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Abstract
Resistance spot welding (RSW) is one of the most relevant industrial processes in different sectors. Key issues in RSW are 
process control and ex-ante and ex-post evaluation of the quality level of RSW joints. Multiple-input–single-output methods 
are commonly used to create predictive models of the process from the welding parameters. However, until now, the choice 
of a particular model has typically involved a tradeoff between accuracy and interpretability. In this work, such dichotomy 
is overcome by using the explainable boosting machine algorithm, which obtains accuracy levels in both classification and 
prediction of the welded joint tensile shear load bearing capacity statistically as good or even better than the best algorithms 
in the literature, while maintaining high levels of interpretability. These characteristics allow (i) a simple diagnosis of the 
overall behavior of the process, and, for each individual prediction, (ii) the attribution to each of the control variables—and/
or to their potential interactions—of the result obtained. These distinctive characteristics have important implications for 
the optimization and control of welding processes, establishing the explainable boosting machine as one of the reference 
algorithms for their modeling.

Keywords Explainable boosting machine · Pattern recognition · Quality assessment · Resistance spot welding · AISI 304 
austenitic stainless steel · Tensile shear load bearing capacity

1 Introduction

Resistance spot welding (RSW) is one of the primary manu-
facturing methods for joining thin-sheet metal components 
in the automotive industry [1–4]. Its popularity is mainly 
due to the significant advantages of the RSW process, such 
as high welding speed, no need for consumables, high pro-
ductivity at low cost [5, 6], and the possibility of applying it 

on a wide range of base metals—see, for instance, austenitic 
stainless steels (ASSs), on which RSW is widely used for 
metro and railway car manufacturing [7–9].

In such a competitive environment as the manufacturing 
sector, and, more specifically, in the automotive industry, 
the most outstanding advantage of all the above is precisely 
its high productivity. Nevertheless, RSW is not without its 
shortcomings, since, at the same time, it requires a very 
demanding control of the welding parameters.

From a strictly metallurgical and quality control stand-
point, structures with RSW joints are typically devised so 
that these RSW joints are loaded in shear when the parts 
are subjected to compression or tension loading [10]. In 
this regard, the static tensile shear test is the most used—
because of its simplicity [11]—to determine the strength of 
a RSW joint in the laboratory. In particular, the peak load 
value obtained during the test (the tensile shear load bear-
ing capacity (TSLBC)) is extensively used to estimate the 
quality of RSW joints [12–14].

As for the most important parameters of the RSW process, 
these include welding time (WT), welding current (WC), and 
electrode force (EF) [9, 15], as they significantly affect the 
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size of the weld nugget which, in turn, crucially influences the 
TSLBC [16, 17]—i.e., the mechanical properties and quality 
of RSW joints [18].

It is also important to note that, as pointed out by Zhou 
and Yao [19], the RSW process is very complex, involving a 
wide range of interactions between electromagnetic, thermal, 
mechanical, fluid flow, and metallurgical phenomena. Conse-
quently, recent developments in process analysis and quality 
control have focused on the obtention of predictive models 
aimed at both ensuring the integrity of the welded structure 
and improving welding production efficiency.

Comparative studies on predictive performance on RSW 
problems generally give black-box models as the top-perform-
ing algorithms [19–23]. This type of models provides powerful 
frameworks for prediction. Still, they often do not offer trans-
parency in their operation, i.e., the rationale behind the choices 
made by the algorithm is in many cases impenetrable, which, 
among other problems, makes decision-making and control 
difficult once an anomalous situation is detected.

Currently, along with the widespread adoption of artificial 
intelligence–based systems as decision support tools, explain-
able AI (XAI) has received considerable attention [24, 25]. 
Traditionally, a tradeoff has been considered to exist between 
accuracy and interpretability in the use of regression and clas-
sification algorithms. Hence, a significant part of XAI methods 
has been aimed at creating tools that help explain how high-
performance black-box models make decisions. Noteworthily, 
these XAI tools are now challenging the accuracy/interpret-
ability dichotomy in many applications [26]. More precisely, 
it is a fact that many of the simplest interpretable models that 
are inherently understandable by humans—such as decision 
trees or linear regression—do not capture the complexity of 
many real systems and thus degrade predictive performance 
compared to black-box models. However, there are other more 
sophisticated approaches known as glass-box models—spe-
cifically designed to be straightforwardly interpretable by 
humans—that are proving to predict as well—or even bet-
ter—than the best models to date in many applications, while 
allowing both global and individual explainability, which may 
be extremely useful for purposes such as validation and auto-
matic control of manufacturing processes.

In the literature, a wide variety of contributions have 
addressed quality control and process efficiency in RSW. 
Martín et al. [27] proposed a neural network–based approach 
for the prediction of TSLBC in RSW joints using WC, WT, 
and EF as input factors. Mousavi et al. [28] employed Taguchi 

method to design the experiments and Minitab software to 
analyze the effect of parameters such as WC density, WT, EF, 
and holding time after welding on tensile-shear strength of the 
RSW joint. Wang et al. [29] used ultrasonic signal time–fre-
quency features and the PSO-SVM method for RSW joint 
strength classification. Valaee-Tale et al. [30] presented an 
analytical model that considered the effects of nugget diameter, 
EF, base metal yield stress, sheet thickness, and joint fit-up 
to predict the occurrence of expulsion. Chen et al. [31] used 
a finite element tool to reveal the evolution of the thermo-
electric field and explain the reasons for improved weldability 
with a slightly concave electrode. Dejans et al. [32] proposed 
a methodology to reveal linear relationships between nugget 
diameter and amplitude at a given frequency in the acoustic 
emission signal. Deng et al. [33] simulated three thermoelec-
tric effects (Peltier, Thomson, and effects) and their impact on 
asymmetric weld nugget growth in RSW of aluminum. Martín 
et al. [13] built a regression model implementing polynomial 
expansion and elastic net regularization of the inputs WC, WT, 
and EF for TSLBC prediction and quality control classifica-
tion. Xia et al. [3] employed a multi-sensor monitoring system 
and a high-speed camera to develop an online RSW expulsion 
assessment tool from parameters such as instantaneous behav-
iors in dynamic resistance, EF, and electrode displacement 
signals.

Since the XAI approach is becoming increasingly popular 
in many application contexts [34, 35], and given that accord-
ing to the state-of-the-art analysis in the previous paragraph 
it has not yet been used for RSW quality control and process 
improvement, in the present work, we use it to explore the 
metallurgical problem of TSLBC prediction from the three 
key RSW parameters WT, WC, and EF. To that end, we 
chose the glass-box model algorithm known as explainable 
boosting machine (EBM) [36].

2  Experimental procedure

2.1  Materials and equipment

Table 1 summarizes the chemical composition of the AISI 
304 ASS sheets (thickness 0.8 mm) welded by RSW process. 
Table 2 reports the mechanical properties of the material.

The material was welded using 50-Hz single-phase alter-
nating current (AC) equipment through RWMA group A 

Table 1  Chemical composition 
of the AISI 304 ASS sheets 
(wt%)

C Al Co Cr Cu Mn Mo Nb
0.08 0.003 0.17 18.03 0.39 1.153 0.36 0.02

Ni Si Ti W P S V Fe
8.74 0.426 0.004 0.03 0.019 0.002 0.05 Bal
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class 2 water-cooled truncated cone electrodes with a face 
diameter of 4.5 mm.

2.2  Obtaining the tensile shear test specimens 
by RSW

The welding parameters controlled in the RSW process 
were—because of their proven relevance—[13, 27, 37] (i) 
WT—which varied from 0.24 to 0.04 s, with a 0.02 s step 
decrease; (ii) WC—which varied from 6.5 to 1.5 kA RMS 
(approximately) with a 0.5 kA RMS step decrease; and (iii) 
EF—which was tested at two different values: 1000 and 
1500 N.

The experiments were set up to sweep the welding param-
eter ranges described above. In particular, 242 (2 × 11 × 11) 
different possible welding configurations were considered, 
being a tensile shear test conducted on each spot-welded 
specimen. Recall that spot welding was conducted in accord-
ance with the procedure described in an earlier work [27] 
and following the ISO 14273 standard [38].

The weld nugget of a RSW joint has a characteristic 
shape with an as-cast dendritic microstructure. Figure 1 
shows different macro- and micrographs of RSW specimens 
obtained with different process parameters. More precisely, 
Fig. 1(A–D) corresponds to a high-heat input RSW joint 
obtained with a WT of 0.22 s, a WC of 5.51 kA, and an 
EF of 1500 N, and whose TSLBC—from the tensile shear 
test—is 6.44 kN. On their part, Fig. 1(E–H) corresponds to 
a low-heat input RSW joint obtained with a WT of 0.08 s, a 
WC of 3.41 kA, and an EF of 1500 N, and whose TSLBC—
from the tensile shear test—is 3.78 kN.

Notably, Fig. 1 illustrates two relevant phenomena:

 (i). The decisive influence of the heat input on the size of 
the weld nugget and, consequently, on the TSLBC. 
This can be clearly seen by comparing the high-heat 
input RSW joint from Fig. 1(B)—which exhibits a 
large weld nugget and a TSLBC of 6.44 kN—to the 
low-heat input RSW joint from Fig. 1(F)—whose 
weld nugget is significantly smaller and whose 
TSLBC is 3.78 kN.

 (ii). For the considered values of the welding param-
eters, no significant differences in grain size are 
observed, neither in the heat-affected zone (HAZ) 
nor in the weld nugget. In fact, comparison of grain 
size between Fig. 1(A)—HAZ of a high-heat input 

RSW joint obtained with WT = 0.22 s and WC = 5.51 
kA—and Fig. 1(E)—HAZ of a low-heat input RSW 
joint obtained with WT = 0.08 s and WC = 3.41 kA—
shows no significant differences. As for the weld 
nugget area, the differences in grain size between 
Fig. 1(C, D)—weld nugget of the high-heat input 
RSW joint—and Fig. 1(G, H)—weld nugget of the 
low-heat input RSW joint—are not significant either. 
This suggests that, to observe the increase in grain 
size with increasing heat input in both the HAZ and 
the weld nugget, as demonstrated by [10], higher 
WCs than those used in our experiments may be 
required—recall that WC is the key parameter in the 
heat generated by Joule effect.

2.3  Quality assessment from TSLBC values

Tensile shear tests were conducted on the 242 RSW speci-
mens at a crosshead speed of 2 mm/min, which allows con-
sidering the test as static [40, 41]. As a result, 242 TSLBC 
values were obtained.

JIS Z 3140 standard [42] sets the minimum value of the 
weld nugget diameter at 4.5 mm (when the sheet thickness 
is equal to 0.8 mm) to consider a RSW joint acceptable. 
By means of ultrasonic testing, we checked for this require-
ment on all samples. The transducer diameter selected for 
the ultrasonic test was equal to the aforementioned accept-
ance threshold [43], i.e., 4.5 mm. The transducer (with a 
frequency of 20 MHz) operated with a captive water column 
delay and a replaceable rubber membrane that facilitated 
coupling with the RSW joint surface. Importantly, the oscil-
logram of an acceptable RSW joint is characterized by a 
short echo sequence span, as the coarse as-cast dendritic 
microstructure of the weld nugget (Fig. 1) increases attenu-
ation. Note in Fig. 2 that the distance between consecutive 
echoes in an acceptable RSW joint is the combined thickness 
of the two welded sheets, since the ultrasonic beam reflec-
tions take place at the lower sheet’s bottom surface. On the 
other hand, an unacceptable RSW joint presents both prin-
cipal echoes of reflections occurring at the bottom surface 
of the lower sheet—which are produced by the portion of 
the ultrasonic beam that goes through the weld nugget—and 
one-layer echoes between the principal ones that are due to 
reflections at the interface between sheets—which are pro-
duced by the part of the ultrasonic beam that does not go 
through the weld nugget (Fig. 2) [13, 44].

In the shear tests described above, the minimum TSLBC 
obtained for a valid/acceptable RSW joint was 5.93 kN. 
Therefore, the minimum admissible TSLBC was set at 5.93 
kN (Fig. 2), which is even more conservative than the crite-
rion also established by the JIS Z 3140 standard [42] based 
on the TSLBC itself that, for a 0.8-mm sheet thickness (con-
sidering that the tensile strength of the base metal was above 

Table 2  Mechanical properties of the AISI 304 ASS sheets

Tensile strength 
(MPa)

Yield strength 
(MPa)

Microhardness 
(HV, 100 g)

Total elongation 
(%)

675 290 162 70
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Fig. 1  A Micrograph showing 
the HAZ and the weld nugget 
(WN) in a high-heat input RSW 
joint. B Macrograph showing 
the weld nugget (WN) size of a 
high-heat input RSW joint. C, 
D Micrographs showing the as-
cast dendritic microstructure of 
the weld nugget of a high-heat 
input RSW joint—D at higher 
magnification than C. E Micro-
graph showing the HAZ and the 
weld nugget (WN) in a low-heat 
input RSW joint. F Macrograph 
showing the weld nugget (WN) 
size of a low-heat input RSW 
joint. G, H Micrographs show-
ing the as-cast dendritic micro-
structure of the weld nugget of a 
low-heat input RSW joint—H at 
higher magnification than G. 
Electrolytic etching with oxalic 
acid according to ASTM A 
262–91 Practice A [39])

WN WNHAZ HAZ

WN WN(A)

(B)

(C)

(E)

(F)

(G)

WN WNHAZ HAZ

WN WN(A)

(B)

(C)

(E)

(F)

(G)

(D) (H)

Fig. 2  Diagram of the proce-
dure for assessing the quality of 
RSW joints from TSLBC values
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590 MPa), sets the minimum TSLBC at 3.53 kN × 1.6 = 5.65 
kN.

3  Theoretical background

3.1  Explainable boosting machine

The EBM [36] is a glass-box model specifically designed to 
obtain high predictive performance, comparable or superior 
to state-of-the-art machine learning methods, while being 
intelligible and explainable.
The EBM is inspired by the generalized additive models 
(GAMs) [45]. GAMs have the following structure:

where the model relates a response variable y to be pre-
dicted—assumed to follow some distribution of the expo-
nential family—with a set of predictor variables xj following 
the structure of Eq. (1). Note that g is a link function capable 
of flexibly adapting to the type of outcome required—typi-
cally different in regression and classification problems. In 
contrast to generalized linear models (GLMs), GAMs model 
the response variable as a sum of arbitrary univariate func-
tions that are not necessarily linear. In other words, the 
response is assumed to be a sum of effects by features, where 
the relationship of each variable with the output may be 
nonlinear. Typically, in GAMs, each function fj is modeled 
through spline functions.

The EBM is an efficient implementation of the GAM 
plus the interactions  (GA2M) algorithm [46], which allows 
multi-core and multi-machine parallelization [36]. The 
 GA2M algorithm includes basically two features to improve 
performance over GAM: (i) fj functions are not modeled 
through splines but through tree ensemble-based techniques 
such as bagging and gradient boosting, and (ii) GAM models 
are generalized to allow the detection of pairwise relevant 
interactions between variables and their inclusion in the pre-
dictive model (see Eq. (2)).

Both the inclusion of interaction terms in EBM models and 
the use of tree ensemble-based univariate functions instead of 
splines significantly increase their performance [36, 47–52]. 
Moreover, EBMs have the additional advantage that they are 
still interpretable. Through the visualization of the fj functions 
and the interaction terms, it is possible to reason about the 
contribution of each feature to the final prediction, both in 
isolation and in relation to its potential interactions with other 
variables—in case they exist and are relevant.

(1)g
(

E
[

y
])

= �0 +
∑

j

fj(xj)

(2)g
(

E
[

y
])

= �0 +
∑

j

fj(xj) +
∑

i≠j

fij
(

xi, xj
)

The fitting process of the fj functions is performed by 
restricting the training set to one feature at a time through 
a round-robin procedure with a very low learning rate, and 
by running boosting iterations over the dataset thousands of 
times. This approach renders irrelevant the order in which 
the features are chosen in the training process and reduces 
the effects of possible collinearity between variables. In 
addition, the use of gradient boosting with ensembles of 
shallow regression trees has been shown experimentally to 
give higher accuracy than the spline functions used in tradi-
tional GAM fitting [53].

The process of detecting interactions between variables 
in high-dimensional datasets can be expensive in both com-
putational and interpretation terms. Therefore, the  GA2M 
algorithm only includes those interactions that pass a given 
statistical test. Specifically, it uses an efficient algorithm, 
called FAST [46], to establish a ranking of the strength of 
the interactions; from the ranking, a greedy forward selec-
tion strategy is used until convergence, being selected in the 
model only those interactions that are relevant for prediction.

As we illustrate in our case study below, the EBM has 
implementations for both regression and classification, 
and provides two frameworks for interpretation: the global 
approach and the case-level one. As regards the global 
approach, the model allows for an additive decomposition 
of the response into easily understandable terms once the 
model is fitted. For example, one can determine (i) how 
each variable contributes to the final prediction through one-
dimensional feature functions, (ii) the impact of the relevant 
interaction pairs—if they exist—using two-dimensional 
functions, and (iii) the global estimates of the importance of 
each predictor in the model. From the case-level perspective, 
the above decomposition is performed at the level of each 
individual instance, thus allowing to identify the variables 
that were determinant for a specific prediction through their 
contribution scores. This aspect is a fundamental advantage 
in controlling manufacturing processes, since it sheds light 
on the cause of the deviations that led to a given result.

3.2  Computational experiments and description 
of the other regression and classification 
algorithms selected

Our computational experiments were structured around 
two main approaches: regression and classification. In both 
cases, the performance of the EBM model was compared 
with that of the most relevant set of algorithms according to 
the literature for the problem of quality control from weld-
ing parameters—which were used as a performance baseline 
[19, 21–23, 54]. Remarkably, in the classification approach, 
RSW joints were classified as valid if their TSLBC was 
equal to or greater than 5.93 kN, and as invalid otherwise. 
Please note that before training the algorithms, the dataset 
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was standardized (to obtain zero mean and unit variance 
in each variable), because some algorithms—e.g., support 
vector machines—are sensitive to the distribution of values.

Most regression and classification algorithms require 
choosing the values of a set of parameters known as tuning 
parameters or hyperparameters. In the present work, once 
the tuning parameters were chosen and the different models 
fitted, their comparison was conducted based on their test 
errors. To reduce bias in the estimation of the latter, nested 
cross-validation (NCV) was implemented [55, 56]. NCV 
involves applying cross-validation (CV) through two sequen-
tial loops: an inner loop for selecting the hyperparameters 
and an outer loop for computing the test error. In our experi-
ments, both loops—inner and outer—implemented tenfold 
CV. In the classification problem, due to an imbalance in 
the distribution of the two classes—the dataset contains sig-
nificantly more acceptable than unacceptable RSW joints—
stratified nested CV—a refinement specifically conceived 
to address the imbalance problem—was used. As for the 
evaluation metrics, regression models were compared using 
the mean squared error (MSE), and classification models 
by means of the classification error (complementary of the 
accuracy).

Specifically, the algorithms used were four ensemble 
algorithms (combination of weak learners to obtain a strong 
learner) based on decision trees (XGBoost, AdaBoost, gradi-
ent boosting machines (GBMs), and random forests (RFs)), 
support vector machines (SVMs), deep learning models 
(DLs), GAMs using smoothing splines), and linear regres-
sion with elastic net regularization. For algorithms with 
both regression and classification versions, the appropriate 
one was chosen for each case. The following is a summary 
description of the algorithms considered.

Boosting is one of the most widely used ensemble tech-
niques for both regression and classification due to its high 
performance in many domains. Boosting consists of obtain-
ing a strong classifier from the sequential combination of 
weak base learners. There are different alternatives and 
implementation nuances among the algorithms that use 
boosting as a primary construction mechanism [57]. In this 
work, three different boosting algorithms were used: Ada-
Boost [58], GBM [59], and XGBoost [60]. More precisely, 
AdaBoost was built using as weak learner three-level depth 
decision trees for regression and decision stumps for clas-
sification. Basically, in each iteration, the process consists 
of reweighting the training set so that those data that were 
misclassified in previous runs receive a higher weight in sub-
sequent iterations. The algorithm also estimates the learning 
parameter that weights the contribution of each new learner 
in the process. In the GBM algorithm, boosting is imple-
mented so that, at each iteration, the latest weak learner 
(deep regression trees for both regression and classification) 
is trained on the residuals obtained in previous iterations. 

The training process to minimize the loss function expec-
tation is performed iteratively using a stochastic gradient 
descent scheme. Eventually, the XGBoost algorithm—like 
the GBM—consists of an additive expansion of regression 
trees using boosting. However, compared to the GBM, it 
incorporates different mechanisms that enable parallelization 
and more efficient memory use, thus reducing computation 
times. Remarkably, although this is an algorithm originally 
designed for significantly larger datasets than the one in this 
work, previous experiments have also shown good results on 
small and medium-sized datasets of engineering problems 
in general [61–63] and welding processes in particular [21, 
64, 65].

In contrast to boosting, random forests [66] use deci-
sion trees as well, but in this case with a different ensemble 
technique: bootstrap aggregation (bagging) [67]. Bagging 
consists of combining the results obtained by different weak 
learners to later aggregate them by means of—generally—
averaging in regression and a voting system in classification. 
In addition to bagging, RFs also use the random subspace 
method to decorrelate trees to each other. RF is considered 
one of the best out-of-the-box algorithms due to its good 
predictive performance in many application contexts and its 
robustness to overfitting and possible internal correlations 
between explanatory variables.

In addition to ensemble approaches, we used other state-
of-the-art high-performing algorithms for regression and 
classification, i.e., SVMs, DL, GAMs, and linear models, 
with elastic net regularization.

SVMs [68] are very popular and robust regression and 
classification algorithms with excellent generalization per-
formance. They are based on constructing a hyperplane—or 
a set of hyperplanes—by maximizing the margin of separa-
tion between classes. When classes are not linearly separa-
ble, the original dataset is mapped into a higher-dimensional 
space using kernel functions.

DL is a machine-learning approach based on multilayer 
artificial neural networks widely used for its universal 
approximation capabilities [69]. DL models consist of sev-
eral interconnected layers of units, called neurons. A neuron 
is a non-linear function, i.e., an activation function, which 
takes as input the weighted sum of the outputs of neurons 
in the previous layer (plus a constant offset) and passes its 
output to the neurons of the following layer. Typically, DL 
models implement many hidden layers. In this work, we used 
the Fastai python library, which offers a friendly API for 
using the popular deep learning framework PyTorch [70]. 
Remarkably, Fastai specifically provides an architecture for 
working with tabular data (as our experimental dataset), 
facilitates the work with categorical and continuous vari-
ables, and the training of multilayer models (i.e., weights 
and offsets of neurons) using the stochastic gradient descent 
algorithm [71].
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GAMs are generalized linear models that model the vari-
able to be predicted as the sum of dependent functions of the 
regressors (along with a link function chosen for the type of 
problem) [45]. In GAMs, unlike EBMs, these functions are 
often regression splines.

Finally, we have included linear models with elastic net 
regularization [72] given their good predictive performance 
in the RSW quality prediction problem [13]. Regulariza-
tion is the most commonly used technique to overcome 
overfitting problems in linear regression. As for elastic 
nets, they constitute a specific regularization scheme that 
allows weighting between Lasso and ridge regularization. 
Therefore, elastic nets address both the problem of obtaining 
parsimonious models (variable selection) and the possible 
correlations between predictors.

4  Results and discussion

4.1  Comparative analysis for regression

Table 3 presents the results obtained for the regression prob-
lem of predicting the TSLBC from the key welding param-
eters WT, WC, and EF. The performance metric chosen was 
the MSE, which was calculated by means of tenfold nested 

CV. As previously stated, the performance of the regression 
EBM is compared to that of the best-performing regression 
algorithms in the literature.

The interpretation of Table 3 is as follows: the regression 
explainable boosting machine (MSE = 0.031 and std = 0.013) 
is the best performing algorithm for TSLBC prediction on 
the RSW dataset under consideration. Notwithstanding, 
it is closely followed by the regression gradient boosting 
machine (MSE = 0.033 and std = 0.015), the random for-
est for regression (MSE = 0.034 and std = 0.017), and the 
Regression XGBoost (MSE = 0.036 and std = 0.015).

4.2  Comparative analysis for classification

Table 4 summarizes the results obtained for the classifica-
tion problem of determining whether a RSW joint is valid 
or invalid. As previously explained, we defined these two 
classes in accordance with the TSLBC: a RSW is valid if 
its TSLBC ≥ 5.93 kN, and invalid otherwise. The perfor-
mance metric selected was the classification error, which 
was obtained by tenfold stratified nested CV. In this case, the 
performance of the classification EBM is compared to that 
of the best-performing benchmark classification algorithms.

The interpretation of Table  4 is as follows: in our 
RSW dataset, the best classification algorithm is the 

Table 3  Summary table of 
the results obtained for the 
regression approach. Regression 
algorithms sorted from lowest 
to largest mean MSE

MSE

Mean value Standard 
deviation

Explainable boosting machine (ExplainableBoostingR) 0.031 0.013
Gradient boosting machine (GradientBoostingR) 0.033 0.015
Random forest (RFR) 0.034 0.017
XGBoost (XGBoostR) 0.036 0.015
GAM 0.039 0.011
Deep learning 0.042 0.017
AdaBoost (AdaBoostR) 0.042 0.024
Support vector machine (SVR) 0.051 0.029
Linear regression with EN regularization (linear-EN) 0.118 0.049

Table 4  Summary table 
of the results obtained for 
the classification approach. 
Classification algorithms 
sorted from lowest to largest 
classification error

Classification error

Mean value Standard deviation

Deep learning 0.0658 0.0393
AdaBoost (AdaBoostC) 0.0658 0.0584
Explainable boosting machine (ExplainableBoostingC) 0.0697 0.0539
Random forest (RFC) 0.0697 0.0502
Log-GAM 0.0698 0.0507
Support vector machine (SVC) 0.0742 0.0252
Gradient boosting machine (GradientBoostingC) 0.0780 0.0589
XGBoost (XGBoostC) 0.0822 0.0608
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deep learning one (mean classification error = 0.0658, 
std = 0.0393), followed by the classification AdaBoost 
(mean classification error = 0.0658, std = 0.0584) and the 
classification explainable boosting machine (mean clas-
sification error = 0.0697, std = 0.0539).

4.3  Frequentist statistical tests

The traditional approach to compare the performance of 
different algorithms consists of applying classic frequen-
tist tests to their final results; this is known as the null 
hypothesis statistical test (NHST) paradigm. Neverthe-
less, in recent years, increasing criticisms have emerged 
against the frequentist approximation, being Bayesian 
tests proposed to overcome some of their limitations [73].

In the frequentist realm, two main types of tests are the 
most common: parametric and non-parametric tests. In 
both cases, a non-effect null hypothesis is assumed, and 
a NHST is performed. Hence, just a single probability 
value is computed and compared against the confidence 
coefficient of choice.

In the present contribution, the corrected paired Stu-
dent t-test was selected since, as stated in [74], it accounts 
for both the variability due to the choice of the training 
sets and that of the test sets, thus being less biased than 
ordinary tests of significance, and having the correct size 
and power.

4.3.1  Frequentist statistical analysis for regression

The pairwise results of the paired Student t-test calculated 
on the tenfold cross-validation results of the different regres-
sion algorithms selected are presented in Fig. 3. A signifi-
cant threshold value of 0.05 was selected. P-values lower 
than 0.05 are represented in green, and those above it are 
represented in red. Statistically significant differences exist 
between the EBM and XGBoost, GAM, DL, SVR, and linear 
regression, which may be interpreted as the EBM general-
izing better than these state-of-the-art algorithms.

4.3.2  Frequentist statistical analysis for classification

The pairwise results of the paired Student t-test calculated 
on the tenfold stratified nested CV results of the different 
classification algorithms selected are summarized in Fig. 4. 
The color scale used in Fig. 4 is the same as in Fig. 3. As 
it can be seen, for classification, there are no statistically 
significant differences between the different algorithms con-
sidered, at least for the level of significance chosen (0.05).

4.4  Bayesian statistical analysis

A Bayesian statistical analysis was also conducted to com-
plete the comparative analyses in the previous section (null 
hypothesis statistical tests defined to determine the signifi-
cance levels of Figs. 3 and 4). In the Bayesian approach, 

Fig. 3  P-values obtained for the 
regression problem using the 
corrected paired Student t-test 
(frequentist approach)
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a probability distribution is established on the parameter 
of interest. This type of test is easier to interpret since 
it estimates the probabilities of the hypotheses, allowing 
to distinguish between magnitude and uncertainty, among 
other advantages [73, 75]. Specifically, we used the Bayes-
ian correlated t-test for cross-validation on a single dataset 
to compare, on the regression approach, the differences 
between the two empirically found best-performing algo-
rithms—regression explainable boosting machine and 
regression gradient boosting machine. On its part, for 
classification, we used the same test and compared the 
best-performing classifier—the deep learning classifier—
to our explainable algorithm of interest: the classification 

explainable boosting machine—which happens to be the 
third best classifier on our dataset.

In the Bayesian framework, a region of practical 
equivalence (rope) can be defined: some limits of com-
parison for which we consider that the magnitude of the 
effect found is not relevant. In regression, the area of 
relatively no effect was defined with a limit difference 
of 0.005 in the MSE, which is approximately sensitive to 
relevant variations in the prediction of the first decimal 
place of the TSLBC. In the classification problem, the 
area of practically no effect was established for differ-
ences in accuracy of less than 1%—the most common 
threshold value in the literature.

Fig. 4  P-values obtained for the 
classification problem using the 
corrected paired Student t-test 
(frequentist approach)
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Fig. 5  Bayesian correlated t-test 
results for the two (empiri-
cally found) best algorithms for 
regression (left) and for the best 
classifier and the EBM in the 
classification approach (right). 
In both cases, three probabilities 
were estimated and plotted in a 
ternary graph: the probability 
that one of the algorithms is 
better than the other (left and 
right in each graph), and the 
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The results obtained are shown in Fig. 5. In the regression 
case (left in Fig. 5), the results show that the probability that 
the EBM is the best algorithm is 21%, the probability that it 
is the GBM is 12%, and that the probability that the differ-
ences are in the range of the rope is 67%. In the classifica-
tion case (right in Fig. 5), with the available evidence, the 
probability that Deep Learning is the best algorithm is 30%, 
that it is the EBM is 30%, and that there is no difference 
above the rope limits is 40%. The results from the Bayesian 
analysis—for both regression and classification—confirm 
again that the EBM has a very high probability of being 
either the best algorithm or to have a difference with the best 
algorithm that lies in the equivalence region—i.e., that it can 
be considered equivalent to the best algorithm. Therefore, 
from the results obtained with both statistical approaches, 
the conclusion to be drawn is that the use of the EBM does 
not statistically degrade the predictive accuracy (since it is 
either the best algorithm or equivalent to the best algorithm), 
while having the advantage of being interpretable, as we 
shall see in detail in the next section.

4.5  Global results for EBM and interpretation

The results of the analysis of the overall importance of the 
welding parameters (Fig. 6) show that the two variables that 

most influence the TSLBC are WC and WT, with EF and 
each of the pairwise interactions between the three welding 
parameters considered having a marginal influence on the 
TSLBC.

Also noteworthy is the outstanding importance of WC 
with respect to the rest of the variables analyzed, as it is 3.7 
times more important than the second most important vari-
able, which is WT. This result is consistent with the fact that 
WC is the only quadratic term in the Joule heating equation, 
which is what gives rise to the formation and growth of the 
weld nugget [13]. Therefore, since weld nugget size is the 
most critical determinant impacting TSLBC [16, 17], and 
WC is the most important parameter affecting weld nugget 
size [76, 77], WC is the most relevant parameter affecting 
the TSLBC.

Figures 7 and 8 clearly and intuitively represent the 
expected relationship between the welding process con-
trol variables and the response. They show that the aver-
age TSLBC value is increased or decreased as a func-
tion of the values of WC and WT. Figure 9 also shows 
that there is an interaction between WC and WT. This 
interaction slightly modulates the effect of the primary 
variables and increases the accuracy of the model. There 
is also a step effect that depends on the EF used in the 
experimental phase; nevertheless, its figure has not been 

Fig. 6  Overall importance 
(mean absolute score) of the 
different predictor variables 
considered in the EBM regres-
sion model built to predict the 
TSLBC. Recall that the EBM 
considered pairwise interactions 
between variables
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included for simplicity. The results show that, in general, 
as WC and WT increase—and thus heat input—TSLBC 
also increases. However, when the heat input is exces-
sive, the expulsion phenomenon occurs and, as a result, 
the TSLBC decreases [78, 79]. Note that, for high WTs, 
and irrespective of whether WC is high or low (i.e., for 
the average of all values of WC), increases in WT do not 
lead to significant increases in TSLBC (Fig. 8). However, 
if the focus is on the WC, and, more specifically, on the 
region of high WCs in Fig. 7, irrespective of whether WT 
is high or low (i.e., for the average of all values of WT), 
increases in WC lead to decreases in TSLBC. This behav-
ior is explained by the expulsion phenomenon—which 

is strongly influenced by the WC because of its impact 
on the heat generated by Joule effect as previously noted 
[18, 80–82]).

4.6  Analysis of individual results

As previously stated, the EBM algorithm allows for a case-level 
analysis in which, for each individual RSW joint, it is possible to 
determine the contribution of the value of each welding variable 
to the TSLBC obtained. This can be useful, for example, in fault 
diagnosis, to attribute a predicted TSLBC value of less than 5.93 
kN to one or more welding variables.

To illustrate the utility of the EBM as a fault diagnosis 
tool, two RSW joints with predicted TSLBC values of less 
than 5.93 kN are studied. Recall that the predicted TSLBC 
value is the sum of the values/contributions of each predic-
tor variable (the intercept being the average TSLBC value 
in the training set).

Figure 10 shows, for the first RSW joint studied, that 
the welding variable that “pulls down” the final predicted 
TSLBC value—and therefore the main responsible for the 
RSW joint being invalid—is the WT (which contributes by 
subtracting a value of 0.567 kN).

Figure 11 shows, for the second RSW joint studied, that 
the welding variable that “pulls down” the final predicted 
TSLBC value—and therefore the main responsible for the 
invalid status of the RSW joint—is the WC (which contrib-
utes by subtracting a value of 0.847 kN).

By way of summary, in our application example, the EBM 
has obtained—both for regression and classification—a predic-
tive performance as high as that of the best black-box algorithms 
to date, while allowing interpretation of the results obtained. 
In this regard, we have also illustrated its interest and potential 
both for the global analysis of the RSW process (process-control 
tool) and for case-level insights (fault diagnosis tool). Therefore, 

Fig. 8  Increase or decrease of 
the TSLBC with respect to the 
average TSLBC (score) of the 
dataset as a consequence of the 
individual increase of WT—
WT on the abscissa axis
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it may be time to start considering the EBM as the reference 
algorithm for the TSLBC-RSW problem, the one to be cho-
sen by default in the absence of further requirements. Besides, 
the use of this type of model may be potentially useful in other 
alternative ways (i) to capture patterns and bring to light new 
phenomena and (ii) to formulate hypothesis/theoretical models 
when the latter do not exist.

5  Conclusions

In this work, it is shown that the explainable boosting machine—
an interpretable algorithm—provides statistically as good or 
even better results for both regression and classification than 

the best-performing black-box algorithms proposed so far in the 
scientific literature for the RSW quality prediction problem. In 
particular:

• for the regression problem of predicting the TSLBC 
from the key welding parameters WT, WC, and EF, 
the regression EBM is the highest-performing algo-
rithm (mean MSE = 0.031, std = 0.013), followed by the 
regression GBM (mean MSE = 0.033, std = 0.015) and 
the regression RF (mean MSE = 0.034, std = 0.017), 
and

• for the classification of RSW joints as valid or invalid 
from their welding parameters WT, WC, and EF, the 
best-performing algorithm is the deep learning classi-
fier (mean classification error = 0.0658, std = 0.0393), 
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followed by the AdaBoost classifier (mean classifica-
tion error = 0.0658, std = 0.0584) and the classification 
EBM (mean classification error = 0.0697, std = 0.0539).

These results were analyzed statistically from both fre-
quentist and Bayesian perspectives. No statistically sig-
nificant differences were found either between the regres-
sion EBM and the second best-performing regressor, or 
between the classification EBM and the best-performing 
classifier with either approach.

Importantly, in addition to providing high levels of 
accuracy, EBMs have the additional advantage of being 
interpretable, both at the level of the overall behavior of 
the model and at the level of individual predictions:

• From the overall behavior perspective, in this work, 
the analysis of the relative influence of the welding 
variables on the TSLBC has indicated that WC and 
WT are the most relevant (WC being 3.7 times more 
important than WT). Besides, the analysis of interac-
tion effects has served to explore the nonlinear nature 
of the TSLBC response—related to saturation effects 
due to expulsion and/or quadric effects with respect to 
WC.

• At the level of individual prediction—i.e., when analyz-
ing the quality of a given RSW joint—the EBM allows 
to univocally determine how the value of each welding 
parameter contributed to the response obtained, thus 
being very useful for fault diagnosis purposes.

In a nutshell, the results of this work demonstrate that 
the EBM, due to its highest accuracy performance and high 
interpretability, is one of the most valuable approaches 
that can be currently used as a decision support tool for 
establishing RSW operating parameters, engineering fail-
ure analysis, and manufacturing quality control purposes.
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