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Abstract: Radar technology has evolved considerably in the last few decades. There are many areas
where radar systems are applied, including air traffic control in airports, ocean surveillance, and
research systems, to cite a few. Other types of sensors have recently appeared, which allow tracking
sub-millimeter motion with high speed and accuracy rates. These millimeter-wave radars are giving
rise to myriad new applications, from the recognition of the material close objects are made, to the
recognition of hand gestures. They have also been recently used to identify how a person interacts
with digital devices through the physical environment (Tangible User Interfaces, TUIs). In this case,
the radar is used to detect the orientation, movement, or distance from the objects to the user’s hands
or the digital device. This paper presents a thoughtful comparative analysis of different feature
extraction techniques and classification strategies applied on a series of datasets that cover problems
such as the identification of materials, element counting, or determining the orientation and distance
of objects to the sensor. The results outperform previous works using these datasets, especially when
the accuracy was lowest, showing the benefits feature extraction techniques have on classification
performance.

Keywords: radar signal; feature extraction; classification; stacking; tangible user interfaces

1. Introduction

Radar sensing has been classically used in an extensive range of applications, due to
its ability to operate under all-weather and scene illumination geometry independence
acquisition conditions. This would be a critical advantage, under specific circumstances,
when compared, for instance, to optical sensing. Advances in radar hardware and software
technology have made it possible to reliably detect and track objects, under competitive
classification accuracy conditions, in underwater, air, and ground environments [1,2].
However, this framework seems to have been applied only to relatively big objects in
specific scenarios, i.e., airplanes, ships, or submarines [3,4].

Radar technology has also found an important field of application in remote sensing
data classification and health monitoring for environmental preservation purposes, usually
combined in a common optical remote sensing framework [5,6].

Apart from these research fields, radar sensors are also being applied nowadays in
other areas, as in action and gesture recognition or in autonomous driving, to cite a few
cases. In particular, there is an increasing interest in the use of radar technology in human
gesture and action recognition because it is aimed at solving the problem of low recognition
accuracy that vision based systems may have. Not only gestures [7] but also more complex
actions are aimed at by the new radar acquisition technology and classification strategies [8].
Even daily or ordinary activities (e.g., cooking, eating, and resting) may be classified using
this type of acquisition technology [9]. Usually, human action recognition is made using
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sensors whose location is fixed, but new approaches using unmanned aerial vehicles
(UAVs) are starting to appear [10].

Another area where radar technology is being applied is related to object and people
classification for systems aimed at helping create a safer driving environment, or even in
autonomous driving [11,12].

Some of the newest radar sensing applications do not try to obtain information from
objects over long, mid, or short distances (in the range of meters), but just within a few
centimeters. A sensor developed by Google, called Soli, was announced in 2015 and
obtained great media interest. It is a millimeter-wave radar, and it has found several
research applications. In [13], this sensor is used to identify up to 26 types of materials
and 10 body parts from several participants. In [14], it is used to classify and distinguish
five common types of materials, namely aluminum, ceramic, plastic, wood, and water,
regardless of their different sizes and thicknesses. A hand gesture recognition system,
which successfully distinguishes 10 gestures, is proposed in [15]. This type of radar sensor
has even been used for face verification [16] or to differentiate between blood samples
of disparate glucose concentrations in the range of 0.5 to 3.5 mg/mL [17]. However, the
number of research studies focused on the application of this technology for daily object
material classification and other interactions seems to still be scarce [18]. A Tangible User
Interface (TUI) allows the user to interact with digital information through real actions.
This type of user interfaces is known to be more usable and easier to understand, especially
for elderly people [19], since, although not everyone knows how to operate a keyboard or
mouse, everyone is familiar with grasping or moving common objects. The idea behind
TUIs is that there is a direct link between the digital system and the way the physical
objects are manipulated.

Miniature milimeter-wave radar sensing has been proposed to enhance the interactions
by identifying materials or estimating the orientation or distance at which the physical
elements are located [18]. Millimeter-wave radar technology could be considered a cost
effective option for material identification, counting objects/items, or estimating their
position, even when they might be partially covered or occluded. This property is a great
advantage when compared to other sensors such as cameras.

The aim of this paper is to apply a diverse group of classification strategies and feature
extraction techniques on a series of datasets of different nature, acquired by a portable
radar sensor, aiming at validating this technology as a good candidate to be used in TUI
sensing problems. The classification strategies include Random Forests [20] and Support
Vector Machines [21]. Moreover, different classifiers are combined in ensembles, using
Stacked Generalization [22].

The feature extraction techniques applied in this paper are the basic aggregation
features (e.g., averages and root mean squares) previously used by Yeo et al. [18] and
two techniques originally introduced for time series classification: ROCKET [23] and
TSFRESH [24]. The datasets used in this study, obtained using a radar system, are not
time series. Nevertheless, as in time series, the features are arranged and therefore their
order is important. For instance, functions on the values in an interval (e.g., the first
half of the series or channel) can be used. Hence, methods proposed for times series
classification can also be used for this kind of data. It is common practice to use time series
classification methods (including multivariate time series) for datasets where the feature
order is important even though the features do not represent different times [25,26], for
instance, from spectroscopy [27,28]. Image contours or outlines, such as arrowheads [29],
leaves [30], or fish species [31], can be represented as time series.

The rest of the paper is organized as follows. Section 2 describes the group of datasets,
as well as the corresponding feature extraction and classification algorithms used. Section 3
discusses the results. These results are validated and analyzed using average rankings and
post hoc tests such as the Nemenyi test, as well as by using Bayesian Signed-Rank Test,
all of them in order to determine which combination of feature vector and classification
method is best, and whether this improvement (i.e., difference in accuracy performance) is
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statistically significant or not. Section 4 presents the conclusions and discusses potential
future lines of research.

2. Datasets, Feature Extraction, and Classification Methods

Radar sensing uses an electromagnetic signal that hits an object. This signal might be
directly reflected or scattered/absorbed by it, therefore giving an overview of the properties
of the material the object is made of or of the distance or position the object is at. The type
of radar whose data form the repository we used is a Frequency-Modulated Continuous-
Wave (FMCW) radar, and this type of radar system has shown its potential to be used for
detection/recognition purposes.

Soli [18] is a mono-static, multi-channel (8 channels = 2 transmitters × 4 receivers)
radar device, operating in the 57–64 GHz range (center frequency of 60 GHz), using an
FMCW principle, where the radar transmits and receives information on a continuous
basis. When an object is placed on the top or nearby the Soli sensor, the energy transmitted
from the sensor is absorbed and scattered by the object, which varies depending on its
distance, thickness, shape, density, internal composition, and surface properties, commonly
described as the Radar Cross Section (RCS). As a result, the signals that are reflected back
represent rich information about the contributions from a range of surface and internal
properties.

Nevertheless, the complex mixing nature of the signals obtained by the radar sensor
(due to these above-mentioned multiple factors that are contributing to the final, detected,
and signal) make them have non-smooth and complex shapes, which contribute with an
additional complexity degree to a potential signal classification strategy.

The aim of Section 2 is to present a coherent explanation of the different feature ex-
traction techniques and classification strategies applied on a series of datasets obtained
by Yeo et al. [18], using the Soli radar sensor. It is composed of the following subsec-
tions: Section 2.1 gives a detailed overview about the different types of datasets used
in our classification performance analysis framework. Section 2.2 explains the feature
extraction methods that are applied. Feature selection methods are considered taking into
account their number in relation to the number of instances of each dataset (the so-called
curse of dimensionality). Section 2.3 describes the different classification strategies applied.

2.1. Radar Datasets

A previous study [18] showed that Soli could be used to identify materials, estimate
number of objects, their orientation, or the the distance to the sensor. Yeo et al. [18] created
a series of supervised classification datasets, formed by on the one hand the signal acquired
by this sensor, and the class of the material on the other hand. The type of material, distance,
and other features were also included. The following is a brief schematic description about
the different types of categories these datasets are formed by:

� Material identification (of the material an object is made of), from a limited list of
materials.

� Object identification, from a series of objects in the same category (i.e., a credit card of
a specific bank from the rest of the credit cards).

� Counting the number of elements that might be piled up on the surface of the sensor.
� Distance estimation, from an object to the sensor.
� Order identification, of the items in a battery of objects.
� Flipping identification, where the orientation of an object may be inferred.
� Movement, where the angular position of the object or changes in the movement of

one of them in relation to other(s) are obtained.

The complete group of datasets can be found at: https://github.com/tcboy88/
solinteractiondata (accessed on 18 January 2021). As stated above, the radar chip has
eight channels that acquire a series of raw signals. Each of these channels has 64 data
points. This information is converted into a 512 (=64× 8) feature vector and collectively
saved in a CSV file. Therefore, the original dataset dimensionality value is always constant

https://github.com/tcboy88/solinteractiondata
https://github.com/tcboy88/solinteractiondata
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and equal to 512. As recommended by Yeo et al. [18], the easiest way to use the data was
considering the Weka Graphical User Interface (GUI), converting them to Attribute-Relation
File Format (i.e., .arff) files. This final group of datasets is formed by 34 files.

Figure 1a,b shows the eight 64D signals obtained by the radar sensor for two instances,
each from a different dataset. We can see the complex and irregular shape of the signals
detected by the sensor.

(a) (b)

Figure 1. Plots of the eight 64D signals (one 64D signal per channel) for two instances, each of a different dataset.

Table 1 shows the total number of samples and classes for each one of the files. These
datasets show different acquisition conditions over a series of distinct objects, including
playing cards, poker chips, and Lego blocks. For particular details and a deeper description
about the acquisition conditions for the creation of these sets, the reader is referred to
Section 6 in [18].

Table 1. Columns show radar datasets used, including the problem type (C, Counting; M, Material
Identification; D, Distance estimation; O, Order identification; F, Flipping identification (Up/Down));
I, Object identification; R, Movement, rotation; P, Movement, position), the total number of samples,
and the number of classes for each dataset.

Dataset Problem # of Samples # of Classes

1 Count + Order Lego C 106 11
2 Count 20 chips NO case x30 sorted C 629 21
3 Count 20 chips WITH case x30 sorted C 630 21
4 Count 20 papers x10 C 210 21
5 Distance 3 mugs 10 distances M + D 93 31
6 Distance 3 mugs grouped by material M 93 4
7 Distance 7 slotting D 60 8
8 Flip 10 creditcards NO case F + I 220 21
9 Flip 10 creditcards WITH case F + I 220 21
10 Flip 52 cards F 105 3
11 Identify 10 creditcards NO case I 110 11
12 Identify 10 creditcards WITH case I 110 11
13 Identify 12 printed designs I 130 13
14 Identify 12 touch on numpad I 780 13
15 Identify 5 colors × 20 chips I 240 6
16 Identify 6 tagged plastic cards I 70 7
17 Identify 6 users by palm I 210 7
18 Identify 6 users by touch behavior sorted I 780 7
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Table 1. Cont.

Dataset Problem # of Samples # of Classes

19 Identify 7 dominoes I 80 8
20 Identify 9 touch on half-sphere I 600 10
21 Order 3 coasters NO case O 480 16
22 Order 3 creditcards NO case sorted O 164 16
23 Order 4 creditcards NO case sorted O 672 65
24 Order 4 creditcards WITH case sorted O 390 65
25 Rotation interval half numeric R 120 12
26 Rotation interval one numeric R 120 12
27 Slide inside-out on desk surface P 110 11
28 Slide outside-in ruler P 110 11
29 session1 × 10 C 530 53
30 session2 × 10 C 530 53
31 session3 × 10 C 530 53
32 session4 × 10 C 530 53
33 session5 × 10 C 530 53
34 session6 × 10 C 530 53

2.2. Feature Extraction

The most straightforward way to apply a classification strategy on this dataset would
be to use the complete 512-dimensional vector (raw data) as the feature vector. However,
raw data often contain noise, redundancies, or irrelevant information; thus, there are
different feature selection/extraction techniques that could be applied on such a feature
space and subsequently be used instead or added to this feature vector. The following
additional feature extraction techniques are considered in our case:

• Basic aggregation features: A series of basic features are extracted. They are defined
as aggregations at different levels:

◦ Along the signals of the eight channels: Average (AVG) and the average of the
absolute values (ABS). There are 64 values in each case and 128 (=64× 2) values
in total.

◦ For each channel (×8): Absolute mean square (AMS) and root mean square
(RMS). There are 8 for each channel and 16 values in total.

◦ At a global level: Maximum, minimum, mean, AVG, average of absolute values
(ABS), and root means square (RMS). There are five values in total.

• ROCKET (RandOm Convolutional KErnel Transform [23]): It is a method that
achieves state-of-the-art classification accuracy in several benchmarks, but it only
requires a fraction of the training time used by other existing standard methods. Other
methods for time series classification focus only on a single type of representation such
as shape, frequency, or signal variance. Convolutional kernels are able to represent
multiple characteristics of different types simultaneously.

• TSFRESH (Time Series FeatuRe Extraction based on Scalable Hypothesis tests): This
methodology aims to avoid the time-consuming process of meaningful feature iden-
tification and extraction, from time series data. It consists of an algorithm and a
Python package. The Python package implements the extraction of 794 features using
multiple characterization methods, each of them executed with various sets of param-
eters. This framework also includes feature selection to identify those features that
are statistically significant. The algorithm is described in [32]. The software package
is presented in [24]. The total number of features is therefore 6352 (=8× 794).

In this framework, each feature vector is individually analyzed in relation to its
significance for predicting the target class label. As a result, a vector of p-values is obtained.
This vector is assessed against the Benjamini–Yekutieli procedure [33], which allows the
method to decide which features to keep. This selection strategy considers the application
of a threshold, whose default value is 0.05. However, this selection is so restrictive in some
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cases that most of the features are discarded. An iterative method is applied that considers
the threshold values {0.05, 0.1, 0.2, 0.5} and selects the first one that keeps at least a 10% of
the total number of attributes.

2.3. Classification Methods

Two main blocks of classification strategies were considered to be applied on the
datasets, summarized as the use of: (a) a Support Vector Machine and a Random Forest
classifier, being these two classifiers those that were used in [18] (presented in Section 2.3.1);
(b) a Stacked Generalization approach (a particular type of ensemble machine learning
algorithm) (Section 2.3.2), where we try to take advantage of the diversity that different
classification methods may give, in order to help improve classification accuracy, when
using them in a coordinated/simultaneous way.

2.3.1. Single Type Classifiers

Two classification methodologies were applied: (1) Support Vector Machines (SVM);
(2) Random Forests (RFs). SVM is a widely used classification method, in different and
varied areas of research, partly because of its capability and good behavior when dealing
with problems with a small number of samples in (relation to) high-dimensional feature
spaces. Originally developed and applied in linearly separable problems, it is aimed at
obtaining the hyperplane whose distance to the two groups of data points (called margin),
representing the two classes, was maximal. SVM was generalized later to deal with nonlinearly
separable problems using the so-called (transformational) Kernel trick [21]. A mathematical
transformation function is applied to map the nonlinear separable dataset into a higher
dimensional space where the samples can be linearly separated using an hyperplane.

Under this mathematical framework, two parameters emerge (C, γ). The optimal
value of these parameters is problem dependent. A Grid Search strategy was applied to
assess their optimal values. The parameter C search interval and step size was 2−5, 2−3,. . . ,
215, and the corresponding γ interval and step size was 2−15, 2−13,. . . , 23. Whenever
the best best pair of parameters was obtained in the interval limits, the Grid Search was
automatically extended by a factor of two. This procedure follows the guidelines given
in [34].

Ensemble learning methods are based on the idea of using multiple learning algo-
rithms to obtain better predictive performance than one could obtain from any of them,
separately. The idea behind ensemble learning is the way an expert committee works in real
life, i.e., it is usually easier to properly predict something when the prediction is made by
more than one expert, and a consensus is obtained from them. Ensembles are combinations
of several classifiers, which are often called base classifiers. There are several types of
ensembles, which may be divided into two large groups: (a) homogeneous ensembles,
where all the base classifiers are built using the same algorithm (but with different versions
of the dataset or different training parameters); (b) heterogeneous ensembles, where the
base classifiers are built using different algorithms.

Diversity is a key property in the search for an optimal ensemble strategy performance,
since there is no benefit when combining base classifiers that always obtain the same
predictions. There are several techniques to induce diversity in homogeneous ensembles.
In Bagging [35], for instance, each classifier is trained with a variant of the training dataset,
which uses different random samples of the training set. Random Forests [20] are ensembles
of Decision Trees [36]. In this method, the diversity during the training process is enforced
by combining the sampling of the training set, as Bagging does, with the random selection
of subsets of attributes in each node of the tree. This way, in each node, the splits only
consider the selected subset of attributes. Later, on the prediction stage, each base classifier
predicts a class, and the class selected the most (the mode) is the final prediction of the
ensemble. RFs are used to correct the tendency of the decision trees to overfit. The main
parameter of an RF is its size (i.e., the number of trees that are generated into the ensemble).
In our study, 100 decision trees were used because it is a usual and sufficient number [37].
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2.3.2. Stacked Generalization

Stacked Generalization is an ensemble method where a new model learns how to best
combine the predictions from multiple existing models. In this approach, any learning
algorithm could be used to combine them.

In particular, the generation of classifiers that are accurate and diverse is only the first
part in an ensemble classifier generation process. The second part (as important as the
former one) is the method used to obtain the ensemble outputs by combining the outputs
of the base classifiers. Two of the approaches used to combine the outputs of the base
classifiers are: (a) majority voting; (b) average of probabilities. Alternatively, there are
methods that may be able to learn the so-called combination rules. These methods (called
meta-classifiers) are particularly useful when the base classifiers do not have the same
success rate (among them) when classifying instances. This may happen when the base
classifiers are generated using different training sets or different training algorithms.

Stacked Generalization (also called Stacking) [22] builds a classifier that takes as inputs
values, the output values of the base classifiers, and learns to map these values of the base
classifiers into the correct final output value. In other words, no voting strategy is applied
in order to combine the predictions of the base classifiers. In this case, a meta-classifier is
used. The base classifiers are trained with the training set and the meta-classifier is trained
with the predictions of the base classifiers. Figure 2 shows a scheme of one of the stacking
approaches used.

Figure 2. Diagram of the Stacked Generalization approach.

The predictions of the classifiers are obtained from a different partition set than the
one used for training. This is achieved by dividing the training set into several partitions.
Therefore, Stacking can also be seen as a sophisticated form of attribute extraction. Stacking
base classifiers are usually trained using different algorithms. Another strategy would be
to use different views, i.e., subsets of attributes obtained by each feature extraction method.
This type of Stacking strategy is often called multi-view stacking and has been successfully
used when applied to other (but somehow similar) problems [38–40].

Figure 3 shows a flow diagram of the general data processing strategy followed in
the paper. The figure shows the processing chain divided into two parts. The first of them
shows that different types of features and feature combination strategies are obtained from
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the raw data values, and different classifiers are trained and used to obtain the classification
accuracy results for the different datasets. In the second part, these classification accuracy
results, for each dataset, are ranked, and the statistical significance of their differences are
obtained in order to assess which method is better, and whether the differences among
classification strategies are statistically significant or not.

Figure 3. Flow chart describing the general data processing pipeline, divided into two steps.

3. Results and Discussion

Accuracy (for the Random Forest, SVM Linear with default parameters (rhe same
configuration as the one used in [18]), and the optimized Gaussian SVM classifiers) was
assessed using different combinations of the attributes explained in Section 2.2. Table 2
shows these combination strategies: The symbol ‘&’ means that the referred attributes are
concatenated. Stacking was applied using two different configurations, called as follows:

� Stacking:All: Eight base classifiers were assembled (four RF classifiers and four SVM
linear classifiers), one for each one of the four extracted feature sets (raw features (O),
basic aggregation features (B), ROCKET with 1000 kernels (R1000), and TSFRESH
with feature selection (t)).

� Stacking+:All: Ten base classifiers were assembled: the eight base classifiers de-
scribed in the previous case, a linear SVM, and an RF, trained in both cases with the
concatenation of all the attributes.

In all the results that follow, we use SVM-L (SVM with Linear Kernel) to refer to SVM
with default parameters and SVM-G to refer to Grid search-optimized SVM with RBF
Kernel. We simply use RF for the Random Forest classifier. Features used for training the
classifiers use the same abbreviation as that shown in Table 2.

In order to compare the performance of the different classification methods, we
might use the average accuracy of each one of the pairs (Classifier:Feature Set) evaluated
throughout the 34 datasets shown in Table 1. Nevertheless, when comparing multiple
methods on multiple datasets, an alternative to (and sometimes more appropriate way than)
comparing average accuracies is to use average ranks [41]. Average ranks are computed
in the following way: For a given dataset, the methods (in this case, a method is a pair
formed by Classifier and Feature set) are sorted from best to worst. The best method
receives rank = 1, the second best receives rank = 2, etc. In the case of a tie, average ranks
are assigned. For instance, if two methods tie for the top rank, they both receive rank = 1.5.
The average ranks across all the datasets are then computed for each method.
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Table 2. Combination of features used, including their total number. In the case of variable-size feature extraction methods,
the minimum, maximum, and average values, respectively, are also given (in parenthesis).

Features Abbreviation Nº of Attributes

Raw Original Data (O) 512
Basic aggregation features (B) 149
ROCKET with 100 kernels (R100) 200
ROCKET with 1000 kernels (R1000) 2000
TSFRESH without feature selection (T) 6352
TSFRESH with feature selection (t) Variable (885/3567/3235)
Original & Basic (OB) 661
Original & ROCKET (100) (OR100) 712
Original & ROCKET (1000) (OR1000) 2512
Original & TSFRESH (without feat. sel.) (OT) 6864
Original & TSFRESH (with feat. sel.) (Ot) Variable (1397/4079/3747)
Original, basic, ROCKET (1000) and TSFRESH (with feat. sel.) (All) Variable (3546/6228/5896)

Post hoc tests were applied in order to identify statistically significant differences
among the performance results. Some of these tests are strict in the conclusions that might
be obtained from them. We found that the classification accuracy results from some of
the 34 datasets are substantially high, for a considerable number of methods. Therefore,
aiming at inferring the classifiers and attributes that work best with the hardest datasets
(i.e., those that are more interesting), the statistical comparison of the methods was carried
out twice: first using all the datasets and then using the subset formed by the difficult ones
(the division between easy and difficult datasets was determined based on the performance
of a baseline classifier).

Post hoc tests based on mean-ranks are commonly used, but their application has
been questioned recently [42]. Hence, the results are also compared with the Bayesian
Signed-Rank Test [43].

3.1. Results Corresponding to All the Datasets

Table 3 shows a selection of the results, for a subset of the pairs (Classifier:Feature
Set). Given the large number of pairs, it is not possible to include all the methods in a
single table (Tables A1–A4 (in the Appendix A) show the complete set of results for the
RF, SVM-L, and SVM-G classifiers and the Stacking strategy, respectively, considering all
the datasets). The pairs in the subset were selected so that for all data sets there was some
method with the highest accuracy. In some datasets, many methods share the best accuracy,
so it is not possible to include all of them in the subset. Therefore, the subset of pairs was
further reduced according to the average accuracy across all the datasets. Moreover, the
pairs with the feature set OB were also included because it was used by Yeo et al. [18].

Table 3. Results for a subset of the classifiers with different feature sets.

RF RF SVM-L SVM-L SVM-L SVM-L SVM-L SVM-L SVM-G SVM-G SVM-G Stack Stack+
:OB :Ot :R1000 :t :OB :OR1000 :Ot :All :R1000 :OB :OR100 :All :All

Count + Order Lego 96.09 97.09 98.00 96.00 99.00 98.00 96.00 97.00 98.00 98.00 98.00 98.00 98.00
Count 20 chips NO
case ×30 sorted

63.60 66.95 71.88 72.35 62.49 73.78 71.87 73.94 73.62 71.23 73.94 77.60 76.17

Count 20 chips WITH
case ×30 sorted

70.32 77.14 78.89 79.68 79.52 81.27 80.00 80.63 80.63 79.05 83.33 80.95 80.79

Count 20 papers ×10 75.71 75.24 91.43 84.29 87.14 89.52 84.76 86.19 90.00 87.62 88.10 83.33 83.81
Distance 3 mugs 10 dis-
tances

47.22 64.44 80.56 88.00 47.56 75.11 72.22 77.33 80.56 50.78 62.56 64.78 63.67

Distance 3 mugs grouped
by material

84.33 100.00 93.44 100.00 80.89 90.33 100.00 100.00 92.44 80.89 94.67 99.00 100.00

Distance 7 slotting 100.00 100.00 100.00 98.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Flip 10 creditcards NO
case

83.64 86.36 84.09 88.18 82.73 85.91 89.55 88.64 85.45 88.18 85.00 87.73 86.82

Flip 10 creditcards
WITH case

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 3. Cont.

RF RF SVM-L SVM-L SVM-L SVM-L SVM-L SVM-L SVM-G SVM-G SVM-G Stack Stack+
:OB :Ot :R1000 :t :OB :OR1000 :Ot :All :R1000 :OB :OR100 :All :All

Flip 52 cards 96.18 98.18 98.18 99.09 96.36 98.18 99.09 98.18 98.18 98.18 97.18 98.18 98.18
Identify 10 creditcards
NO case

87.27 91.82 81.82 90.00 83.64 84.55 90.00 86.36 83.64 84.55 88.18 88.18 88.18

Identify 10 creditcards
WITH case

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Identify 12 printed de-
signs

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.23 100.00 100.00 100.00

Identify 12 touch on
numpad

98.33 97.82 97.95 98.59 98.97 98.72 98.59 98.59 98.21 99.23 98.85 98.97 99.10

Identify 5 colors × 20
chips

75.42 83.33 85.83 96.67 87.50 88.33 96.67 96.67 85.00 88.33 87.08 94.58 96.25

Identify 6 tagged plastic
cards

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Identify 6 users by palm 82.86 90.95 90.00 95.24 90.95 91.43 94.29 95.24 89.52 91.90 92.38 94.29 95.24
Identify 6 users by
touch behavior sorted

82.56 96.03 85.64 98.72 85.38 88.72 98.72 98.59 89.10 91.41 91.92 98.46 98.85

Identify 7 dominoes 98.75 98.75 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 9 touch on
half-sphere

99.33 98.67 99.50 99.00 98.67 99.67 99.00 99.33 99.50 98.50 99.00 98.83 99.00

Order 3 coasters NO case 79.58 83.13 80.00 85.21 81.04 83.12 85.21 86.46 80.63 85.00 83.54 82.08 83.54
Order 3 creditcards NO
case sorted

82.39 85.99 84.12 89.01 86.58 87.87 90.26 89.63 84.15 89.63 87.79 88.38 89.01

Order 4 creditcards NO
case sorted

55.51 56.10 58.64 65.91 61.16 60.72 67.40 65.47 58.04 63.40 63.09 64.43 65.47

Order 4 creditcards
WITH case sorted

99.49 99.49 99.23 99.49 99.49 99.23 99.49 99.49 99.23 99.23 99.23 99.49 99.49

Rotation interval half
numeric

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.17 100.00 100.00

Rotation interval one
numeric

99.17 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.17 100.00 100.00 100.00 100.00

Slide inside-out on desk
surface

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.09 100.00 100.00 100.00 100.00

Slide outside-in ruler 100.00 100.00 100.00 99.09 100.00 100.00 99.09 99.09 100.00 100.00 100.00 100.00 100.00
session1 × 10 99.81 99.81 100.00 99.81 99.81 99.81 99.81 99.81 100.00 99.81 99.81 99.81 99.81
session2 × 10 99.62 99.43 99.25 99.06 99.62 99.25 99.43 99.43 99.06 99.25 99.62 99.43 99.43
session3 × 10 99.62 99.81 99.81 99.43 99.81 99.81 99.62 99.81 99.81 99.81 99.81 99.81 99.81
session4 × 10 100.00 100.00 100.00 99.43 100.00 100.00 99.43 99.43 100.00 100.00 100.00 99.81 99.81
session5 × 10 97.92 98.49 99.25 99.25 98.49 99.25 99.25 99.25 98.87 98.30 99.06 98.49 98.87
session6 × 10 99.25 99.25 99.06 99.25 99.25 99.06 99.25 99.25 99.06 99.25 99.25 99.25 99.25

Mean 89.82 92.48 92.84 94.68 91.35 93.28 94.38 94.52 92.97 92.38 93.25 93.94 94.07

Table 4 presents the average accuracy of each one of the pairs (Classifier:Feature Set)
assessed throughout the 34 datasets. It also shows the average ranks computed using all
the methods in the experimental setup. In terms of average accuracies, the best results
obtained by Shyong Yeo et al. [18] appear in the lower third of the table; SVM-L:OB (Linear
SVM trained using the concatenation of Raw and Basic features) achieves an average
accuracy of 91.36%. The same classifier, when trained using all features or TSFRESH with
feature selection, obtains an accuracy higher than 94.5%. In terms of average ranks, the
two pairs with top ranks are SVM-L:All and Stacking+:All, with average ranks below 12.7.
The average rank for SVM-L:OB is 18.13.

Table 4. Average accuracies and ranks from all the datasets.

Method Accuracy Method Rank

SVM-L:t 94.678 SVM-L:All 12.632
SVM-L:All 94.524 Stacking+:All 12.676
SVM-G:t 94.466 SVM-L:Ot 13.456
SVM-L:Ot 94.382 Stacking:All 14.265
SVM-G:All 94.188 SVM-L:t 14.853
Stacking+:All 94.075 SVM-L:OR1000 15.368
SVM-G:Ot 94.025 SVM-G:OR100 15.441
Stacking:All 93.938 SVM-G:O 16.824
SVM-G:T 93.359 SVM-L:OR100 16.971
SVM-G:OT 93.338 SVM-G:OB 17.176
SVM-L:OR1000 93.283 SVM-G:All 17.309
SVM-L:OT 93.283 SVM-L:R1000 17.338
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Table 4. Cont.

Method Accuracy Method Rank

SVM-G:OR100 93.252 SVM-G:OR1000 17.588
SVM-L:T 93.205 SVM-G:Ot 17.662
SVM-G:OR1000 93.070 RF:t 17.794
SVM-G:R1000 92.969 SVM-G:t 17.853
RF:t 92.926 SVM-L:OB 18.132
SVM-L:R1000 92.840 RF:All 18.176
RF:All 92.720 SVM-G:R1000 18.265
RF:Ot 92.479 RF:Ot 18.353
SVM-G:OB 92.375 RF:T 19.279
SVM-L:OR100 92.141 SVM-L:O 19.603
RF:OT 92.100 SVM-L:OT 20.176
RF:T 92.028 RF:OT 20.426
SVM-G:O 91.987 SVM-L:R100 21.044
SVM-L:OB 91.355 SVM-G:OT 21.103
SVM-G:R100 90.877 SVM-G:T 21.382
SVM-L:R100 90.712 SVM-L:T 21.544
RF:OR1000 90.706 RF:OR1000 21.779
RF:OR100 90.110 SVM-G:R100 22.765
SVM-G:B 90.100 RF:OR100 22.897
SVM-L:O 89.989 RF:OB 23.176
RF:OB 89.823 RF:R1000 23.338
RF:R1000 89.761 RF:O 24.706
RF:O 89.333 RF:R100 25.971
RF:R100 88.747 SVM-G:B 26.603
RF:B 87.508 SVM-L:B 28.088
SVM-L:B 87.068 RF:B 28.985

The best five pairs according to the average accuracy and rank (in Table 4) use the
feature sets (t), (All), and (Ot). Table 5 summarizes the results in Table 4 averaging for
each feature set the corresponding values of RF, SVM-L and SVM-G. According to both the
average accuracies and ranks, the three best feature sets are (t), (All), and (Ot).

Table 5. Average accuracies and ranks for each feature set, from all the datasets. For each feature set,
the values in these tables are the averages for RF, SVM-L, and SVM-G in Table 4.

Feature Set Accuracy Feature Set Rank

t 94.024 All 16.039
All 93.811 Ot 16.490
Ot 93.628 t 16.833
OT 92.907 OR1000 18.245
T 92.864 OR100 18.436
OR1000 92.353 OB 19.495
R1000 91.857 R1000 19.647
OR100 91.834 O 20.377
OB 91.184 OT 20.569
O 90.437 T 20.735
R100 90.112 R100 23.260
B 88.226 B 27.892

Figure 4 shows, for each one of the three classification methods, the differences in
terms of accuracy between each feature set and the feature set (OB) used by Yeo et al. [18].
Each boxplot is from the corresponding differences from the 34 datasets. The average
differences are clearly favorable for several of the alternative feature sets. Medians of the
differences are close to 0 or negative. As shown in Tables A1–A4, there are several datasets
with 100% accuracy for all or many of the feature sets. For several feature sets, the boxplot
are mostly in the positive region, positive differences are greater than negative differences.
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For SVM-G the boxplots are less favorable to the alternative feature sets, but, as shown in
Table 4, SVM-L has better results than SVM-G.

10 0 10 20 30

RF:O
RF:B

RF:R100
RF:R1000

RF:T
RF:t

RF:OR100
RF:OR1000

RF:OT
RF:Ot
RF:All

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

Differences in accuracies with RF:OB

20 10 0 10 20 30 40

SVM-L:O
SVM-L:B

SVM-L:R100
SVM-L:R1000

SVM-L:T
SVM-L:t

SVM-L:OR100
SVM-L:OR1000

SVM-L:OT
SVM-L:Ot
SVM-L:All

10 5 0 5 10

Differences in accuracies with SVM-L:OB

10 0 10 20 30

SVM-G:O
SVM-G:B

SVM-G:R100
SVM-G:R1000

SVM-G:T
SVM-G:t

SVM-G:OR100
SVM-G:OR1000

SVM-G:OT
SVM-G:Ot
SVM-G:All

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0

Differences in accuracies with SVM-G:OB

Figure 4. Boxplots of the differences in accuracy between the different feature sets and the feature set
(OB), for the three considered classifiers. The boxplots on the right do not include the outliers. The
average differences are marked with a red dot (•).

Given the large number of (Classifier:Feature Set) tested methods, it is preferable to
obtain the average ranks by considering smaller pair groups. Therefore, methods were
divided depending on the type of classifier used: RF, SVM-L, and SVM-G. These average
ranks are shown in Table 6.

Table 6. Average ranks for each classification method.

RF SVM-L SVM-G

Method Rank Method Rank Method Rank

RF:t 4.676 SVM-L:All 4.765 SVM-G:OR100 5.397
RF:All 4.691 SVM-L:Ot 5.059 SVM-G:Ot 5.647
RF:Ot 4.941 SVM-L:OR1000 5.515 SVM-G:All 5.647
RF:T 5.500 SVM-L:t 5.529 SVM-G:t 5.868
RF:OT 5.750 SVM-L:OR100 6.000 SVM-G:O 5.941
RF:OR1000 6.456 SVM-L:R1000 6.294 SVM-G:OB 5.941
RF:OR100 6.500 SVM-L:OB 6.412 SVM-G:OR1000 6.132
RF:OB 7.015 SVM-L:O 6.956 SVM-G:R1000 6.471
RF:R1000 7.162 SVM-L:OT 6.956 SVM-G:OT 6.985
RF:O 7.515 SVM-L:R100 7.426 SVM-G:T 7.265
RF:R100 8.412 SVM-L:T 7.662 SVM-G:R100 7.735
RF:B 9.382 SVM-L:B 9.426 SVM-G:B 8.971
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The use of the Nemenyi test [44] was also proposed by Demšar [41] to compare
methods in a pairwise way. For a certain level of confidence (α), the test determines a critical
difference (CD) value. If the difference between the average rankings of two methods is
greater than CD, the null hypothesis, H0, that both methods have equal performance, is
rejected. Figure 5 shows the Nemenyi’s CD diagrams. In these diagrams, thick horizontal
lines are used to connect methods whose difference in average ranks is smaller than CD.

4 5 6 7 8 9 10

RF:t
RF:All
RF:Ot
RF:T

RF:OT
RF:OR1000 RF:OR100

RF:OB
RF:R1000
RF:O
RF:R100
RF:B

CD

4 5 6 7 8 9 10

SVM-L:All
SVM-L:Ot

SVM-L:OR1000
SVM-L:t

SVM-L:OR100
SVM-L:R1000 SVM-L:OB

SVM-L:O
SVM-L:OT
SVM-L:R100
SVM-L:T
SVM-L:B

CD

4 5 6 7 8 9 10

SVM-G:OR100
SVM-G:Ot
SVM-G:All

SVM-G:t
SVM-G:O

SVM-G:OB SVM-G:OR1000
SVM-G:R1000
SVM-G:OT
SVM-G:T
SVM-G:R100
SVM-G:B

CD

Figure 5. Critical difference diagrams for the Nemenyi test (α = 0.05).

The methods were also compared using the Bayesian Signed-Rank Test [43], the
Bayesian framework equivalent version of the Wilcoxon Signed-Rank Test. In this test,
the value of the Region of Practical Equivalence (ROPE) was set to 1% for accuracy. Two
methods were considered equivalent when the difference in their performance was smaller
than this ROPE value. The test determines three probability values, corresponding to the
following cases: (1) one method is better than the other; (2) vice versa; (3) they are in
the ROPE.

Figures 6–8 show the Bayesian Signed-Rank Tests posteriors, for the RF, SVM-L, and
SVM-G classifiers, respectively. In these figures, the (OB) feature set is compared against
each one of the other feature sets, for the corresponding classifier. For each feature set, there
is a triangle. In these triangles [43], the bottom-left and bottom-right regions correspond to
the case where one method is better than the other or vice versa. The top region represents
the case where the ROPE is more probable. The corner triangles show the probability of
each region. The left region in the triangle is for OB and the right region for the other
feature set.

Figure 6 shows that, for RF, the feature set with more favorable results when compared
to (OB) is (All), with a probability of 0.767, while it is 0.000 for (OB). Figure 7 shows that,
for SVM-L, the best feature set is (Ot): its probability is 0.821, while it is 0.000 for (OB). In
Figure 8, for SVM-G, the results are less favorable for the alternative cases to (OB). The
best feature set is (Ot), with a probability of 0.244, being 0.001 the probability for (OB). The
classification results for the three different classifiers therefore show an improvement that
can be considered as significant, when using the different types of proposed feature sets,
versus the features proposed in [18].
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Figure 6. Posteriors for the Bayesian sign-rank tests for RF, from all the datasets.
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Figure 7. Posteriors for the Bayesian sign-rank tests for SVM-L, from all the datasets.
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Figure 8. Posteriors for the Bayesian sign-rank tests for SVM-G, from all the datasets.

3.2. Results for the So-Called Difficult Datasets

An important part of the datasets reached a classification accuracy near or equal
100% (Tables A1–A4, in Appendix A) , while others did not even reach 70%. This was
the reason we considered splitting up the dataset into two groups, one being formed
only by what we may call the difficult datasets, for which the classification accuracy
using SVM-L (best classifier in the previous work) was ≤90% using the original set
of raw features. The list of difficult datasets (in Table A2) is the following: (1) Count
20 chips NO case x30 sorted; (2) Count 20 chips WITH case x30 sorted; (3) Count
20 papers x10; (4) Distance 3 mugs 10 distances; (5) Distance 3 mugs grouped by
material; (6) Flip 10 creditcards NO case; (7) Identify 10 creditcards NO case;
(8) Identify 5 colors x 20 chips; (9) Identify 6 users by palm; (10) Identify 6
users by touch behavior sorted; (11) Order 3 coasters NO case; (12) Order 3 credit-
cards NO case sorted; (13) Order 4 creditcards NO case sorted.

For the other datasets, simple methods may have good accuracy results, with little
room for improvement. The entire experimental framework was repeated considering only
this (difficult) subgroup of datasets, and the results are as follows.

Table 7 shows the average accuracies and average ranks, obtained using only the
difficult datasets. The average accuracy for SVM-L:OB is 78.199 and for SVM-L:t is 87.173.
The average rank of SVM-L:OB is 23.115 and 6.654 for SVM-L:All. Table 8 summarizes the
results in Table 7 for each feature set, averaging the results of RF, SVM-L and SVM-G. The
best feature set is (t), with an average accuracy of 85.58% and an average rank of 10.987.
The average accuracy is 77.922 and the rank is 23.090 for (OB).
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Table 7. Average accuracies and ranks from the difficult datasets .

Method Accuracy Method Rank

SVM-L:t 87.173 SVM-L:All 6.654
SVM-G:t 87.092 SVM-L:Ot 7.154
SVM-L:All 86.550 SVM-L:t 7.538
SVM-G:All 86.278 SVM-G:t 7.731
SVM-L:Ot 86.226 SVM-G:Ot 7.846
SVM-G:Ot 85.924 SVM-G:All 8.308
Stacking+:All 85.215 Stacking+:All 9.577
Stacking:All 84.908 Stacking:All 11.654
SVM-L:T 84.458 SVM-G:OT 11.808
SVM-G:OT 84.407 SVM-L:OT 12.654
SVM-L:OT 84.319 SVM-L:T 13.077
SVM-G:T 84.297 SVM-G:T 13.500
SVM-G:OR100 83.199 SVM-G:OR100 14.462
SVM-L:OR1000 83.128 SVM-L:OR1000 15.115
SVM-G:OR1000 82.891 SVM-G:OR1000 15.654
SVM-G:R1000 82.522 SVM-G:OB 16.423
RF:t 82.475 SVM-G:O 17.462
SVM-L:R1000 82.026 RF:t 17.692
RF:All 81.967 SVM-G:R1000 18.077
RF:Ot 81.345 RF:All 19.000
SVM-G:OB 80.921 RF:Ot 19.346
RF:OT 80.458 SVM-L:R1000 19.885
RF:T 80.400 SVM-L:OR100 20.808
SVM-L:OR100 80.365 RF:T 20.808
SVM-G:O 79.875 RF:OT 22.115
SVM-L:OB 78.199 SVM-L:OB 23.115
SVM-G:R100 77.307 SVM-L:O 27.115
SVM-L:R100 76.674 SVM-L:R100 27.885
RF:OR1000 76.643 SVM-G:R100 28.077
SVM-G:B 75.809 RF:OR100 28.846
RF:OR100 75.442 SVM-G:B 28.923
SVM-L:O 74.660 RF:OR1000 29.000
RF:OB 74.647 RF:OB 29.731
RF:R1000 74.360 RF:O 30.154
RF:O 73.736 RF:R1000 31.731
RF:R100 72.264 RF:R100 33.538
RF:B 70.128 RF:B 34.231
SVM-L:B 68.541 SVM-L:B 34.308

Table 8. Average accuracies and ranks for each feature set, from the difficult datasets. For each
feature set, the values in these tables are the averages for RF, SVM-L, and SVM-G in Table 7.

Feature Set Accuracy Feature Set Rank

t 85.580 t 10.987
All 84.932 All 11.321
Ot 84.498 Ot 11.449
OT 83.062 OT 15.526
T 83.051 T 15.795
OR1000 80.887 OR1000 19.923
OR100 79.669 OR100 21.372
R1000 79.636 OB 23.090
OB 77.922 R1000 23.231
O 76.090 O 24.910
R100 75.415 R100 29.833
B 71.492 B 32.487
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Given again the large number of methods (Classifier:Feature Set) tested, they were
divided depending on the type of classifier used: RF, SVM-L, and SVM-G. These average
ranks (for the difficult datasets) are shown in Table 9.

Table 9. Average ranks for each classification method, for difficult datasets.

RF SVM-L SVM-G

Method Rank Method Rank Method Rank

RF:t 2.808 SVM-L:All 2.923 SVM-G:Ot 3.308
RF:All 2.923 SVM-L:Ot 3.192 SVM-G:t 3.577
RF:Ot 3.538 SVM-L:t 3.346 SVM-G:All 3.808
RF:OT 4.692 SVM-L:OT 4.885 SVM-G:OT 5.000
RF:T 4.731 SVM-L:OR1000 5.231 SVM-G:T 6.000
RF:OR100 6.962 SVM-L:T 5.423 SVM-G:OR100 6.192
RF:OR1000 7.346 SVM-L:R1000 7.154 SVM-G:OB 6.962
RF:O 7.692 SVM-L:OR100 7.231 SVM-G:OR1000 7.000
RF:OB 8.000 SVM-L:OB 7.923 SVM-G:O 7.269
RF:R1000 8.846 SVM-L:O 9.385 SVM-G:R1000 7.692
RF:R100 10.038 SVM-L:R100 9.692 SVM-G:R100 10.308
RF:B 10.423 SVM-L:B 11.615 SVM-G:B 10.885

Figure 9 shows the critical difference diagrams for the Nemenyi test, for the three
classifiers. The difference of the average ranks between RF:OB and the best feature sets
with RF is greater than the critical difference. The distance of SVM-L:OB to the best feature
sets with SVM-L is also greater. Nevertheless, the differences for SVM-G:OB and other
feature sets with SVM-G are smaller than the critical difference.
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Figure 9. Critical difference diagrams for the Nemenyi test, for the difficult datasets (α = 0.05).

Figures 10–12 show the Bayesian Signed-Rank Tests posteriors, for the RF, SVM-L, and
SVM-G classifiers, respectively, for the difficult datasets. In Figure 10, for RF, the feature
sets with more favorable results when compared to (OB) are (t), (OT), (Ot), and (All), with
a probability of 1.000 for the corresponding feature set, and 0.000 for (OB). For SVM-L
(Figure 11), the best feature sets are, again, (t), (OT), (Ot), and (All), with a probability of
1.000 for the corresponding feature set, and 0.000 for (OB). In Figure 12, for SVM-G, the
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results are best for (Ot), with a probability of 0.997, and a probability of 0.001 for (OB),
followed by (All), with a probability of 0.983, and a probability of 0.000 for (OB), and by (t),
with a probability of 0.989, and a probability of 0.002 for (OB).

R100 R1000 T

p(RF:
OB) = 0.970

p(rope) = 0.000

p(RF:
R100) = 0.030

p(RF:
OB) = 0.872

p(rope) = 0.011

p(RF:
R1000) = 0.117

p(RF:
OB) = 0.000

p(rope) = 0.000

p(RF:
T) = 0.999

t OR100 OR1000

p(RF:
OB) = 0.000

p(rope) = 0.000

p(RF:
t) = 1.000

p(RF:
OB) = 0.003

p(rope) = 0.644

p(RF:
OR100) = 0.353

p(RF:
OB) = 0.025

p(rope) = 0.437

p(RF:
OR1000) = 0.537

OT Ot All

p(RF:
OB) = 0.000

p(rope) = 0.000

p(RF:
OT) = 1.000

p(RF:
OB) = 0.000

p(rope) = 0.000

p(RF:
Ot) = 1.000

p(RF:
OB) = 0.000

p(rope) = 0.000

p(RF:
All) = 1.000

Figure 10. Posteriors for the Bayesian sign-rank tests for RF, from the difficult datasets.
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p(rope) = 0.120
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p(SVM-L:
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p(rope) = 0.605

p(SVM-L:
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p(SVM-L:
OB) = 0.000
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All) = 1.000

Figure 11. Posteriors for the Bayesian sign-rank tests for SVM-L, from the difficult datasets.



Appl. Sci. 2021, 11, 6745 19 of 24

R100 R1000 T
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p(rope) = 0.017
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Figure 12. Posteriors for the Bayesian sign-rank tests for SVM-G, from the difficult datasets.

4. Conclusions

This paper presents a comparative analysis of different types of classification method-
ologies, applied on a series of datasets of raw signals acquired by a portable radar sensor,
for different types of materials. In particular, twelve different types of feature vectors
obtained from the original raw dataset were obtained, applying different types of fea-
ture extraction strategies. These feature vectors were subsequently combined with two
classification methods (Random forests and SVM with linear and radial kernel types).
A stacked generalization (Stacking) approach was also considered which involved base
classifiers created using Random Forest and SVM trained using a subset of the different
sets of features. The classification results shown outperformed the corresponding ones
obtained by Shyong Yeo et al. [18], when considering the complete collection of datasets, as
well as in a wider margin when using the partial so-called difficult datasets. In particular,
the difference between the use of the TSFRESH with feature selection (t) features and the
original and basic (OB) features (used in [18]), for the complete group of datasets, is almost
4% in accuracy. Moreover, this difference increases to almost 7.7%, for (t) vs. (OB) as well,
for the so-called difficult subgroup.

From a classifier performance point-of-view, SVM with linear kernel (with default
options) has the best global results (the methods with best average accuracy and rank in
Tables 4 and 7 use SVM-L), being much less costly than SVM with Gaussian kernel (with
parameter adjustment) and Stacking. This suggest that it is not necessary to use expensive
methods when using adequate feature extraction methods.

Potential future lines of research include the creation of our own datasets to explore
the use of the radar sensor in problems that may have an industrial interest, for instance,
in non-destructive testing or in the signal analysis of trash composites, to discern or
classify them.
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Appendix A. Tables with Classification Results for All Datasets

This section includes four tables corresponding to the complete classification results, for
the 34 datasets, when applying RF, SVM-L, SVM-G, and Stacking classification strategies.

Table A1. Results for classifier RF with different feature sets.

O B OB T OT R100 R1000 t Ot OR100 OR1000 All

Count + Order Lego 97.09 90.45 96.09 94.27 97.09 98.00 98.00 98.00 97.09 96.18 98.00 96.09
Count 20 chips NO case ×30 sorted 65.68 57.57 63.60 65.51 66.95 49.76 57.24 68.70 66.95 67.74 65.18 68.68
Count 20 chips WITH case ×30 sorted 70.79 61.11 70.32 73.33 75.56 66.98 69.84 75.24 77.14 72.06 72.86 75.71
Count 20 papers ×10 78.57 75.71 75.71 72.86 73.33 74.76 76.67 75.24 75.24 76.19 77.14 78.57
Distance 3 mugs 10 distances 48.56 52.78 47.22 67.89 64.78 75.11 68.89 78.67 64.44 49.67 65.67 73.22
Distance 3 mugs grouped by material 71.33 92.67 84.33 97.89 99.00 80.78 80.00 100.00 100.00 85.33 84.11 100.00
Distance 7 slotting 100.00 98.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Flip 10 creditcards NO case 82.27 80.00 83.64 86.82 85.00 79.55 79.55 87.27 86.36 80.91 83.64 83.64
Flip 10 creditcards WITH case 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Flip 52 cards 94.36 96.27 96.18 97.18 97.27 95.36 97.27 98.18 98.18 96.27 97.18 97.27
Identify 10 creditcards NO case 85.45 83.64 87.27 91.82 90.91 80.91 85.45 90.91 91.82 85.45 83.64 90.00
Identify 10 creditcards WITH case 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 12 printed designs 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 12 touch on numpad 97.56 91.67 98.33 97.82 98.08 96.15 97.05 97.95 97.82 98.21 98.59 98.46
Identify 5 colors × 20 chips 75.00 73.33 75.42 82.08 81.25 78.75 80.83 83.75 83.33 76.25 82.08 82.50
Identify 6 tagged plastic cards 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 6 users by palm 82.86 79.52 82.86 89.52 89.05 82.86 85.24 91.43 90.95 85.71 85.24 90.95
Identify 6 users by touch behavior sorted 80.38 71.41 82.56 95.26 94.74 73.21 80.38 97.69 96.03 82.95 80.90 94.49
Identify 7 dominoes 96.25 100.00 98.75 100.00 98.75 97.50 100.00 98.75 98.75 98.75 100.00 100.00
Identify 9 touch on half-sphere 99.00 94.67 99.33 98.00 99.00 96.00 97.33 98.17 98.67 98.33 99.17 99.00
Order 3 coasters NO case 80.42 71.25 79.58 85.42 82.71 76.25 75.21 82.92 83.13 80.21 79.17 83.33
Order 3 creditcards NO case sorted 80.40 69.08 82.39 80.40 85.99 73.20 78.12 84.26 85.99 82.32 82.28 85.40
Order 4 creditcards NO case sorted 56.85 43.59 55.51 56.40 56.69 47.31 49.25 56.10 56.10 55.94 54.47 59.07
Order 4 creditcards WITH case sorted 99.49 98.46 99.49 99.49 99.49 99.49 99.49 99.49 99.49 99.49 99.49 99.49
Rotation interval half numeric 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Rotation interval one numeric 99.17 100.00 99.17 100.00 99.17 100.00 100.00 100.00 100.00 99.17 99.17 100.00
Slide inside-out on desk surface 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Slide outside-in ruler 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
session1 × 10 99.81 99.25 99.81 99.81 99.81 99.81 100.00 99.81 99.81 99.81 99.81 99.62
session2 × 10 99.25 98.30 99.62 99.43 99.43 99.25 99.43 99.43 99.43 99.62 99.43 99.62
session3 × 10 99.81 99.62 99.62 99.81 99.62 99.81 99.81 99.81 99.81 99.81 99.81 99.62
session4 × 10 99.81 99.81 100.00 100.00 99.81 100.00 100.00 99.81 100.00 100.00 99.81 100.00
session5 × 10 97.92 97.55 97.92 98.68 98.68 97.55 97.74 98.68 98.49 98.11 97.92 98.49
session6 × 10 99.25 99.25 99.25 99.25 99.25 99.06 99.06 99.25 99.25 99.25 99.25 99.25

Mean 89.33 87.51 89.82 92.03 92.10 88.75 89.76 92.93 92.48 90.11 90.71 92.72
Average rank 7.51 9.38 7.01 5.50 5.75 8.41 7.16 4.68 4.94 6.50 6.46 4.69

https://github.com/tcboy88/solinteractiondata
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Table A2. Results for classifier SVM-L with different feature sets.

O B OB T OT R100 R1000 t Ot OR100 OR1000 All

Count + Order Lego 99.00 96.09 99.00 96.00 96.00 98.00 98.00 96.00 96.00 99.00 98.00 97.00
Count 20 chips NO case ×30 sorted 60.11 60.42 62.49 71.71 72.35 60.90 71.88 72.35 71.87 69.17 73.78 73.94
Count 20 chips WITH case ×30 sorted 79.52 67.78 79.52 78.73 79.37 73.33 78.89 79.68 80.00 81.27 81.27 80.63
Count 20 papers ×10 88.57 79.52 87.14 82.38 82.38 88.10 91.43 84.29 84.76 88.10 89.52 86.19
Distance 3 mugs 10 distances 39.11 27.00 47.56 64.67 61.33 77.22 80.56 88.00 72.22 63.44 75.11 77.33
Distance 3 mugs grouped by material 63.56 77.00 80.89 100.00 100.00 90.44 93.44 100.00 100.00 85.22 90.33 100.00
Distance 7 slotting 100.00 100.00 100.00 98.33 100.00 100.00 100.00 98.33 100.00 100.00 100.00 100.00
Flip 10 creditcards NO case 79.55 75.45 82.73 86.82 87.27 79.55 84.09 88.18 89.55 82.73 85.91 88.64
Flip 10 creditcards WITH case 100.00 96.82 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Flip 52 cards 96.36 92.45 96.36 98.18 98.18 97.09 98.18 99.09 99.09 94.36 98.18 98.18
Identify 10 creditcards NO case 80.00 81.82 83.64 88.18 87.27 79.09 81.82 90.00 90.00 83.64 84.55 86.36
Identify 10 creditcards WITH case 100.00 100.00 100.00 98.18 98.18 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 12 printed designs 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 12 touch on numpad 99.36 94.62 98.97 98.59 98.85 97.82 97.95 98.59 98.59 98.97 98.72 98.59
Identify 5 colors × 20 chips 85.00 76.67 87.50 94.58 94.58 81.25 85.83 96.67 96.67 87.08 88.33 96.67
Identify 6 tagged plastic cards 100.00 100.00 100.00 97.14 97.14 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 6 users by palm 87.62 85.71 90.95 92.86 92.86 86.19 90.00 95.24 94.29 90.00 91.43 95.24
Identify 6 users by touch behavior sorted 82.18 61.03 85.38 98.08 97.95 71.03 85.64 98.72 98.72 85.64 88.72 98.59
Identify 7 dominoes 100.00 100.00 100.00 96.25 97.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Identify 9 touch on half-sphere 97.50 95.17 98.67 98.83 98.83 97.67 99.50 99.00 99.00 98.50 99.67 99.33
Order 3 coasters NO case 82.92 77.50 81.04 84.58 85.42 76.67 80.00 85.21 85.21 82.71 83.12 86.46
Order 3 creditcards NO case sorted 82.32 75.59 86.58 89.01 89.01 81.07 84.12 89.01 90.26 84.74 87.87 89.63
Order 4 creditcards NO case sorted 60.13 45.54 61.16 66.36 66.37 51.93 58.64 65.91 67.40 61.01 60.72 65.47
Order 4 creditcards WITH case sorted 99.49 99.23 99.49 99.49 99.49 99.49 99.23 99.49 99.49 99.49 99.23 99.49
Rotation interval half numeric 100.00 100.00 100.00 99.17 99.17 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Rotation interval one numeric 100.00 100.00 100.00 99.17 99.17 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Slide inside-out on desk surface 100.00 100.00 100.00 97.27 97.27 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Slide outside-in ruler 100.00 100.00 100.00 98.18 99.09 100.00 100.00 99.09 99.09 100.00 100.00 99.09
session1 × 10 99.81 99.62 99.81 99.62 99.62 100.00 100.00 99.81 99.81 99.81 99.81 99.81
session2 × 10 99.62 99.06 99.62 98.87 99.25 99.62 99.25 99.06 99.43 99.62 99.25 99.43
session3 × 10 99.81 99.43 99.81 99.62 99.62 99.81 99.81 99.43 99.62 99.81 99.81 99.81
session4 × 10 100.00 100.00 100.00 99.62 99.62 100.00 100.00 99.43 99.43 100.00 100.00 99.43
session5 × 10 98.87 97.55 98.49 99.25 99.25 98.87 99.25 99.25 99.25 99.25 99.25 99.25
session6 × 10 99.25 99.25 99.25 99.25 99.25 99.06 99.06 99.25 99.25 99.25 99.06 99.25

Mean 89.99 87.07 91.35 93.20 93.28 90.71 92.84 94.68 94.38 92.14 93.28 94.52
Average rank 6.96 9.43 6.41 7.66 6.96 7.43 6.29 5.53 5.06 6.00 5.51 4.76

Table A3. Results for classifier SVM-G with different feature sets.

O B OB T OT R100 R1000 t Ot OR100 OR1000 All

Count + Order Lego 98.00 97.00 98.00 95.09 95.09 97.00 98.00 95.09 95.09 98.00 98.00 96.00
Count 20 chips NO case ×30 sorted 71.39 60.74 71.23 72.50 73.93 63.60 73.62 72.35 74.25 73.94 73.46 75.68
Count 20 chips WITH case ×30 sorted 79.68 69.68 79.05 79.52 81.43 75.40 80.63 80.95 81.90 83.33 82.06 81.75
Count 20 papers ×10 88.57 79.05 87.62 82.86 83.33 87.62 90.00 84.29 83.81 88.10 89.05 85.71
Distance 3 mugs 10 distances 46.56 58.00 50.78 63.67 60.33 77.22 80.56 88.00 71.11 62.56 75.11 77.33
Distance 3 mugs grouped by material 71.33 88.22 80.89 100.00 100.00 86.33 92.44 100.00 100.00 94.67 88.33 100.00
Distance 7 slotting 100.00 100.00 100.00 98.33 96.67 100.00 100.00 98.33 98.33 100.00 100.00 98.33
Flip 10 creditcards NO case 87.27 85.00 88.18 85.45 86.36 81.82 85.45 88.18 87.73 85.00 85.45 87.73
Flip 10 creditcards WITH case 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Flip 52 cards 98.18 96.27 98.18 98.18 98.18 96.18 98.18 98.18 98.18 97.18 96.18 98.18
Identify 10 creditcards NO case 90.00 85.45 84.55 85.45 86.36 79.09 83.64 89.09 88.18 88.18 83.64 84.55
Identify 10 creditcards WITH case 100.00 100.00 100.00 99.09 99.09 100.00 100.00 99.09 99.09 100.00 100.00 99.09
Identify 12 printed designs 100.00 99.23 99.23 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.23
Identify 12 touch on numpad 99.10 96.15 99.23 98.33 98.33 97.82 98.21 98.46 98.46 98.85 98.46 98.46
Identify 5 colors × 20 chips 86.67 85.00 88.33 94.58 94.58 75.83 85.00 96.25 96.25 87.08 87.50 95.83
Identify 6 tagged plastic cards 100.00 100.00 100.00 98.57 98.57 100.00 100.00 98.57 98.57 100.00 100.00 98.57
Identify 6 users by palm 89.52 86.67 91.90 92.86 91.90 85.71 89.52 94.76 93.33 92.38 90.48 93.81
Identify 6 users by touch behavior sorted 91.41 82.05 91.41 97.82 97.82 82.95 89.10 98.46 98.46 91.92 90.26 98.08
Identify 7 dominoes 100.00 98.75 100.00 98.75 98.75 100.00 100.00 98.75 98.75 100.00 100.00 98.75
Identify 9 touch on half-sphere 98.33 97.00 98.50 98.83 98.83 98.33 99.50 99.00 99.00 99.00 99.50 99.33
Order 3 coasters NO case 83.75 76.04 85.00 85.00 86.04 76.25 80.63 85.42 85.21 83.54 83.75 86.04
Order 3 creditcards NO case sorted 88.38 78.13 89.63 89.63 88.38 79.89 84.15 87.79 90.26 87.79 87.17 89.04
Order 4 creditcards NO case sorted 63.84 51.48 63.40 66.50 66.81 53.28 58.04 66.65 66.51 63.09 61.32 66.06
Order 4 creditcards WITH case sorted 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.23 99.49



Appl. Sci. 2021, 11, 6745 22 of 24

Table A3. Cont.

O B OB T OT R100 R1000 t Ot OR100 OR1000 All

Rotation interval half numeric 100.00 100.00 100.00 100.00 99.17 100.00 100.00 100.00 100.00 99.17 99.17 100.00
Rotation interval one numeric 99.17 99.17 100.00 99.17 99.17 100.00 99.17 100.00 100.00 100.00 100.00 100.00
Slide inside-out on desk surface 100.00 100.00 100.00 100.00 100.00 99.09 99.09 100.00 100.00 100.00 99.09 100.00
Slide outside-in ruler 100.00 100.00 100.00 99.09 99.09 100.00 100.00 99.09 99.09 100.00 100.00 99.09
session1 × 10 99.81 99.62 99.81 99.62 99.62 100.00 100.00 99.81 99.81 99.81 99.81 99.81
session2 × 10 99.62 98.87 99.25 98.87 99.06 99.62 99.06 99.06 99.25 99.62 99.43 99.25
session3 × 10 99.81 99.43 99.81 99.43 99.43 99.81 99.81 99.43 99.43 99.81 99.81 99.62
session4 × 10 100.00 100.00 100.00 99.43 99.62 100.00 100.00 99.25 99.25 100.00 99.81 99.43
session5 × 10 98.68 97.92 98.30 99.06 99.06 98.87 98.87 99.06 99.06 99.06 99.25 98.87
session6 × 10 99.25 99.25 99.25 99.25 99.25 98.87 99.06 99.25 99.25 99.25 99.06 99.25

Mean 91.99 90.10 92.38 93.36 93.34 90.88 92.97 94.47 94.02 93.25 93.07 94.19
Average rank 5.94 8.97 5.94 7.26 6.99 7.74 6.47 5.87 5.65 5.40 6.13 5.65

Table A4. Results for Stacking.

Stacking Stacking+

Count + Order Lego 98.00 98.00
Count 20 chips NO case ×30 sorted 77.60 76.17
Count 20 chips WITH case ×30 sorted 80.95 80.79
Count 20 papers ×10 83.33 83.81
Distance 3 mugs 10 distances 64.78 63.67
Distance 3 mugs grouped by material 99.00 100.00
Distance 7 slotting 100.00 100.00
Flip 10 creditcards NO case 87.73 86.82
Flip 10 creditcards WITH case 100.00 100.00
Flip 52 cards 98.18 98.18
Identify 10 creditcards NO case 88.18 88.18
Identify 10 creditcards WITH case 100.00 100.00
Identify 12 printed designs 100.00 100.00
Identify 12 touch on numpad 98.97 99.10
Identify 5 colors × 20 chips 94.58 96.25
Identify 6 tagged plastic cards 100.00 100.00
Identify 6 users by palm 94.29 95.24
Identify 6 users by touch behavior sorted 98.46 98.85
Identify 7 dominoes 100.00 100.00
Identify 9 touch on half-sphere 98.83 99.00
Order 3 coasters NO case 82.08 83.54
Order 3 creditcards NO case sorted 88.38 89.01
Order 4 creditcards NO case sorted 64.43 65.47
Order 4 creditcards WITH case sorted 99.49 99.49
Rotation interval half numeric 100.00 100.00
Rotation interval one numeric 100.00 100.00
Slide inside-out on desk surface 100.00 100.00
Slide outside-in ruler 100.00 100.00
session1 × 10 99.81 99.81
session2 × 10 99.43 99.43
session3 × 10 99.81 99.81
session4 × 10 99.81 99.81
session5 × 10 98.49 98.87
session6 × 10 99.25 99.25

Mean 93.94 94.07
Average rank 1.60 1.40
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