technique are tried to
discover the number of groups in the original dataset. For the sake of brevity, only the best results
are shown. Table 1 shows the values of the parameters for LLE and CMLHL techniques, whose
results are shown in the following Figures (3–7).

In Figure 3, data samples are depicted according to their geographical location (data acquisition
station).

In Figure 3, data samples are depicted according to their geographical location (data acquisition
station). LLE depicts the structure of the data, where three main groups can be identified. Samples
corresponding to the station from ‘El Atazar’, located at the bottom of the picture, are at a considerable
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FIG. 4. Projections of case study I, by season (Step 1): Left: PCA, Right: LLE. ‘*’ Winter, ‘+’ Spring,
‘o’ Summer.

distance from the samples corresponding to the other two stations, because the lowest levels of
contamination are found at this location. The samples of ‘Aranjuez’ are at the top the projection,
where pollution levels are the highest of the three locations under analysis. CMLHL groups most
samples from ‘Aranjuez’ and ‘El Atazar’ into two compact clusters, while samples from ‘Casa de
Campo’ are much more dispersed, outliers being distinguished that correspond to samples where
levels of NO are specially high.

In Figure 4, data are projected according to their particular season of the year (winter, spring,
summer and autumn).

In Figure 4, the data projections are by the season of the year to which they refer (winter, spring,
summer and autumn). The projection is not as clear as the previous one in Figure 3, as data from
the four seasons were mixed up. Analysing the data, the evolution of atmospheric pollution related
to the season may be observed; summer and spring contains the highest levels of O3 and winter
and autumn the highest registered levels of NO and NO2. The four outliers on the right side of the
PCA projection correspond to samples from winter in 2007 and 2008 where the level of NO reached
values around 100μg/m3. This value is above the daily limit value for the protection of human
health fixed at 50μg/m3 in 2005 by the European Union [19].

From the LLE projection, the existence of an important group of samples associated with the
winter season may be observed at the top of the plot. These samples present the highest levels of
PM10 and PM2.5 for the whole year. The absence of groups in the projection according to the
seasons of the year is due in part to the use of the monthly averaged data set.

Step 2. In the first step, different dimensionality reduction techniques were applied and evaluated
for the original dataset. After this, the clustering technique k-means (described in Section 2.2) applied
different values for the k parameter according to the numbers of clusters found in Step 1 (i.e. 2 and
3). Then, the dimensionality reduction techniques were applied to visualize these results (sample
process allocation obtained by k-means). The results for k equal to 2, 3 and 4 are shown in Figures 5,
6 and 7, respectively.

In this step, the results for PCA are omitted, because PCA obtained no clear results for this case
study in the first step.
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FIG. 5. Projections of case study I (Step 2): Left: LLE, Right: CMLHL. k =2. Data are labelled
according to the cluster allocation (1 or 2).

FIG. 6. Projections of case Study I (Step 2): Left: LLE. Right: CMLHL. k =3. Data are labelled
according to the cluster allocation (1, 2 or 3).

In Figure 5, data are depicted according to the sample process allocation obtained by k-means,
when k equals 2.

In the LLE projection (Figure 5), all the samples from ‘El Atazar’ are grouped in the same cluster,
labelled as 1, while the samples from the other two stations are distributed in both clusters (1 and 2).
The samples labelled as 2 are those from ‘Casa de Campo’ and ‘Aranjuez’ and in most cases from
winter and autumn, as depicted in Figure 4. It can be seen that CMLHL obtained similar results;
samples from ‘El Atazar’ are grouped in the cluster labelled as 1, while samples from the other two
stations are located in clusters 2 and 3.

In Figure 6, the data are depicted according to the sample process allocation obtained by k-means,
when k equals 3.
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FIG. 7. Projections of case study I (Step 2): Left: LLE. Right: CMLHL. k =4. Data are labelled
according to the cluster allocation (1, 2, 3 or 4).

In Figure 6, in the same way as in Figure 5, the ‘El Atazar’ samples are all grouped into the same
cluster, labelled as 3, while samples from the other two stations are distributed in clusters labelled
as 1 and 2. These samples are grouped according to the season of the year in most cases, while the
samples from autumn and winter are labelled as 2.

In Figure 7, the data are depicted according to the sample process allocation obtained by k-means,
when k equals 4.

Showing similar results than in previous cases (Figures 5 and 6), in Figure 7 the samples from
‘El Atazar’ are grouped into the same cluster, labelled as 3. Samples from the other two stations are
distributed mainly in clusters labelled as 1 (samples from the seasons of autumn and winter) and 4
(samples from the seasons of summer and winter). Only a few samples are grouped in the cluster
labelled as 2. The results are similar, whether the results are projected by LLE or by CMLHL.

Step 3. A. In this third step, the sample process allocation is the result of applying the clustering
techniques to the low dimensionality data set. In Table 2, ‘Dimensions’ represents the number of
dimensions of the dataset after applying the dimensionality reduction technique. ‘Cluster Samples
Allocation’ represents the percentage of samples from each one of the stations (Casa de Campo,
Aranjuez and Atazar) that are allocated to each one the clusters; e.g. [47, 53] indicates that 47%
of the samples from the station are allocated to the first cluster and 53% to the second one. Each
sample is assigned to the cluster whose probability of allocation is closer to one.

According to the results obtained in Step 2 (Figures 5, 6 and 7), Table 2 shows how samples from
‘El Atazar’ are assigned to the same data cluster with a percentage of 75%, when applying PCA and
LLE as a pre-step before applying k-means. Regarding the distribution of the samples from the other
two stations, the results are very similar to those obtained in Step 2. The samples are distributed by
the season of the year. When applying CMLH before clustering, the number of samples assigned to
the same cluster in the case of ‘El Atazar’ decreases significantly.

In Table 3, the performance of fcm applied to the low-dimensionality dataset is shown. Column
‘Cluster Samples allocation’ represents the percentage of samples assigned to a right cluster in a
first and a second option. i.e.: [93 71] 93% of the samples of ‘Aranjuez’ are assigned to the same
cluster with the highest percentage according to the results returned by the method, 71% of samples
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TABLE 2. k-means clustering results after dimensionality reduction for case study I (Step 3.A)

k Dimensions Method Cluster samples allocation (%)

Casa de Campo Aranjuez Atazar
2 3 PCA [47 53] [49 51] [100 0]
3 3 PCA [42 58 0] [41 59 0] [0 0 100]
4 3 PCA [56 28 16 0] [53 0 47 0] [0 0 0 100]
2 4 PCA [47 53] [49 51] [100 0]
3 4 PCA [44 0 56] [41 0 59] [0 100 0]
4 4 PCA [56 0 16 28] [53 0 47 0] [0 100 0 0]
2 3 LLE [42 58] [57 43] [66 34]
3 3 LLE [20 2 78] [98 0 2] [0 100 0]
4 3 LLE [36 52 8 4] [38 1 61 0] [5 0 0 95]
2 4 LLE [100 0] [100 0] [0 100]
3 4 LLE [66 4 30] [10 44 46] [28 54 18]
4 4 LLE [38 56 6 0] [51 0 49 0] [0 0 0 100]
2 3 CMLHL [71 29] [63 37] [2 98]
3 3 CMLHL [45 46 9] [1 97 2] [0 16 84]
4 3 CMLHL [2 42 32 24] [0 53 47 0] [65 2 33 0]
2 4 CMLHL [46 54] [61 39] [20 80]
3 4 CMLHL [30 35 35] [22 40 38] [60 40 0]
4 4 CMLHL [24 21 29 26] [33 6 32 29] [29 42 29 0]

that are not assigned to that cluster with the highest percentage area are assigned to the cluster with
the second highest percentage.

As happened in Table 2, samples from ‘El Atazar’ are mainly assigned to the same cluster in the
first option. Regarding the samples belonging to the other two stations, the percentage of proper
allocations in the first option is higher (k =3) (Dimensions = 3). It is worth mentioning that the
percentage of success in the allocation process for the second option is higher when the percentage
of success for the first option is also high. Finally, it can be said that by applying CMLH before
clustering, most of the samples are assigned to the same data cluster in the case of ‘El Atazar’.

Step 3.B. Finally, k-means applied to the original dataset yields the results that are shown in
Table 4.

By applying k-means to the original data set, the results are similar to those obtained in Step 3.A
(Table 2). ‘El Atazar’ samples are always assigned to the same cluster while samples from the other
two stations are distributed (50%), with k =2 and by a percentage close to 50% between two clusters
when k =3. In the case of k =4, the samples are distributed between two clusters, in the case of
‘Aranjuez’, and between three clusters in the case of ‘Casa de Campo’, which is similar to the results
obtained in Step 2 (Figure 7).

In Table 5, the results of applying fcm to the original dataset are shown. For each experiment, the
percentage of samples assigned to the correct cluster is shown as either first or second options.

Applying fcm to the original dataset, the results obtained are similar to those shown in Step 3.A
(Table 3). The samples belonging to ‘El Atazar’ are almost entirely assigned to the same cluster,
while samples of the other two stations are distributed in clusters mainly by the season of the year.
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TABLE 3. fcm clustering results after dimensionality reduction for case study I (Step 3.A)

k Dimensions Method Cluster samples allocation (%)

Casa de Campo Aranjuez Atazar
3 3 PCA [67 16] [93 71] [100 0]
4 3 PCA [51 13] [61 30] [100 0]
3 4 PCA [54 16] [61 30] [100 0]
4 4 PCA [54 7] [63 8] [71 100]
3 3 LLE [75 54] [99 100] [99 100]
4 3 LLE [59 49] [55 93] [96 100]
3 4 LLE [71 75] [70 100] [95 100]
4 4 LLE [69 83] [55 49] [83 88]
3 3 CMLHL [74 76] [93 71] [100 0]
4 3 CMLHL [84 7] [97 33] [100 0]
3 3 PCA [67 16] [93 71] [100 0]
4 3 PCA [51 13] [61 30] [100 0]
3 4 PCA [54 16] [61 30] [100 0]
4 4 PCA [54 7] [63 8] [71 100]
3 3 LLE [75 54] [99 100] [99 100]
4 3 LLE [59 49] [55 93] [96 100]
3 4 LLE [71 75] [70 100] [95 100]
4 4 LLE [69 83] [55 49] [83 88]

TABLE 4. k-means clustering results for case study I on original data (Step 3.B)

k Cluster samples allocation (%)

Casa de Campo Aranjuez Atazar
2 [47 53] [49 51] [100 0]
3 [57 43 0] 59 41 0 [0 0 100]
4 [16 29 0 55] [47 0 0 53] [0 0 100 0]

TABLE 5. fcm clustering results for case study I on original data (Step 3.B)

k Cluster samples allocation (%)

Casa de Campo Aranjuez Atazar
3 [57 37] [42 100] [97 0]
4 [43 10] [93 0] [100 0]

5.2 Case Study II: region of Prague (Czech Republic)

Step 1. In this first step, the three dimensionality reduction techniques described in Section 2.1
are applied to the original data set to reveal the structure of the data. Table 6 shows the values of
the parameters for LLE and CMLHL techniques, whose results are shown in the following Figures
(8–12).

In Figure 8, data samples are depicted according to their geographical location (data acquisition
station).
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TABLE 6. Parameter values for the models, associated with the projections shown in Figures 8–12

Technique Output dimensions Neighbours Iterations Learning rate p τ

LLE 2 33
CMLHL 2 1000 0.002 1 1

FIG. 8. Projections of case study II, by station (Step 1): Left: LLE, Right: CMLHL. ‘*’ Aleg, ‘+’
Arie, ‘o’ Alib.

LLE depicts a group of data (not so clearly separated) and a big cloud of sparse samples. The
group of data, located in the right-bottom corner of the projection, corresponds to the stations of
‘Arie’ and ‘Alib’, presenting similar levels of air pollution. The rest of the points correspond to the
‘Aleg’ station, presenting high levels of air pollution, especially in NO2 and PM10. This large point
cloud reflects the great variability in NOX, reaching peaks of 285μg/m3, in August of 2011, and
values of over 200μg/m3, in the winter of 2009. These values exceed the limit value of 200μg/m3

established in 2010 by the European Union [19]. By applying CMLHL, the samples from ‘Arie’ and
‘Alie’ are clustered into a group of data, but an even sparser one than if LLE had been applied. Note
that the samples from the station located in ‘Aleg’ are more clearly differentiated from the samples
belonging to the two data clusters than in the case of the LLE projection.

In Figure 9, the data are projected according to the season in which they were collected (winter,
spring, summer and autumn).

The projection is even less clear than the previous one in Figure 8. The only thing that can be
observed is an evolution of atmospheric pollution throughout the year, as winter and autumn show
the highest levels of pollution in comparison with spring and summer, and are located (Figure 9)
at the bottom of the LLE projection and at the upper part in the case of CMLHL. The air pollution
values are similar between the seasons of spring and summer and the seasons of winter and autumn.

Step 2. The results obtained by applying PCA are omitted, as PCA offered no clear results in
Step 1 in this case study. In Figure 10, data are depicted according to the sample process allocation
obtained by k-means, when k equals 2.
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FIG. 9. Projections of case study II, by season (Step 1): Left: LLE, Right: CMLHL. ‘*’ Winter, ‘+’
Spring, ‘o’ Summer.

FIG. 10. Projections of case study II (Step 2): Left: LLE, Right: CMLHL. k =2. Data are labelled
according to the cluster allocation (1 or 2).

In Figure 10, by applying LLE most of the samples from ’Aleg’ form the open point cloud labeled
as 1, while the samples belonging to the other two stations are distributed in the cluster labelled as
2. Similar results can be observed from the CMLHL projection.

In Figure 11, data are depicted according to the sample process allocation obtained by k-means,
when k equals 3.

In Figure 11, samples from ‘Arie’ and ‘Alib’ are all grouped in the same cluster, labelled as 3 in
this case, which corresponds to the samples with lower levels of air pollution, while samples from
the other two stations are distributed in clusters labeled as 1 and 2. Samples labelled as 2 correspond
to those with higher levels of pollutants such as NO and NO2. The results projected by LLE and
CMLHL are similar in this case.
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FIG. 11. Projections of case study II (Step 2): Left: LLE. Right: CMLHL. k =3. Data are labelled
according to the cluster allocation (1 or 2).

FIG. 12. Projections of case study II (Step 2): Left: LLE. Right: CMLHL. k =4. Data are labelled
according to the cluster allocation (1 or 2).

In Figure 12, data are depicted according to the sample process allocation obtained by k-means,
when k equals 4.

In the same way as in Figure 10 and Figure 11, in Figure 12 the samples from ’Arie’ and ‘Alib’
are grouped into the same cluster, labelled as 1. Samples from the ‘Alib’ station are labelled as 2,
3 and 4 depending on the levels of air pollution, the samples labelled as 4 being those with higher
levels of NOx. Results are similar whether we apply LLE and CMLHL.
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TABLE 7. k-means clustering results after dimensionality reduction for case study II (Step 3.A)

k Dimensions Method Cluster samples allocation (%)

Aleg Arie Alib
2 3 PCA [20 80] [100 0] [100 0]
3 3 PCA [53 1 46] [3 97 0] [0 100 0]
4 3 PCA [3 42 0 55] [48 0 52 0] [28 0 72 0]
2 4 PCA [10 90] [100 0] [100 0]
3 4 PCA [1 45 54] [97 0 3] [100 0 0]
4 4 PCA [3 42 0 55] [48 0 52 0] [28 0 72 0]
2 3 LLE [35 65] [33 67] [32 68]
3 3 LLE [38 33 29] [67 0 33] [72 0 28]
4 3 LLE [4 30 11 55] [66 0 32 2] [71 0 29 0]
2 4 LLE [46 54] [77 23] [77 23]
3 4 LLE [80 15 5] [0 27 73] [0 25 75]
4 4 LLE [29 51 6 14] [0 0 73 27] [0 0 75 25]
2 3 CMLHL [90 10] [0 100] [0 100]
3 3 CMLHL [54 1 45] [3 97 0] [0 100 0]
4 3 CMLHL [3 42 55 0] [48 0 0 52] [28 0 0 72]
2 4 CMLHL [20 80] [100 0] [100 0]
3 4 CMLHL [54 45 1] [3 0 97] [0 0 100]
4 4 CMLHL [3 0 42 55] [48 52 0 0] [28 72 0 0]

Step 3.A. In this third step, the results obtained from the sample allocation process, by applying
the clustering technique to the low-dimensional data sets are shown. In Table 7, the results of k-
means applied to the low dimensionality datasets obtained by applying the three dimensionality
reduction techniques are shown.

The results shown in Table 7 are coherent with those obtained in Step 2, specially for the ‘Aleg’
station, due to the fact that the samples are allocated in different data clusters when k =2 and k =3.
With regard to the sample process allocation corresponding to both the ‘Arie’ and the ‘Alib’ stations,
the results differ from those obtained in Step 2. Though an important number of samples of these
two places are assigned to the same cluster (especially in the case of ‘Alib’), in other cases the
samples from these two locations are distributed in more than one data cluster. It is also interesting
to highlight that when applying CMLHL to reduce the dimensionality of data, all the samples from
the ‘Alib’ station are in most cases placed in the same data cluster, while the same was not true in
the first case study (Table 2).

In Table 8, the results of fcm applied to the low dimensionality datasets are shown, obtained by
applying the three dimensionality reduction techniques.

In Table 8, samples from ‘Alib’ are assigned to the same data cluster in the first option in high
percentages, but this percentage is lower in the case of the samples from ‘Arie’. This means that
samples from ‘Alib’ show similar levels of air pollution throughout the year, very different from
those in ‘Arie’ and ‘Aleg’. The percentage allocation in the first option of the samples from ‘Aleg’
is very low; these samples have a high variability in the levels of pollution, as previously mentioned
in Steps 1 and 2.
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TABLE 8. fcm clustering results after dimensionality reduction for case study II (step 3.A)

k Dimensions Method Cluster samples allocation (%)

Aleg Arie Alib
3 3 PCA [51 100] [97 43] [100 0]
4 3 PCA [55 98] [52 93] [71 100]
3 4 PCA [49 57] [97 50] [100 0]
4 4 PCA [55 98] [51 93] [71 100]
3 3 LLE [76 95] [63 74] [66 100]
4 3 LLE [57 40] [62 64] [68 100]
3 4 LLE [78 90] [60 59] [66 100]
4 4 LLE [66 47] [49 26] [56 31]
3 3 CMLHL [49 21] [97 75] [100 0]
4 3 CMLHL [46 92] [84 88] [98 100]
3 4 CMLHL [62 6] [73 63] [74 14]
4 4 CMLHL [66 25] [95 67] [77 18]

TABLE 9. k-means clustering results for case study II on original data (Step 3.B)

k Cluster samples allocation (%)

Aleg Arie Alib
2 [10 90] [100 0] [100 0]
3 [1 45 54] [97 0 3] [100 0 0]
4 [0 46 32 22] [97 0 3 0] [100 0 0 0]

TABLE 10. fcm clustering results for case study II on original data (Step 3.B)

k Cluster samples allocation (%)

Aleg Arie Alib
3 [49 57] [97 50] [100 0]
4 [54 6] [51 6] [74 88]

Step 3.B. Finally, k-means and fcm are applied to the original dataset. In Table 9, the results for
k-means are shown in application to the original dataset.

By applying k-means to the original data set, the results are similar to those obtained in Step 2.
‘Arie’ and ‘Alib’ samples are mainly assigned to the same data cluster (first data cluster in this
case), while samples from ‘Aleg’ are distributed to the rest of the data clusters. One difference
between these results and the results obtained in Step 2 is that when k =4, in Table 9, no sample
from ‘Aleg’ is assigned to the first cluster but, in Figure 12, the four clusters contain no samples
from this station. It is worth mentioning that all the samples from ‘Alib’ are assigned to the same
cluster in the three results. This result resembles those shown in Table 4 in the case of ‘El Atazar’; in
both studies one of the stations displays very different characteristics from the other two stations, as
most of the samples from ‘Aleb’ are assigned to a different cluster than the samples from ‘Arie’ and
‘Alib’.

In Table 10, the results from fcm are shown applied to the original dataset.
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By applying fcm to the original data set, the results obtained are similar to those obtained by
applying k-means (Table 9) when k =3. When k =3, in ‘Arie’ and ‘Alib’, almost all the samples
are assigned to the same data cluster, this means that the samples from these two places showed
similar pollution values over the years, and very different values to those of ‘Aleg’. Something
similar happened when applying fcm to the reduced datasets (Table 8), when PCA and MLHL were
applied and the number of dimensions was 3.

6 Conclusions, discussion and future work

There are two sets of main conclusions: first, those associated with air pollution in the case studies
under analysis; secondly, those on the behaviour of the proposed HAIS.

Discussing air quality in the region of Madrid, the station at ‘El Atazar’ shows the lowest levels of
contamination of the three locations. The highest levels of air pollution correspond to the station at
‘Aranjuez’ where pollution levels are the highest of the three locations. Summer and spring seasons
are linked to the highest levels of O3 and winter and autumn registered the highest levels of NO and
NO2.

In the region of Prague, the three locations are not so clearly differentiated by air quality, as in
the case of the region of Madrid. The stations located in ‘Arie’ and ‘Alib’ have similar levels of
air pollution and the station at ‘Aleg’ presents the highest levels of air pollution especially in NO2

and PM10. The NOX presents great variability reaching peaks of 285μg/m3 in August of 2011 and
values over 200μg/m3 in winter of 2009.

Air quality in the two selected regions behaves in a similar way, reaching very high values in urban
areas and decreasing considerably in residential or rural areas. However, it is important to note that
in the region of Madrid values do not reach significantly high values, while in the region of Prague
peaks (which widely exceeds the maximum levels stated by the European Union) are observed,
especially in NOx and PM10. It can also be seen how the levels of environmental pollution in
the region of Madrid are strongly related to the placement of the measuring station (city centre,
background station, vegetable protection station), while in the region of Prague the pollution levels
do not depend that much on the location of the measuring station.

The application of dimensionality reduction techniques as the first step in the proposed hybrid
system allow us to identify the structure of the data and determine the best way of approaching the
characterization of data. Projection of the dataset by more than one criterion yields different views
upon it. The dimensionality reduction methods that offer the best results are LLE and CMLHL. As a
result of applying this first step, an approximate number of clusters can be obtained. This information
is useful, to determine the parameters (number of clusters and the number of output dimensions) in
Step 2. All in all, at the end of Step 2, the relation between the process of clustering and dimensionality
reduction can be visually observed. Finally, in Step 3 (3.A and 3.B) two important issues can be
checked. First, the comparison of the results obtained by applying clustering techniques to the original
data set or applying it to reduced dimensionality data sets. The most reliable results are obtained by
applying clustering to the original data, as in the other case the results vary considerably depending
on the dimensionality reduction technique that is applied. In a special situation where dimensionality
reduction is applied before k-means, the clustering in the original data can be observed in Table 3
(Dimensions = 4 and k =2), as 100% of the samples from ‘Aranjuez’ and ‘Casa de Campo’ are
assigned to a different cluster than the samples from ‘El Atazar’. The second conclusion is the
significant correspondence of these results with those obtained in Steps 1 and 2.

In future work, the proposed hybrid model will be applied to other case studies with larger datasets
and further clustering and projection techniques will be investigated.
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