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Semi‐solid flow battery and redox-mediated flow battery: 
two strategies to implement the use of solid 
electroactive materials in high-energy redox-flow 
batteries 
Edgar Ventosa1,2   

Implementing the use of solid electroactive materials in redox- 
flow battery (RFB) configuration is an appealing challenge since 
the resulting battery technologies benefit from the high energy 
density of solid materials and the independent scalability of 
energy and power of RFB configuration. In recent years, two 
different strategies have emerged to achieve this goal: i) the 
semi-solid flow batteries and ii) the redox-mediated flow 
batteries, also referred to as redox targeting or solid 
booster, each battery type having intrinsic advantages and 
disadvantages. In this perspective review, recent progress 
addressing critical factors for each technology is revised. In 
particular, chemical engineering aspects are of vital importance 
for further improvement and practical deployment of these two 
technologies. 
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Introduction 
The increasing need for energy storage has driven growth 
in the field of batteries, as they are nowadays used in 
multiple applications. Li-ion batteries (LiBs) dominate 
the market due to their energy density, energy efficiency, 
cycle life, and moderate cost. The irruption of electric 
vehicles has triggered an already-growing interest in this 
battery technology. The sharp increase in LiB production 

is driving a steady decrease in cost, but it has also raised 
concerns related to the availability of necessary elements, 
such as Co and Li, and environmental cycle life. These 
concerns together with the demanding requirements of 
emerging battery applications have brought much interest 
to alternative battery technologies. The redox-flow bat-
teries (RFBs) are a family of battery technologies that are 
featured by the fact that energy-storing materials are 
stored outside the battery cells offering distinct char-
acteristics [1]. The electroactive species are typically 
dissolved in an electrolyte that is stored in external re-
servoirs and pumped into an electrochemical reactor for 
energy conversion (electrical energy–chemical energy). 
Compared with LiBs, two intrinsic features are driving 
interest for RFBs: independent scalability of energy and 
power, and simple recyclability. On the other hand, 
practical energy density of RFBs is still far from the va-
lues achieved for LiBs. This disadvantage is due to the 
lower concentration of redox-active centers for dissolved 
species in an electrolyte, compared with that of solid 
particles. Despite incremental improvements in energy 
density have been achieved for RFBs, disruptive ap-
proaches were explored to boost it. The use of high-en-
ergy solid electroactive particles in RFB configuration is 
conceptually a simple idea. However, its implementation 
is not straightforward at all. Solid particles need to be 
electrically connected with the current collectors (elec-
trochemical reactor) for charge transfer to occur, but at the 
same time, active materials should be stored in the ex-
ternal reservoirs for power and energy to remain de-
coupled. Note that we do not include hybrid-flow 
batteries such as Zn-flow batteries since solid electro-
active species are stored inside the reactor. Generally, two 
major strategies are being followed to implement the use 
of solid materials in RFBs: i) the semisolid flow batteries 
(SSFBs) and ii) the redox-mediated flow batteries (RMFBs), 
also referred to as redox targeting or solid booster. The 
main difference between them relies on the fact that solid 
electroactive materials flow through the entire system in 
the form of slurries for SSFB (Figure 1a), while they are 
confined in the external reservoirs and dissolved species 
act as charge carriers (redox mediators) between reactor 
and reservoir for the case of RMFBs (Figure 1b). This 
short review article revises, from a personal perspective, 
recent progress on both types of RFBs addressing the re-
maining challenges. 
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Semisolid flow batteries 
In the SSFB, solid electroactive particles are mixed with 
conducting additive and electrolyte forming an elec-
trically and ionically conducting slurry that is referred to 
as semisolid electrode and used as an energy-storing 
fluid (Figure 1a). The pioneering work led by Chiang at 
MIT demonstrated the proof-of-concept for a Li-ion 
SSFB. Several studies extended the concept to different 
battery chemistries such as Na-ion [2], Li–S [4], and 
organic–redox materials [5], as well as aqueous-based 
electrolyte [6]. Besides the higher energy density, 
semisolid electrodes also enable the use of low-cost 
microporous separators, since solid electroactive particle 
are confined in their corresponding compartment by size 
exclusion. It should be noted that, in case of nonaqueous 
electrolyte, ion-selective membranes are not just more 
expensive, but their performances are poorer. Thus, the 
use of semisolid electrodes in nonaqueous electrolytes 
overcomes the challenges of the membrane for non-
aqueous RFBs. Regardless the nature of the electrolyte, 
all SSFB chemistries share common challenges. The 
most important engineering aspects for SSFBs are re-
lated to the electrochemical reactor. Nevertheless, re-
cent progress addressing the main challenges discussed 
below is sorted by battery key performance indicators to 
be improved. 

Minimize energy consumption for continuous pumping 
of slurries 
Continuous pumping of dense slurries consumes energy- 
reducing energy efficiency of the system. Thus, im-
proving this aspect is a key aspect for practical devel-
opment of SSFBs. In this sense, different strategies have 

been proposed in the literature. I) Intermittent-flow 
operation, in which the pump is switched on inter-
mittently reducing the pumping consumption [7]. II) 
The gravity-induced flow-battery architecture represents 
a family of approaches to simpler, passively driven, low- 
dissipation flow for semisolid electrodes [8]. III) Im-
proving rheological properties by adding chemical sta-
bilizers in the formulation of semisolid electrodes [9,10]. 
IV) Addition of redox mediators that contribute to 
charge transport [11••,12•], which may enable reduction 
of carbon content improving flowability and ionic con-
ductivity. An alternative to avoid continuous pumping is 
the use of semisolid electrode in static batteries. While 
the company 24 M employs nonflowable semisolid 
electrode to increase the areal capacity of the battery 
cells (24M Technologies, https://24-m.com/), and our 
group has exploited the use of semiflowable semisolid 
electrode to facilitate the recycling of static bat-
teries [13]. 

One important practical point for SSFBs that remains 
unaddressed is the shunt currents when multiple cells in 
a cell stack are used. It is expected that this effect for 
SSFB is stronger than that experienced for conventional 
RFBs, which may lead to a significant decrease in energy 
efficiency. Intensive attention to this point is required. 

Increase specific power to decrease upfront cost of the 
system 
Despite that the use of low-cost microporous separator 
reduces the upfront cost of the reactor per unit of area, 
the operating current density (mA cm−2) and the specific 
power (W cm−2) will determine whether the final power 

Figure 1  
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Schematic representation of (a) the SSFBs and (b) the RMFBs. 
Adapted with permission from Refs. [2,3]. 
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cost for SSFBs is lower than that of conventional RFBs. 
That is, power capacities directly determine the size of 
the electrochemical reactor to reach a target power, for 
example, 1 kW. Thus, the power cost (contribution of 
the electrochemical reactor) is strongly dependent on 
power capability. On the other hand, ion-selective 
membrane is the most expensive electrode of the elec-
trochemical reactor. Thus, exchanging ion-selective 
membrane for microporous separators will lead to a sig-
nificant decrease in power cost. This decrease will en-
able systems using microporous separators to operate at 
lower current density (large reactor). If the power cost is 
estimated as a function of the current density for systems 
based on ion-selective membrane and microporous se-
parators, one can determine which is the minimum 
current density for a microporous separator-based system 
to have a lower power cost than an ion-selective mem-
brane-based system operating at a given current density. 
To give a general idea, it was estimated that a minimum 
current density of 10 mA cm−2 is necessary for the power 
cost of SSFBs (1.2 V) to be lower than conventional all- 
vanadium RFBs operating at 100 mA cm−2 [14•]. In 
other words, the lower cost of microporous separator al-
lows the use of 10 times more area (more separator, 
current collectors) to deliver the same power. Several 
studies have focused on tackling this issue. I) Exploring 
different types of electrically conducting networks, for 
example, nanotubes [15] and superconcentrated elec-
trolytes [16]. Rheological properties should be in-
vestigated in the latter case. II) The addition of redox 
mediators proposed in refs. [11••] and [12•] could result 
in a reduction of carbon content and thus increase the 
ionic conductivity without compromising electron 
transport. III) Reactor geometry, for example, including 
3D-printed conductive static mixers [17] and the use of 
tubular geometries [18], have been shown to play an 

important role. IV) Removal of carbon additive in the 
formulation of semisolid electrodes combined with the 
use of 3D current collectors [19••] (Figure 2). It should 
be noted that decrease in viscosity due to the lower 
carbon content can outweigh the increase in pressure 
drop due to the 3D current collector. Improvements of 
engineering aspects of the cell architecture are of vital 
importance, requiring much effort to be devoted, since 
many parameters can be optimized, even for conven-
tional SSFB configuration, for example, reducing thick-
ness while avoiding an increase in pressure. 

Prevent electrolyte decomposition to increase cycle life 
and energy efficiency 
The most widely used carbon additive is Ketjen black 
EC-600, in which the specific surface area is 1.200 m2 

g−1. As a result, the electrochemical surface area is larger 
than that of conventional RFBs. In addition, electrodes 
are ‘mobile’, so that the total ‘fresh’ surface area of 
the entire electrode is huge compared with conventional 
RFBs. The former point leads to promoted water split-
ting in aqueous media, while the latter results in en-
hanced SEI formation in nonaqueous electrolytes. 
Removal of carbon additive from semisolid electrode 
combined with the use of 3D current collectors explored 
in Ref. [19••] is a promising approach to address the 
issues. Development of new materials that op-
erate within the stability window of the electrolyte is a 
suitable approach [20], as demonstrated by Chen et al. 
by implementing the use of high-energy-density 
CuSi2P3 [10], as well as implementation of new elec-
trolytes having large stability window such as super-
concentrated electrolytes [21•]. And changing the nature 
of the carbon additive has also shown that hardly ac-
cessible materials for SSFBs such as SiOx can be 

Figure 2  
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Schematic representations of conventional SSFB configuration in which the slurries contain carbon additive and proposed concept in which slurries 
do not contain carbon additive and 3D current collector is required. 
Adapted with permission from Ref. [19]. 
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successfully lithiated using the appropriate network of 
carbon additive [15]. 

Search for new suitable chemistries for semisolid flow 
batteries 
Much efforts are focused on developing new chemistries 
that are more suitable in SSFB configuration. For ex-
ample, aqueous Zn–MnO2 is an extremely cheap 
chemistry [22]. The implementation of these chemis-
tries in RFB configuration that enables reducing the cost 
of power for long storage applications would result in a 
very suitable and cheap technology for storing energy for 
long periods of times. On the other hand, Si-based [15] 
and phosphorus-based [10] SSFBs pave the way toward 
high-energy-density nonaqueous SSFB. Last but not 
least, an important example is the implementation of 
sustainable organic-based solid materials bearing in 
mind the importance of abundance and accessibility of 
raw materials [5,11••]. 

Redox-mediated flow batteries 
Also referred to as redox-targeting and solid-boosted 
flow batteries, solid electroactive particles in RMFBs are 
confined in the external reservoirs (Figure 1b). Electro-
active species dissolved in the electrolyte carry charges 
between solid electroactive particles confirmed in the 
external reservoir and electrodes in the battery cells. 
Despite the pioneering works were conducted using 
nonaqueous electrolytes [23–25], this short review fo-
cuses on recent progress achieved in aqueous media 
since the need for ion-selective membranes that perform 
poorly in nonaqueous media is the main challenges in 
nonaqueous RMFBs. It should be noted that im-
plementation of redox-mediated concept RFB archi-
tecture using microporous separators is possible through 
the use of colloidal redox polymer dissolved in electro-
lyte [26]. Thus, the emphasis of RMFB on aqueous 
systems is a personal perspective. 

Since RMFBs employ the conventional configuration of 
RFBs, the most important engineering aspects for 
RMFBs are related to the external reservoirs. The key 
processes related to external reservoirs are here sorted 
into three categories as follows. 

Spontaneous and reversible charge transfer between 
dissolved species and solid electroactive materials 
Intrinsic thermodynamics and kinetics aspects of charge- 
transfer reaction between dissolved species and solid 
electroactive particles confined in the reservoirs are cri-
tical for this technology. Understanding these aspects is 
fundamental to achieve progress for RMFBs. Examples 
include the following studies. Wang et al. demonstrated 
that the thermodynamics shift of equilibrium potential 
of the redox electrolyte enables the use of one single 
redox mediator for both the charge and discharge pro-
cess, enhancing voltage efficiency [27••]. Our group 

showed that opposite shift in redox potential of redox 
electrolyte and solid electroactive materials with the 
concentration of the salt makes certain pairs of redox 
mediator/solid booster very sensitive to parameters [3•]. 
Peljo et al. [28] investigated the influence of adding 
carbon additive in charge-transfer kinetics for the solid 
booster package. The addition of less than 10% CNT to 
the solid booster material promoted the charge transfer 
and improved the utilization rate of the solid booster. 
Importantly, research methodologies need to be stan-
dardized for the study of intrinsic properties. Re-
commendations are i) the use of techniques that provide 
redox potentials at equilibrium for evaluating thermo-
dynamics aspects, instead of cyclic voltammetry [3], and 
ii) the use of scanning electrochemical microscopy to 
extract intrinsic kinetics properties [29]. 

Engineering aspects of the external reservoir 
While these aspects may not be so critical at lab bench 
scale for proof-of-concept studies, efficient packaging of 
solid electroactive materials in the reservoirs is of great 
importance, especially when upscaling is aimed. 
Particles should be densely packed to maximize energy 
density, while facile and homogeneous flow of redox 
electrolyte should be maintained. In this regard, there 
are two relevant works. On the one hand, dense pellets 
of LiFePO4 with controlled total porosity, obtained by 
spark plasma sintering using NaCl microcrystals as hard 
template, were used to investigate the influence of 
booster porosity in the kinetics [30•]. On the other hand, 
the influence of several experimental conditions for a 
packed-bed flow of solid electroactive materials was 
studied [31•]. Intensive efforts should be devoted for 
the engineering of the solid-containing reactor for this 
battery technology to move toward commercialization. 

New chemistries suitable for redox-mediated flow 
batteries 
Since the performance of a RMFB is dependent on the 
thermodynamics and kinetics of charge-transfer reaction 
between redox electrolytes and solid electroactive ma-
terials, exploring new chemistries (different redox 
mediators and solid boosters) is necessary to push the 
boundaries of RFB [32–34]. The generated knowledge 
should enable the demonstration of full cell having solid 
electroactive materials in both compartments, since at 
the moment, there are only few examples in aqueous 
media [35•,36•]. Our groups demonstrated a RMFB 
using Ni(OH)2 and metal hydride as solid electroactive 
materials (Figure 3a) achieving energy-density values of 
128 Wh L−1 and having the theoretical values of 
378 Wh L−1 (Figure 3b) [37••]. These promising values 
of energy density for aqueous systems could open the 
door for RFB to application currently. 

As for SSFBs, implementation of sustainable organic- 
based solid electroactive materials bearing in mind the 
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importance of abundance and accessibility of raw mate-
rials should be pursued when developing emerging 
technologies [36•,38,39]. In addition, it is worth noticing 
efforts for extending the working principle of RMFB to 
other aqueous-flow concepts such as thermal-to-elec-
trical energy conversion [40], hydrogen [41–44], and 
ammonia production [45]. 

Conclusions and outlook 
Despite that the ultimate goal of achieving high-energy 
flow batteries is common, the radically different strate-
gies followed by SSFBs and RMFBs for implementing 
the use of solid electroactive materials lead to intrinsic 
advantages and challenges. At the moment, SSFBs and 
RMFBs appear to be more appealing for nonaqueous 
and aqueous electrolytes, respectively, due to the types 
of membranes required for each case. Confinement of 
electroactive species by size exclusion using micro-
porous separator is of great interest for nonaqueous flow 
batteries. On the other hand, deployment of conven-
tional RFB-cell architecture enabled by confinement of 
solid particles makes upscaling of RMFB more feasible 
for aqueous electrolytes. Thus, SSFBs and RMFBs are 
likely not competitors, but they are meant to cover dif-
ferent applications in future. Nevertheless, both families 
of batteries are still at their infancy, and much work, 
especially at chemical engineering aspects, is required to 
achieve further progress and the true practical potential 
of these technology. These key aspects to be addressed 
are grouped as follows: 

SSFBs:  

• To minimize energy consumption for continuous pumping of 
slurries.  

• To increase specific power to decrease upfront cost of the system.  
• To prevent electrolyte decomposition to increase cycle life 

and energy efficiency. 

RMFBs:  

• To improve the intrinsic kinetics of charge-transfer reaction 
between redox mediator and solid booster.  

• To address engineering aspects of the external reservoir (e.g. 
increase the density of the booster package, the flowability 
through the booster package, the mechanical stability of the 
booster package, and the charge-transfer rate). 
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