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Abstract 

There is evidence that DNA breathing (spontaneous opening of the DNA strands) 
plays a relevant role in the interactions of DNA with other molecules, and in particular 
in the transcription process. Therefore, having physical models that can predict these 
openings is of interest. However, this source of information has not been used before 
either in transcription start sites (TSSs) or promoter prediction. In this article, one such 
model is used as an additional information source that, when used by a machine learn‑
ing (ML) model, improves the results of current methods for the prediction of TSSs. In 
addition, we provide evidence on the validity of the physical model, as it is able by itself 
to predict TSSs with high accuracy. This opens an exciting avenue of research at the 
intersection of statistical mechanics and ML, where ML models in bioinformatics can be 
improved using physical models of DNA as feature extractors.

Keywords:  DNA modelling, DNA breathing, Machine Learning, TSS prediction, SVM, 
String kernels

Background
Understanding DNA structure and dynamics is one of the most challenging subjects in 
biophysics. In the case of DNA, unraveling the processes by which specific binding sites 
are recognised by proteins, drugs, mutagens, and other molecules represents a funda-
mental step toward understanding its biological activity. The description by Watson and 
Crick of the double helix structure of DNA [1], thanks to the works of Rosalind Franklin, 
originally led to a fundamental postulate that “form is function” for biological molecules, 
meaning that the properties of the molecule are due only to its structure. Today, this 
vision has changed, and it is now understood that the dynamics of its base pairs are also 
essential for its function [2]. Even in the absence of enzymes involved in the reading or 
duplication of the code, DNA undergoes large amplitude fluctuations.

Indeed, the DNA double helix is a very dynamic molecule. The two strands of DNA 
are linked by hydrogen bonds (one of the weakest molecular bonds) at each of their 
bases, a double bond between the adenine and thymine bases, and a triple bond between 
the cytosine and guanine bases (which makes this second pair more difficult to separate 
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than the first). These bonds can be broken due to thermal fluctuations, in one base or in 
several adjacent bases, forming a bubble. The opening of the DNA can therefore occur 
spontaneously (more likely the higher the temperature). This process is known as DNA 
breathing (or at high temperatures, as DNA denaturation or melting). There is increased 
evidence that bubbles affect molecular activity [3–7] and play an important role in the 
processes of transcription (the information contained in a portion of DNA is transmitted 
to an RNA strand) and replication (copying of DNA during cell division).

For this reason, several physical models of DNA have been proposed that try to model 
the behaviour of DNA and the dynamic processes of bubble creation and denaturation. 
Perhaps the most cited in the literature is the Peyrard-Bishop-Dauxois (PBD) model 
[8–11], a relatively simple one-dimensional model from which several variants have 
emerged, for example, including a potential barrier, which improves the description of 
bubbles [12]; adding particles with Brownian motion to simulate the behaviour of an 
enzyme and its interaction with DNA [13]; or adding a stacking term to incorporate the 
interaction between adjacent base pairs into the model, making it sequence dependent 
[14].

The kinetics of base pair opening dynamics has been well described following the 
exchange of protons from imino groups with water [15], showing that particular regions 
of the helix open by the action of thermal fluctuations, and suggesting the importance of 
sequence effects in the opening of particular tracks [16]. The lifetime of a base pair, i.e. 
the time during which it stays closed, is only of the order of a few milliseconds. Experi-
ments show that these fluctuations, known by biologists as the breathing of DNA, are 
highly localised and may open a single base pair, while the adjacent ones stay closed 
[16–19].

Denaturation bubbles

At the dawn of the twenty-first century, different studies examined the statistical and 
dynamical properties of denaturation bubbles, demonstrating their role in the melting 
transition of short oligomers and triggering strong debate in the statistical physics and 
biophysical communities [10, 20–25]. These studies pointed out the relationship of sta-
tistical properties and dynamical phenomena with respect to biological function and 
molecular mechanisms.

In this context, a series of studies initiated in 2004 by C.H. Choi, G. Kalosakas and 
K.O. Rasmussen [4, 6] raised a very interesting question within the community: Is DNA, 
thanks to thermal aided structural fluctuations, capable of directing its own transcription 
initiation?

Inspired by these findings, different works using the well-known Peyrard-Bishop-
Dauxois (PBD) model [26] demonstrated both experimentally and theoretically that 
fluctuations play a much larger role in the flexibility of the molecule and in the function 
of DNA than was generally thought [3, 11, 27]. These results clearly showed that the 
PBD model can provide interesting information related to biological function and bio-
logical features at many levels. However, almost 20 years later, the question has not been 
fully answered despite various efforts, theoretical models, and experiments carried out 
by leading groups in the field. Moreover, some critical views and controversies are being 
debated [10, 20–25].
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Previous trials of PBD as a bioinformatic tool in the community

In this paper, we address this key challenge using a transversal approach. We examine 
bioinformatics and advanced classifiers methodologies using the statistical mechanics 
information from a theoretical approach: the PBD model, which provides valuable infor-
mation about the structural stability and flexibility of DNA. We used our approach to 
explore massive ensembles of sequences from bioinformatics databases to try to detect 
transcription start sites (TSSs), benchmarking the results with data ensembles with 
experimentally confirmed TSSs. TSS recognition is one of the most challenging recog-
nition problems in DNA sequences. The increasing amount of biological data accumu-
lated in the last decades, together with the emergence of methods such as CAGE [28], 
has led to the development of numerous tools that can process these large amounts of 
data. However, unlike other problems such as translation initiation site (TIS) predic-
tion, which can be considered solved with the latest prediction results [29], the problem 
of TSS detection remains a challenge even for state-of-the-art tools. This is due to its 
increased complexity, mainly because more than one TSS may exist in a single promoter. 
The lack of sequences including TSS information, as most known sequences in the data-
bases are downstream of the TSS, also makes the recognition of TSSs more difficult than 
the recognition of other functional sites. Thus, many TSS recognisers have been devel-
oped [30, 31]. These programs usually exploit the features that differentiate TSSs from 
other genomic DNA. Despite the arduousness of this problem, locating the TSS means 
obtaining relevant information toward an understanding of transcription regulatory net-
works and in-silico findings of new genes.

Current achievements in bioinformatic methods for the detection of TSS use sev-
eral approaches based on machine learning [32] and other techniques that work with 
sequence features [33]. Although some of them have tried to include additional informa-
tion from sequences into the model using techniques like multiple sequence alignments 
[34], none have included statistical information of bubbles and openings. Although cur-
rent methods for similar problems as TIS [29, 35, 36] or promoter identification [37] 
tend to use deep learning methods, in TSS prediction, we find that support vector 
machines (SVMs) are the most popular approach for this problem [31, 34, 38, 39].

We obtained two highly promising results. First, we showed that by using either base 
opening or bubble information, we can reach a classification performance for TSS detec-
tion with an accuracy similar to the methods using the base pair sequence. With this, 
we showed that by adding base pair opening and bubble information to classifiers, we 
changed the paradigm of automatic detection of TSS, providing a new source of infor-
mation for the task. Second, we proved that by combining this new source with the 
standard of using the base pair sequence, we can obtain classifiers that are better than 
the best state-of-the-art methods.

Results
Models and parameter settings

Previous papers [31, 40–45] indicated that SVMs with string kernels are the best option 
to recognise functional sites in DNA sequences. Thus, we performed a preliminary study 
of the available methods that included position weight matrices, decision trees, k-near-
est neighbours and SVMs with linear and Gaussian kernels and three different string 
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kernels: locality improved kernel (LI) [40], weighted degree kernel (WD) and weighted 
degree kernel with shifts [44] (WDS). SVMs with the WD kernel consistently obtained 
the best results, and thus were chosen as the method to be compared with our pro-
posal. This matches the approaches of previous works [46, 47]. WDS obtained margin-
ally better results than WD, but with far higher computational complexity. We will refer 
throughout the paper to the SVM with WD kernels as SVMWD.

One of the problems with SVM classifiers is their sensitivity to parameter settings. 
Thus, we performed a parameter setting process each time an SVM was applied. We 
used 10-fold cross-validation and tested three window widths for the string kernel (6, 
12 and 24) and several regularization values, C = {0.001, 0.01, 0.1, 1, 10, 100, 1 000} , con-
sidering all 21 combinations. This parameter setting process was repeated each time an 
SVM was applied.

In contrast to other papers, where only a few sequences were tested, we used a realis-
tic case of TSS recognition in which thousands of instances were evaluated. We tested 
our approach in the data set used to evaluate the ARTS [31] and RBF-TSS models [32], 
which can be downloaded from http://​www.​fml.​tuebi​ngen.​mpg.​de/​raets​ch/​proje​cts/​arts. 
As explained in [31] and [32], the dataset is divided into three parts: training, validation 
and testing. As we did not use validation, this part was added to the training set. Train-
ing data set was extracted from dbTSS version 4, which is based on the UCSC human 
genome sequence assembly and annotation version 16 (“hg16”). This dataset contains 
transcription start sites of 12 763 RefSeq genes. RefSeq identifiers were extracted from 
dbTSSv4, and then the corresponding mRNA sequences using NCBI nucleotide batch 
retrieval were obtained. Next, these mRNAs were aligned to the hg16 genome using 
BLAT. From dbTSS, putative TSS positions were extracted and compared with the best 
alignment of the mRNA. Reference [31] discarded all positions that did not pass all the 
following checks: 1. chromosome and strand of the TSS position and of the best BLAT 
hit match; 2. TSS position was within 100 base pairs from the gene start, as found by the 
BLAT alignment; and 3. no already processed putative TSS was within 100bp of the cur-
rent one. This procedure left 8 508 genes, each annotated with gene start and end.

To generate positive training data, windows of size [−100,+100] around the TSS 
were extracted. To discriminatively train a classifier, one also needs to generate “nega-
tive” data. However, there is no single natural way of doing this. Since there are further 
yet unknown TSSs hidden in the rest of the genome, it is dangerous to sample negative 
points randomly from it. Thus, the researchers proceeded similarly to [48] by extracting 
“negative” points (again, windows of size [−100,+100] ) from the interior of the gene. 
More precisely, they drew 10 negatives at random from locations between 100 bp down-
stream of the TSS and the end of the gene. Finally, 8 508 positive and 85 042 negative 
examples were obtained.

To obtain the testing dataset, we again followed the setup of [31]. All “new” genes from 
dbTSSv5  [49] (which is based on hg17) for which a representative TSS was identified 
(i.e., the field “the selected representative TSS” is not empty) were taken. From dbTSSv5, 
all genes that already appeared in dbTSSv4 according to the RefSeq NM identifier were 
removed. To take care of cases where IDs changed over time or were not unique, all 
genes from dbTSSv5 for which mRNAs overlapped by more than 30% were also removed. 
Thus, a total of 1 024 TSSs remained to be used in a comparative evaluation. This left us 

http://www.fml.tuebingen.mpg.de/raetsch/projects/arts
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with 1 024 positive testing samples and 10 238 negative testing samples. Table 1 summa-
rizes the training and testing datasets.

To obtain the opening and bubble probabilities, the window size used was [−150, 150] . 
Thus, 300 bases are used in the PBD model. Of these 300 probabilities, the first 50 and 
the last 50 are discarded, leaving the 200 central probabilities of opening. Such prob-
abilities have been removed to avoid noise or false information caused by the effects 
generated by the boundary conditions applied to solve the PBD model, as explained in 
previous studies [50].

One of the common features of most Bioinformatics problems is the class-imbalance 
nature of the datasets [47]. This problem appears when the number of positive instances 
of the dataset is clearly outnumbered by the number of negative instances. Usually, the 
degree of imbalance of the datasets is measured using the imbalance ratio (IR) of the 
negative class with respect to the positive one. In our dataset we have 8 508 positive and 
85 042 negative examples, thus having an IR of 10:1, which can be considered high. Usu-
ally, the positive class is termed the minority class, whereas the negative class is termed 
the majority class.

Most learning algorithms are harmed in their performance if class-imbalance is not 
dealt with. A simple, yet effective, method is random undersampling [51]. In random 
undersampling, only a random subsample of the majority class is used for the learn-
ing process. The number of instances sampled from the majority class is fixed by a pre-
defined desired IR. This is the method we have used in all our experiments. Random 
undersampling of the majority class was performed prior to any learning, with a final IR 
in the dataset of 1:1.

Performance measures

To evaluate the obtained classifiers, we used the standard measures for imbalanced data. 
Given the number of true positives (TP), false positives (FP), true negatives (TN) and 
false negatives (FN), we used the sensitivity Sn = TP

TP+FN  and specificity Sp = TN
TN+FP . The 

geometric mean of these two measures, G-mean =
√
Sp · Sn , was our first classification 

metric. Many classifiers are subject to a threshold that can be varied to achieve different 
values of the above measures. For that type of classifier, receiver operating characteristic 
(ROC) curves can be constructed. A ROC curve is a graphical plot of the TPrate (sensi-
tivity) against the FPrate ( 1− specificity or FPrate = FP

TN+FP ) of a binary classifier system 
as its discrimination threshold is varied. The perfect model achieves a true positive rate 
of 1 and false positive rate of 0. A random guess is represented by a line connecting the 
points (0, 0) and (1, 1). ROC curves are a good measure of the performance of the classi-
fiers. Furthermore, from this curve, a new measure, area under the ROC curve (auROC), 
can be obtained. auROC is a very good overall measure for comparing algorithms and 

Table 1  Datasets summary

Dataset Positive instances Negative 
instances

hg16 (train) 8 508 85 042

hg17 (test) 1 024 10 238
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a useful metric for classifier performance, as it is independent of the decision criterion 
selected and prior probabilities.

We use the metrics G-mean and auROC because they provide two different views of 
the performance of the classifiers. The auROC values describe the general behaviour 
of the classifier. However, when used in practice, we must establish a threshold for the 
classification of a query pattern. G-mean provides the required snapshot of the classifier 
performance when we set the needed threshold.

Effects of using bubble information

Our first experiment established the performance of our baseline method. We per-
formed experiments with the standard approach of using the sequence as the source 
of information, along with the SVMWD method. This experiment obtained a G-mean 
of 0.8066±0.0030 for a 95% confidence interval and an auROC of 0.8855±0.0025. Our 
second experiment validated the “bubble” models as a method for TSS recognition. We 
used SVMs with a Gaussian kernel, as the inputs are real values. Table 2 lists the results 
obtained for different temperatures (also represented graphically in Fig. 1).

These results show that the bubble model is a useful source of information for the 
prediction of TSS. The model, using probabilities for a bubble size (m) of 8, without 
any other kind of information, achieved the best results of 0.8083 for G-mean (at tem-
perature 360K) and 0.8603 for auROC (at temperature 345K). These values are not far 
from the values obtained with the sequence. After we tested the usefulness of the bub-
ble model, we considered the possibility of combining both sources of information (the 
sequence and the bubble model) using an SVM with a hybrid kernel [52]. We consid-
ered a hybrid kernel (see Equation 19) formed by a string kernel for the sequence part 
and a Gaussian kernel for the bubble model part. The linear combination (with the same 
weight, that is, the average) of both sources of information achieved a G-mean value of 
0.8590 (at temperature 345K) and auROC of 0.9184 (also at temperature 345K), signifi-
cantly improving the results obtained using the sequence alone. This result supported 
our hypothesis, as it showed that the information contained in the model is complemen-
tary to the information contained in the sequence.

These results are illustrated in Fig. 2. ROC curves for the standard method using the 
DNA sequence, bubbles at 345K, opening at 325K and the combination of the sequences 
and bubbles at 345K are shown. The plot shows that bubbles and openings were able 
to almost match the performance of the best current method of using sequences and 
a string kernel. Combining this source of information with the information given by 
the bubble model improved the results, with a ROC curve consistently better than that 
achieved by the standard method.

Discussion
As previous works [3, 5, 11, 27] suggested, the separation of complementary bases in 
DNA strands, the DNA bubbles, influence biological processes. Therefore, physical 
models that predict the probability of these bubbles occurring can be a useful tool in 
the study of these biological processes. In this work, we used a well-known mesoscopic 
model of DNA: the PBD model. The results obtained in laboratory experiments pro-
vided evidence of the validity of this model [3, 4, 11]. The results of this work reinforce 
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this evidence, but instead of using laboratory approaches, measuring deutorium-proton 
exchanges, using radioactive markers, or measuring UV absorption, machine learning 
models were used. On the one hand, it has been shown that ML models using only bub-
ble probabilities provide competitive results in predicting TSS. On the other hand, it is 
possible to obtain better models when, in addition to the sequence of bases, the bubble 
information is added to the training step. Both facts are a strong indication that the bub-
ble probabilities obtained by the PBD model provide relevant information about the bio-
logical processes of transcription initiation, since they help to improve the predictions of 
the ML models.

Fig. 1  Top: Performance of our model evaluated over testing set after using information coded in PBD model 
analysis, using prediction of bubble occurrence probability of different sizes, or just single base pair opening 
probability. The information was evaluated as a function of temperature, showing a clear dependence of 
the information richness with respect to temperature variation. Bottom: The final results of the best models, 
obtained with the probabilities of bubbles of 8 bp and with the probabilities of opening in a single base 
(“bubbles” of size 1 bp)
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In addition to the results for the physical model, this work contributes to the fields 
of bioinformatics and machine learning in showing how fusing two views of DNA 
sequences can improve the performance of the obtained machine learning models.

The improved prediction capability of the TSS suggests that incorporating bubble 
probabilities can also improve the detection of other interesting protein binding sites in 
the DNA sequence. This is a line of research we will explore in the future. It will also be 
interesting to investigate whether all the improvements and extensions proposed for the 
initial PBD model [3] allow even better machine learning models to be created.

Table 2  Results

The best values for each performance metric are highlighted in bold

Sequences of length 8 and different temperatures Combination of 
sequences and 
bubbles using

a hybrid kernel 
and different 
temperatures

Temperature auROC G-mean Temperature auROC G-mean

310K 0.8549 ± 0.0007 0.7874 ± 0.0016 310K 0.9160 ± 0.0040 0.8541 ± 0.0062

315K 0.8554 ± 0.0009 0.7891 ± 0.0011 315K 0.9169 ± 0.0018 0.8567 ± 0.0051

320K 0.8574 ± 0.0009 0.7896 ± 0.0027 320K 0.9166 ± 0.0015 0.8535 ± 0.0160

325K 0.8577 ± 0.0010 0.7899 ± 0.0012 325K 0.9176 ± 0.0025 0.8540 ± 0.0027

330K 0.8575 ± 0.0004 0.7900 ± 0.0013 330K 0.9164 ± 0.0040 0.8555 ± 0.0072

335K 0.8573 ± 0.0007 0.7877 ± 0.0011 335K 0.9173 ± 0.0051 0.8543 ± 0.0052

340K 0.8602 ± 0.0028 0.7898 ± 0.0016 340K 0.9161 ±  0.0062 0.8534 ± 0.0156

345K 0.8603 ± 0.0025 0.7925 ± 0.0014 345K 0.9184 ± 0.0005 0.8590 ± 0.0091

350K 0.8533 ± 0.0033 0.7901 ± 0.0017 350K 0.9183 ± 0.0023 0.8568 ± 0.0045

355K 0.8487 ± 0.0040 0.7955 ± 0.0012 355K 0.9158 ± 0.0047 0.8501 ± 0.0142

360K 0.8373 ± 0.0075 0.8083 ± 0.0012 360K 0.9140 ± 0.0036 0.8452 ± 0.0059

Fig. 2  ROC curve for the best model for the standard approach using the sequence, bubbles, opening and 
the combination of bubble and sequences
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Methods
PBD model

The PBD model reduces the myriad degrees of freedom to a one-dimensional chain of 
effective atom compounds, describing the relative separation of the base pair from the 
positions of the ground state. This model [9] can be viewed as a mesoscopic dynamic 
model of the DNA molecule that ignores its helicoidal structure and condenses all 
atomic coordinates of a base pair into a single number y that describes the stretching 
of the bonds between the two bases. It attempts to complete the Ising model approach 
for DNA because it not only considers the closed and open states of a base pair, but also 
all intermediate states. This allows a description of the dynamics of the base pair fluc-
tuations. Thus, additional information is provided to validate the model and calibrate its 
parameters. The basic model is defined by its Hamiltonian:

where n is the index of a base pair and m its reduced mass (the interpretation of all 
these terms is visually shown in Fig. 3). In this work, the total potential energy for a N 
base pair DNA chain is given by V1(y1)+ N

i=2 Vi(yi)+W (yi, yi−1) with

The first term, Vi , is the on-site Morse potential that describes the hydrogen bond inter-
action between bases on opposite strands. Di and ai determine the depth and width of 
the Morse potential, respectively, and are different for the AT and GC base pair. The 
stacking potential W consists of harmonic and nonlinear terms. The second term was 
introduced later [26] and mimics the effect of decreasing overlap between π electrons 
when one of two neighbouring base moves out of the stack. As a result, the effective 
coupling constant of the stacking interaction drops from K ′ = K (1+ ρ) to K ′ = K  . It is 
due to this term that the sharp phase transition that has been observed in denaturation 
experiments can be reproduced.

As described by Peyrard and Cuesta-López [11], entropic effects must be taken into 
account in this local potential V (yn) as well as in the coupling potential W because, 

(1)H=
∑

n

p2n
2m

+W (yn, yn−1)+V (yn), with pn=m
dyn

dt

(2)
Vi(yi) =Di

(

e−aiyi − 1
)2

W (yi, yi−1) =
1

2
K
(

1+ ρe−δ(yi+yi−1)
)

(yi − yi−1)
2

Fig. 3  Simple dynamic model for DNA nonlinear dynamics as described by the Hamiltonian (Equation 1)
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irrespective of the stacking interaction, when a base flips out of the DNA stack, it gains 
new degrees of freedom (such as a possible rotation of the plane of the base plateau) 
that were constrained in the helical structure. However, in a mesoscopic model such as 
the one that we are considering, the “potentials” are actually potentials of mean force, 
which take into account all other degrees of freedom that are ignored in the model, in a 
statistical way. The entropy gain that follows the flipping of a single base out of the stack 
lowers the effective potential. In order to close again, the base has to overcome a very 
large entropic barrier. For the correct dynamics of the open states, this entropic bar-
rier must be included in the potential V(y). The existence of this barrier was observed in 
free energy calculations deduced from all-atom molecular dynamics simulations of DNA 
[53]. In addition to the entropic effect, a barrier for closing might have a pure enthalpy 
contribution [54, 55] because the open bases tend to form hydrogen bonds with the sol-
vent, which must be broken before closing. We have chosen the expression as described 
in [11]:

where �(y) is the Heaviside step function, which ensures that the term added to the 
Morse potential only plays a role for y > 0 . This expression was chosen because it has 
the correct qualitative shape to generate the entropic barrier and, due to the factor y3 , 
the frequency at the bottom of the potential is not affected by the additional contribu-
tion. The parameter b determines the amplitude of the barrier, c its width, and d its posi-
tion in units of the value of y at the inflection point of the Morse potential. These are 
constants for a given type of base pair.

All interactions with the solvent and ions are effectively included in the force field. 
The constants K , ρ,α,DAT,DGC and aAT, aGC were parameterized in [56] and tested on 
denaturation curves of short heterogeneous DNA segments.

The orientation of the strands provides 16 possibilities for the stacking potential W. 
Considering all possibilities immediately introduces a large number of parameters in 
the model because the expression of the potential W depends on three parameters: the 
strength of the interaction K (having the dimension of an energy divided by the square 
of a length); the magnitude ρ (dimensionless) of the variation of the stacking when base 
pairs open because the effective constant drops from K (1+ ρ) to K when at least one 
of the interacting base pairs opens; and δ (dimension of the inverse of a length), which 
determines the size of the opening of a base pair for this variation to play a role. To 
reduce the number of parameters, we selected the same value of ρ and δ for all stacking 
interactions. We set ρ = 25 , which produces a large decrease in the stacking when either 
of the interacting base pairs opens. This is a necessary condition to have a sharp dena-
turation transition in DNA [57], in agreement with the experiments. A large value of ρ 
is necessary to match neutron scattering experiments that probe the length of the closed 
regions of DNA versus temperature [58]. The value δ = 0.8 was chosen because it leads 
to a decrease in the factor exp(−δy) to 15 of its original value for a stretching y ≈ 2 Å of a 
base pair. This corresponds to overcoming the barrier in the intra pair potential V.

Consequently, the dependence of the sequence in the interaction is entirely 
included in the variation of K. K values for the stacking has been defined accordingly 

(3)V (y) = D
(

e−αy − 1
)2 +�(y)

by3

cosh2[c(αy− d ln 2)]
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to the differences in the ‘pi’ stacking energies resulting from differences arising from 
rise, twist, and slide computed from quantum calculations derived from geometries 
extracted from a collection of B-DNA structures [59]. We selected a set of parameters 
based on the results of theoretical calculations of stacking energies [60] and evalua-
tions of the stabilities of DNA doublets deduced from thermodynamic measurements. 
Furthermore, the values for the model [11] have been selected in a compromise to 
reproduce both the melting of short sequences as in [61]. The selection of the stack-
ing values is in agreement with the prediction of the melting temperatures of the PBD 
model defined in [11] for the different cases of homopolymer. Differences in stack-
ing values have been considered after analysing results of quantum chemistry calcula-
tions as reported in [62]. Table 3 lists all parameters that we selected for the model.

These examples show that despite its simplified character, the model can provide a 
quantitative description of DNA. Most importantly, it allows us to study the statistical 
and dynamic behaviour of very long heterogeneous DNA sequences, which is impos-
sible in any atomistic model.

The PBD model basically represents a single dsDNA in an infinite solution. The 
probability for the denatured state tends to unity with increasing time at any tempera-
ture. It is, therefore, only in the limit of infinite long chains that denaturation curves 
can be reproduced without additional assumptions.

An exact theoretical calculation of the model and the partition function govern-
ing the statistics for open basis probabilities can be provided since the model is 
one-dimensional. For a DNA molecule that comprises N base pairs, it reduces to a 
sequence of one-dimensional integrals over the variables y1 . . . yN  . This can be per-
formed by a simple iterative scheme, and all the details that we have followed have 
reproduced the methodologies of Prof. M. Peyrard [11] and Prof. N. Theodorakopou-
los [63].

Let us give a sketch of the process (for a complete discussion, see [11] and [63]). Let:

Table 3  Potential parameters used in the PBD model

Potential V D α b c d

AT base pair 0.09075eV 3.0Å−1 4.00eV 0.74Å−1 0.20

GC base pair 0.09900eV 3.4Å−1 6.00eV 0.74Å−1 0.20

Potential W ρ δ

25 0.8Å−1

Dimer A–T A–A T–T G–T A–C T–A

K(eV Å −3) 0.00176 0.00418 0.00418 0.00480 0.00462 0.00506

Dimer G–A T–C C–C G–G G–C C–T

K(eV Å −3) 0.00546 0.00546 0.00810 0.00810 0.00865 0.00865

Dimer A–G C–A T–G C–G

K(eV Å −3) 0.00865 0.01140 0.01140 0.01690
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be the configuration integral performed over an infinite domain for each yi . In practice, 
the calculation has to be done over a finite domain with an appropriate cut-off [10]), 
where yN denotes the ensemble of all variables y1 . . . yN , and U(yN ) is the potential 
energy of the model, the sum of the W and V contributions. Similarly, we can define

to be the same integral with the condition that all the yi are simultaneously larger than ξ . 
ZII gives the statistical weight of the fully open states of the model so that the configura-
tion integral of the dsDNA ensemble is

which is well-defined and does not depend on the upper cut-off. To obtain, for instance, 
the statistical weight of the states for which the base pair j is closed, we have to compute

where yj is constrained to be smaller than ξ , with the others unconstrained. This gives 
the probability that the base pair j is closed in the dsDNA ensemble as

Thus, we can compute the probability that each single base pair is open as a function of 
temperature.

In addition to denaturation curves, and single base pair opening probabilities, the sta-
tistical method introduced in [11, 50, 63] allows studying bubbles of a given size.

Consequently, we can define the bubble probability matrix Pbub(k ,m) as the probabil-
ity to have a bubble of size m centred on the base pair k provided that the molecule is 
part of the dsDNAE. Therefore,

Being, µ = 1 , except when all bases are open, in which case µ = 0.
In principle, Pbub(k ,m) contains all the information on bubble statistics in a DNA 

sequence. It is also useful to calculate other quantities. From a physical and biological 
perspective, it might be useful to know the ability to participate in bubbles. Therefore, 
we introduce the Ppart(k ,m) probability, which is the probability of participating in a 
bubble of at least m sites.

(4)ZI =
∫

�dyNe−βU(yN )

(5)ZII =
∫

yN>ξ

�dyNe−βU(yN )

(6)Z = ZI − ZII ,

(7)Z(j closed) =
∫

yj<ξ

�dyNe−βU(yN )

(8)PdsDNA(j closed) =
Z(j closed)

ZI − ZII
,

(9)Pbub(k ,m) ≡
〈

θ
[m]
k

〉

µ
with µ = 1−

N
∏

i=1

θi
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This quantity is less mathematically stringent, as it is independent of where you assign 
the position of the bubble. Note that this quantity is still somewhat different from the 
projection in [50] where each bubble is still associated with one base pair position only. 
In variance with Pbub(k , 1) , the bubble participation probability Ppart(k , 1) is directly 
related to the simple opening. Hence, Ppart(k , 1) = �θk�µ �= Pbub(k , 1).

Defining the probabilities by means of a set of functions:

where θ(·) is the Heaviside step function. θi equals 1 if the base pair is open and is zero 
otherwise. θ̄i is the reverse.

The value y0 is an important threshold to define when a base pair is considered open 
or closed, as an equilibrium distance for the potential of the base pair.Higher values of 
y0 will require higher temperatures to melt the double strand and to generate bubbles, 
and the cooperativeness of the bubbles will probably be affected1. The value 1.5 has been 
selected, which is the average base separation according to DNA melting experiments 
that examine the structure of DNA under thermal fluctuations [64] and it is also a value 
aligned with the parameters of the PBD model described in [11].

Thus:

which are 1 (0 otherwise) if and only if i is at the centre of a bubble that has the exact size 
m. To shorten the notation, we removed the yi dependencies. For even numbers, it is a 
bit arbitrary where to place the centre, but we defined it as the base directly to the left 
of the midpoint of the bubble. To also have these quantities defined near the ends of the 
chain, we use θ̄i = 1 for i = 0 and i = N + 1 . The properties of interest are the probabili-
ties of bubbles of size m centred on base pair i, provided that the molecule has a double-
strand configuration.

(10)

Ppart(k ,m) ≡
{m′ : even}
∑

m′≥m

k+m′/2−1
∑

k ′=k−m′/2

Pbub(k
′,m′)

+
{m′: odd}
∑

m′≥m

k+(m′−1)/2
∑

k ′=k−(m′−1)/2

Pbub(k
′,m′)

(11)θi(yi) = θ(yi − y0), θ̄i(yi) = θ(y0 − yi)

(12)

θ
[m]
i ≡θ̄i−m

2
θ̄i+m

2 +1

i+m
2

∏

j=i−m
2 +1

θj for m even

≡θ̄i−m+1
2
θ̄i+m+1

2

i+m−1
2

∏

j=i−m−1
2

θj for m odd

1  It is interesting to note that the effect on the output of the ML model of variations in the value y0 is relatively equiva-
lent to the effect of varying the simulation temperature. Therefore, the results of the experiments for different tempera-
tures are a good proxy of the effect of the parameter y0 on the ML model.
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Thanks to the formalism described above, the partition function integrals can be easily 
defined and are given by

The partition functions described above can be exactly integrated following the proce-
dures described in [10, 11, 63].

Using the procedure outlined, the PBD model can be used to transform a sequence 
of DNA bases into a sequence of probabilities for which an opening or bubble occurs 
at the position of each base. These probabilities can be used as input features to obtain 
relatively simple TSS prediction models with results on the same level as the state-of-
the-art proposals, including some very sophisticated and complex that combine sev-
eral input features to accomplish the same task [34, 65–67]. Figure  4 shows several 
probability profiles for opening probabilities (that is, the probabilities that there is a 
bubble of size 1, at a particular base k, Ppart(k , 1) ) for the bases of several sequences 
at different temperatures (three sequences of negative TSS cases and three sequences 
corresponding to positive TSS cases). Similarly, Fig. 5 shows the probabilities of bub-
bles of size 8, Ppart(k , 8) , centred on the bases of the same six sequences.

SVM and string kernels

In their most basic use, support vector machines (SVMs) [68] obtain models able to 
determine if an instance of a dataset S = {(x1, yi), . . . , (xN , yN )} belongs to one of two 
possible classes (that is yi ∈ {−1, 1} ). This type of problem is known as binary classi-
fication (although there have been later developments that allow their use in general 
classification problems with several classes and regression problems where instead of 
a categorical value, the prediction is a continuous value). Focussing on binary clas-
sification, SVMs seek to find the “best” hyperplane that separates the two classes in a 
dataset. Assuming that the two classes are linearly separable, the “best” hyperplane is 
the one whose distance to the closest instance of each class is the greatest possible or, 
in SVM terminology, the hyperplane that maximises the “margin.” Formally, this can 
be expressed as a maximisation problem:

(13)
〈

θ
[m]
i

〉

µ
≡

〈

θ
[m]
i µ

〉

�µ�

(14)≡
Z
θ
[m]
i

Z − Z�

Z =
∫

dyN e
−β

[

VN (yN )+W (yN ,yN−1)+...+W (y2,y1)+V1(y1)

]

Z
θ
[m]
i

=
∫

dyN e
−β

[

VN (yN )+W (yN ,yN−1)+...+V1(y1)

]

θ
[m]
i

Z� =
∫

dyN e
−β

[

VN (yN )+W (yN ,yN−1)+...+V1(y1)

]

×
∏

j

θj .
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where w is restricted so that for the closest point xc to the plane |wT
xc + b| = 1 (the 

canonical hyperplane). The difficulties posed by the restrictions as they appear in this 
initial statement of the problem are solved by transforming it into a minimization such 
as

max
w,b

1

�w�
subject to min

i=1,2,...,N
|wT

xi + b| = 1

(15)

min
v,b,ξ

1

2
v
T
v + C

N
∑

i=1

ξi

s.t. yi
(

v
T�(xi)+ b

)

≥ 1− ξi, i = 1, . . . ,N

ξi ≥ 0, i = 1, . . . ,N

Fig. 4  Examples of probability sequences for openings ( Ppart(k, 1) as a function of k) . In each subfigure, the 
top red triangle at the centre of the sequence marks the point that would correspond to TSS. The length 
of the bar represents opening probability. Top subfigure is for negative examples, sequences that do not 
correspond to TSS (see the specific sequences in Fig. 6). The bottom subfigure corresponds to positive 
examples, sequences for which TSS occurs at the centre of the sequence (see the specific sequences in Fig. 7)
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where, in addition, the approach has been generalised so that the hyperplane allows the 
division of the two classes in a space of higher dimensionality (possibly infinite) to which 
the training vectors have been mapped with the function � (note that now v is the vector 
defining the hyperplane in the feature space). It is also taken into account that we may 
be unable to prevent some instance from being on the wrong side of the hyperplane (the 
influence of these misplaced instances is controlled by the parameter C). This is the soft 
margin formulation that increases the power of SVMs to find optimal decision bounda-
ries even though the starting space is not linearly separable or when a perfect separation 
is not possible.

In practise, it is easier to solve the dual problem:

Fig. 5  Examples of probability sequences for bubbles of size 8 ( Ppart(k, 8) as a function of k). In each 
subfigure, the top red triangle at the centre of the sequence marks the point that would correspond to TSS. 
The length of the bar represents opening probability. The top subfigure is for negative examples, sequences 
that do not correspond to TSS (see the specific sequences in Fig. 6). The bottom subfigure corresponds to 
positive examples, sequences for which TSS occurs at the centre of the sequence (see the specific sequences 
in Fig. 7)
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whose solution has the particularity that most of the αi values are zeros. When αi is 
nonzero, the corresponding vector �(xi) is called support vector. The decision function 
can be constructed using only the support vectors:

where b = yk −
∑

αj>0 αjyj�(xj)
T�(xk) for any support vector xk with 0 < αk < C.

The other important aspect of SVMs is that, by means of the so-called kernel trick, it 
is not necessary to explicitly know the function � . Rather, it is sufficient to have a func-
tion, the kernel function (sometimes called just the kernel), that allows us to calculate the 
dot product of the vectors in the transformed space, K (xi, xj) = �(xi)

T�(xj) . There are 
a wide variety of kernel functions that are used in practise, each more suitable for some 
problems than others, including

•	 Linear: K (xi, xj) = x
T
i · xj.

(16)

max
α

N
∑

i=1

−
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyj�(xi)
T�(xj)

s.t. 0 ≤ αi ≤ C , , i = 1, . . . ,N

N
∑

i=1

αiyi = 0

αi ≥ 0, i = 1, . . . ,N

(17)h(x) = sign





�

αj>0

αjyj�(xj)
T�(x)+ b





TTTTGGGGTTTGGTGTGGGAGTTAGAGTGGGAGTTGGTGTGGAGTGGGATGTTGGGTTTTGAGTGGT
TTGTGGTTGGGGTTTGTTTTTGTTTTTTTTTTTTTTTTGGTGGTGGTGGTGGTGGTGGTGGGTGGAG
TGAGTTGTGGAGTTTGGAATATGGTTGGGGAAATGGAAATGAAGGAGAAGTTGAAGTTTATTTTAG

TTTTTGGGAAGGGATTATGGTGATTGATGTGAAAGTTTTTATTGATTTTGTTTTTATTAGTATTGAT
GAGTTTTTTAGTGTGGTGTTTTGTTATTGGATATTTTATTTTTGGGTTTTGGTTTAGGTGGTTATGT
TGTTTATTTTTAAGAAGGAGATTTGGGTAGTTGGTTGGATTTAGGTGTGTAGTTATATGGAGTTTT

TTTGAAGTTTGTATAGGTTTAGTTTTTGTTTTATAGTAGATTTTTTATGTTTAGTTAGTTTTTGTTT
TATTGTGGTTTTTTTAGTTTAAAGTTTTTGTTTTTTGGTTGTTTTGGTAGGTTTAGTTTTTGTTTGT
TAGTGTTTTTTTAGGTTTATGGGGTTTATTTTTTATAATGGTTTTTTTAGGTTTTGTTTTTTTTTT

Seq3:

Seq1:

Seq2:

Fig. 6  Negative sequences used in Figs. 4 and 5

Seq6:

Seq4:

Seq5:

TAGGATTGGATTTGTTATTATTAGTTTTAAAGGTAGAGGAAGTAGAGATTTAAGAAATGTAGGTAGT
TTTTAATTAATGTTAATAAATTTTATTTTTTAATATTGTAAGTTTGTGGAAGAGGTTAGGGTATAGA
TGTTTTTATAGAGTTTTTAGAAGGAATTTAAGGTAATGAGATAAGTTGTTAAATTTATTGTAATTT

GTGGAGTTTGTAGTGAGTTGAGATTTTGTTATTGTATTTTAGTTTGGGTGATAGAGTGAGATTTTGT
TTTAAAAAAAAAAAAAATAAATAAATAAATAAATAAATAAATAATTTGTTTTTTTAAATTGGGATTT
TTTTTAATTTTGAAAATTTTTTAATTTTGAAATTTTATTGTTGGAATTAATATTTATTGTAGAAAA

TGTAGGATTTTTGATGATATTGAAAGATTTTAAATAGTTTTAGTAAATTATTTTTTTAATGTTTTGT
GAGGTTAAATATTTATGTTTAGATTGAAATTTAAATTAATATTATTTAAAAGGAAATAAAAAATGTT
GAGTTTTAAAAATTAGGATTGATTTTTTTTTTTAAAATTATATATTTATGGGTAAATTGTGTTTTT

Fig. 7  Positive sequences used in Figs. 4 and 5
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•	 Polynomial: K (xi, xj) = (γ xTi · xj + r)d , γ > 0.
•	 Radial Basic Function (RBF): K (xi, xj) = exp(−γ �xi − xj�2), γ > 0.

The kernel trick can also be used for strings (and sequences). We do not need to explic-
itly calculate the mapping � that transforms a sequence into a vector in a feature space. It 
is sufficient to know a kernel that calculates the dot product of the vectors in the feature 
space associated with the sequences. To be useful, these kernels should be mathemati-
cally valid, fast to compute and adapted to the problem. These kernels can be thought of 
as functions that measure the similarity of sequences.

The general approach to use SVM with sequences of symbols (from an alphabet A ) is 
to define a mapping � : AL → R

AL while determining an efficient way to calculate the 
kernel function that avoids having to explicitly compute the (high-dimensional) feature 
vector. The proposals differ in the way this mapping is accomplished and in how to effi-
ciently calculate the kernel function. Some examples are

•	 Spectrum kernel [41]: for a string s , the feature space for this kernel is a histogram 
of the occurrences in s of each possible substring u of size k over the alphabet A of 
nucleotides (these substrings are called k-mers). Although the size of the feature vec-
tors is exponential in the length of the substrings, they are sparse, and the kernel can 
be calculated efficiently without obtaining them explicitly.

•	 Mismatch kernel [43]: this kernel also takes into account the appearance of the k-mers 
u in s but in a more flexible way that allows up to m mismatches (without gaps).

•	 Substring kernel [42]: this kernel allows the matching of substrings u in s to be with 
gaps, using an exponential decaying weight that penalises large gaps. The kernel can 
be calculated in polynomial time using dynamic programming.

•	 WD kernel (Weighted Degree kernel) [44]: with this kernel, the similarity is no longer 
given by the histogram of substrings in each sequence but by a direct comparison 
between the sequences, counting the (exact) co-occurrences of k-mers in the two 
sequences. To compare two sequences si and sj (both of length L), the WD kernel 
of order d uses a weighted sum of all contributions of k-mer matches of lengths 
k ∈ {1, . . . , d} : 

uk ,l(s) is the oligomer of length k starting at position l of the sequence s , and 
I(·) is an indicator function that returns 1 when its argument is true and 
βk = 2(d − k + 1)/(d(d + 1)) . Note that even though βk+1 < βk , long matches con-
tribute more to Equation 18 because they add the contribution of the short matches 
that they include.

•	 WDS kernel (Weighted Degree kernel with Shifts kernel) [44]: this kernel repre-
sents an intermediate situation between the WD kernel, which is totally rigid as to 
the position in which matches occur, and the spectrum kernel, for which positional 
information is not relevant. It is sufficient that sequences share substrings regardless 
of the position in which they occur. WDS is defined as 

(18)k(si, sj) =
d
∑

k=1

βk

L−k+1
∑

l=1

I
(

uk ,l(si) = uk ,l(sj)
)
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 which now has three weights: one for the k-mers, βj , with the same definition as 
in WD; γl for the positions in which the k-mers can appear in the sequence; and 
1/(2(s + 1)) associated with the shifts, whose range S(l) is different for each position 
l.

To expand the toolbox of available kernels, several can be combined to obtain new ker-
nels that can integrate different notions of similarity by combining multiple information 
sources. The combination itself can be learned (multiple kernel learning, or MKL), so 
now the kernel is

where fη is a combination function that can be linear or nonlinear with domain RP and 
range R . Kernel functions {km : RDm × R

Dm → R}Pm=1 , take P features representations 
(not necessarily different) of data instances: xi = {xmi }Pm=1 where xi ∈ R

Dm , and Dm is the 
dimensionality of the corresponding feature representation [52].
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