
Talanta 253 (2023) 124021

Available online 17 October 2022
0039-9140/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A new multi-factor multi-objective strategy based on a factorial 
presence-absence design to determine polymer additive residues by means 
of head space-solid phase microextraction-gas 
chromatography-mass spectrometry 

Lucía Valverde-Som a, Ana Herrero a, Celia Reguera a, Luis Antonio Sarabia b, María Cruz Ortiz a,* 

a Department of Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain 
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A B S T R A C T   

A new multi-factor multi-objective strategy to approach the joint assessment of the effect of six experimental 
factors in the determination by head space-solid phase microextraction-gas chromatography-mass spectrometry 
(HS-SPME-GC-MS) of eight different additives commonly used in the plastic packaging manufacturing is pro-
posed in this work. Five HS-SPME experimental factors, both qualitative and quantitative, are explored: the type 
of fiber, addition of salt, extraction and desorption time, and extraction temperature. The effect of these factors is 
studied through a factorial presence-absence model, that include interactions, using a D-optimal design. As a 
result, the number of experiments is reduced from 128, full factorial design, to 14. The effect of carrying out the 
measurements in different experimental sessions is considered by including a blocking factor. The response for 
each compound is estimated in the experimental domain and then the best experimental conditions are chosen by 
using Pareto front. Parallel coordinates are employed to show the conflicting conditions intrinsic to a multi- 
objective analysis when compounds of different nature are extracted by HS-SPME. Parallel factor analysis 2 
(PARAFAC2) decomposition is used because it makes the determination of target compounds in the presence of 
unknown interferents possible, which enables the unequivocal identification of target compounds according to 
official regulations. The developed method is applied to determine 2,6-di-tert-butyl-4-methyl-phenol (BHT), 
benzophenone (BP), bis(2-ethylhexyl) adipate (DEHA), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), 
dibutyl phthalate (DBP), benzyl butyl phthalate (BBP) and bis(2-ethylhexyl) phthalate (DEHP). The level of these 
compounds found in nine types of bottled natural still and sparkling mineral waters is very low, so the com-
pounds were not present in quantities that may be injurious to human health.   

1. Introduction 

Solid phase microextraction (SPME) is a sample preparation tech-
nique of such a nature as to allow extract and concentrate analytes in the 
sample. It does not require long extraction times and large amounts of 
solvents to maximize recovery, as the most of extraction techniques 
commonly used to isolate target analytes, in fact, it is relatively fast and 
uses no extraction solvent. Likewise, SPME can handle small sample 
volumes (whether solid, liquid or gaseous samples) and is easily auto-
mated for high-throughput analysis, e.g. coupled to GC-MS or LC-MS 
[1]. Reviews of SPME can be found in literature [2,3], where recent 
applications and advances of the extraction technique are reviewed and 

discussed. 
However, a limitation of the SPME method is that each application 

requires its own separate method development procedure since the 
extraction conditions have to be suitable for all of the target analytes in 
the sample matrix. There are many parameters (such as mode of 
extraction, fiber coating or extraction and desorption conditions) that 
have to be set and optimized during SPME method development 
depending on the sample matrix and on the properties of the target 
analytes [4,5]. In addition, sample modifications, including salt addition 
or pH adjustment, are usually performed to improve transfer of the 
target analytes from the sample to the headspace when the headspace 
(HS) extraction mode is used. 
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Therefore, to study a large number of experimental variables when 
developing a SPME method is necessary [5]. The conventional ‘one--
variable-at-a-time’ approach [6], where the variables are analysed by 
changing one factor at a time, keeping other variables constant, do not 
address interactions among variables, which are expected to be signifi-
cant [7]. So, multifactorial statistical approaches such as 
design-of-experiments methodology is particularly helpful [8,9]. 

Nowadays, identification of the main dependent factors which are 
supposed to affect the most the analysis, considering a limited number of 
levels of those experimental factors, is increasingly often a common 
approach in the development of novel SPME methods [10–12], in 
HS-SPME-GC-MS too. Recently, a Box-Behnken design is used by Bian-
colillo et al. [13] to optimize sample temperature, sample conditioning 
time and extraction time in the study of organosulfur volatile profiles of 
Italian red garlic, or by Muñoz-Redondo et al. [14] to optimize extrac-
tion temperature, extraction time, ionic strength and dilution of the 
sample for the analysis of terpenoids in sparkling wines. A central 
composite design is used by Pico et al. [15] to optimize three experi-
mental factors (sample quantity, extraction temperature and extraction 
time) in the determination of volatile compounds in blueberries by 
SPME-GC-MS. On the other hand, Vieira et al. [16] use a definitive 
screening designs, a three-level screening design, to analyse eight factors 
(degas, sample volume, addition of salt, type of fiber, agitation, 
pre-incubation time, extraction time and extraction temperature) in the 
analysis of key flavour compounds in wort and beer by 
HS-SPME-GC-MS. 

The more factors and factor levels are considered in the optimization 
study, the greater the number of experiments required in the experi-
mental designs. D-optimal designs [17], based on the D-optimality 
concept, have proved to be a very suitable tool for approaching this issue 
because they are chosen when the classical designs cannot be used, such 
as when the number of experiments is too large [7,18–20]. 

In addition, as previously stated, the selected conditions have to be 
suitable for all the target analytes since they may be present simulta-
neously in a sample; therefore, a multi-target analysis has to be 
considered [21]. However, optimal conditions are often not common 
and conflict with each other; the greater the number of analytes are, the 
more likely the conditions are to be contradictory. Different methods 
have been proposed to perform the optimization of multiple responses 
with the aim of choosing a good enough alternative from several pos-
sibilities. Examples of the use of Derringer’s desirability function [22] 
for multi-target optimization in SPME can be found in literature [14,15, 
23], as well as of the Pareto optimal front approach [17,24,25]. 

To quantify the analytes, a multi-way technique has also been used. 
PARAFAC (parallel factor analysis) [26] or PARAFAC2 [27,28] 
methods, which have the second-order advantage, makes it possible to 
determine target compounds in the presence of non-calibrated inter-
ferents. Both methods have proved very useful for solving the interfer-
ence of non-target compounds and/or unexpected interferents [29], in 
the optimization of SPME procedures too [23,30], deriving a powerful 
tool from their combination with D-optimal designs [7,31,32]. PAR-
AFAC2 is the structural model appropriate for handling shifts in the 
chromatographic mode, as justified in Annex. 

Multivariate curve resolution coupled to alternating least squares, 
MCR-ALS, is an alternative when, because of a serious trilinearity fail-
ure, the PARAFAC or PARAFAC2 structural models are not suitable to 
describe the experimental data tensor [33,34]. As in all bilinear models, 
MCR-ALS has rotational ambiguity, i.e. the solution obtained is not 
unique and then there is no guaranty that it matches with the chro-
matographic and/or spectral profiles of the analytes. Methods to assess 
this ambiguity have been newly developed [35,36]. In addition, in each 
particular case, if the knowledge about the structure of the data is used 
and appropriate constraints are imposed, it is possible to reduce that 
ambiguity [37]. 

A methodology that combine D-optimal design, multi-objective 
analysis and PARAFAC2 was developed in this work to assess the 

relative effect of six experimental factors on nine responses in the 
determination of eight polymer additive residues (and the internal 
standard) in bottle natural still and sparkling mineral waters by HS- 
SPME-GC-MS. Applications of HS-SPME for the analysis of water sam-
ples can be found in literature [38,39]; some of them dedicated to the 
determination of some plastic additives (plasticizers, stabilizers …) in 
bottled water, which may come from migration during storage or the 
manufacturing process itself [40], together to other non-intentionally 
added substances [41]. 

The developed procedure was applied to determine eight different 
additives commonly used in the packaging manufacturing: 2,6-di-tert- 
butyl-4-methyl-phenol (BHT), used as an antioxidant; benzophenone 
(BP), which is a UV stabilizer that protect the polymer from UV light- 
induced degradation; and an adipate, bis(2-ethylhexyl) adipate 
(DEHA), and five phthalates, diethyl phthalate (DEP), diisobutyl 
phthalate (DiBP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP) 
and bis(2-ethylhexyl) phthalate (DEHP), which are plasticizers. These 
compounds may present a risk to public health, as in the case of some 
phthalates which have been demonstrated to be endocrine disruptors. 

2. Material and methods 

2.1. Chemicals 

Benzophenone (BP, CAS no. 119-61-9, purified by sublimation, ≥
99% purity), benzyl butyl phthalate (BBP, CAS no. 85-68-7, analytical 
standard, ≥ 98% purity), bis(2-ethylhexyl) adipate (DEHA, CAS no. 103- 
23-1, ≥99% purity), bis(2-ethylhexyl) phthalate (DEHP, CAS no. 117- 
81-7, analytical standard, ≥ 98% purity), 2,6-di-tert-butyl-4-methyl- 
phenol (BHT, CAS no. 128-37-0, ≥99% purity), dibutyl phthalate 
(DBP, CAS no. 84-74-2, analytical standard, ≥ 98% purity), diethyl 
phthalate (DEP, CAS no. 84-66-2, 99.5% purity), diisobutyl phthalate 
(DiBP, CAS no. 84-69-5, 99% purity), and diisobutyl phthalate-3,4,5,6- 
d4 (DiBP-d4, CAS no. 358730-88-8, ≥98% purity), used as internal 
standard (IS), were purchased from Sigma-Aldrich (Steinheim, Ger-
many). Granular sodium chloride (CAS no. 7647-14-5), in glass 
container, was purchased from Avantor Performance Materials (Center 
Valley, PA). Acetone (CAS no. 67-64-1), methanol (CAS no. 67-56-1) and 
n-hexane (CAS no. 110-54-3), for liquid chromatography Lichrosolv® 
were from Merck KGaA (Darmstadt, Germany). A Milli-Q gradient A10 
water purification system from Millipore (Bedford, MA, USA) was used 
to obtain Milli-Q water. 

Helium (99.999% purity, ALPHAGAZ™ 1, Air Liquide, Madrid, 
Spain) was used as the carrier gas. 

2.2. Standard solutions 

Stock solutions of BHT at 2700 mg L-1, of DEP, DiBP, DEHA at 2000 
mg L-1, of BP at 1000 mg L-1, DBP and DEHP at 700 mg L-1 and of DiBP-d4 
and BBP at 500 mg L-1 were prepared individually in methanol. All in-
termediate standard solutions were prepared in methanol. The final 
solutions were prepared from 50 μL of the last intermediate solution by 
dilution to 10 mL with Milli-Q water or saturated sodium chloride Milli- 
Q water. These final solutions were put into 20 mL glass vials for SPME. 

All the stock and intermediate solutions were under gravimetric 
control, to verify that the solvent has not evaporated, and stored in 
crimp vials, protected from light, at 4 ◦C. All intermediate and final 
solutions were prepared daily. 

2.3. Bottled water samples 

Seven bottled natural mineral still waters and two carbonated waters 
of different commercial brands were purchased at local stores (Burgos, 
Spain). There were analysed still and sparkling waters bottled in 
different containers: i) glass, ii) transparent polyethylene terephthalate 
(PET), iii) colour PET, and iv) recycled PET (RPET), with different 
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percentages of recycled plastic (25%, 50% and 100%). Table 1 shows the 
description of the nine studied samples; three bottles of each sample 
(Di_j) were analysed. 

Prior to analysis, carbonated water samples were placed in an ul-
trasound bath and left for 60 min. Every sample was saturated with 
sodium chloride and then 10 mL of the saturated solution with 2 μg L− 1 

of IS was placed into a 20 mL glass vial for SPME. 

2.4. Instrumentation 

All chromatographic separations were performed using an Agilent 
6890N gas chromatograph with a split-splitless injector, coupled to an 
Agilent 5975 mass spectrometer detector with a single quadrupole mass 
analyser (Agilent Technologies, Palo Alto, CA, USA). A glass liner for 
SPME (0.75 mm ID) was used. The analytical column was a capillary 
column with dimensions of 30 m × 0.25 mm inner diameter × 0.25 μm 
film thickness and coated with a (5%-phenyl)-methylpolysiloxane sta-
tionary phase (Agilent HP-5MS Ultra Inert column, J&W Scientific, 
Folsom, CA, USA). The SPME procedure was performed using a TriPlus 
autosampler equipped with a SPME module (Thermo Scientific, Milan, 
Italy). Two fibers were used for the SPME: polydimethylsiloxane/ 
divinylbenzene (PDMS/DVB, 65 μm film thickness, fiber 1) and 
divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 
50/30 μm film thickness, fiber 2); both were supplied by Supelco (Bel-
lefonte, PA, USA). 

2.5. HS-SPME-GC-MS experimental procedure 

Before the first use, both fibers were conditioned according to the 
specifications of the manufacturer (fiber 1: 250 ◦C for 30 min; fiber 2: 
270 ◦C for 30 min). Different methods were created according to a D- 
optimal experimental design. The incubation time was maintained at 2 
min in all experiments. The extraction temperature and the extraction 
and desorption time were changed based on the corresponding experi-
mental plan. Both incubation and extraction steps were carried out with 
constant stirring. The injection port temperature for fiber 1 was 250 ◦C, 

and 270 ◦C for the second one; the depth of penetration of the needle in 
the injector was 27 mm. Helium was used as the carrier gas at a flow rate 
of 1.3 mL min− 1 and the initial pressure was set at 69.8 kPa. 

The oven temperature was 40 ◦C for a certain time after injection (2 
or 5 min according to the experimental plan), as a function of desorption 
time and then was increased at 20 ◦C min− 1 to 250 ◦C, which was held 
for 1 min. That temperature was ramped again at 10 ◦C min− 1 to 280 ◦C, 
which was held for 1 min. The run time was 20.50 min for 5 min 
desorption time and 17.50 min for 3 min. In all experiments, a post-run 
step was carried out at 300 ◦C for 3 min. 

After each extraction/desorption process, fibers were cleaned-up at 
their corresponding conditioning temperature for 6 min. At the begin-
ning and at the end of each chromatographic sequence, system blanks 
(vials with no solution) were injected to control the clean-up of the 
whole HS-SPME-GC-MS system. 

The mass spectrometer operated in the electron impact (EI) ioniza-
tion mode at 70 eV. The transfer line temperature was set at 300 ◦C, the 
ion source at 230 ◦C and the quadrupole at 150 ◦C. After a solvent delay 
of 9.4 min or 12.4 min, according to the desorption time, the data were 
acquired in single ion monitoring mode using the eight acquisition 
windows which are shown in Table 2. When desorption time was set at 2 
min, 3 min must be subtracted from the start time of each acquisition 
window since the injection time was shortened by up to 3 min. 

Bottled water samples were saturated with sodium chloride and 
analysed using a DVB/CAR/PDMS fiber, extraction temperature of 
80 ◦C, extraction time of 40 min and desorption time of 5 min (condi-
tions obtained from the experimental design). 

The laboratory glassware used throughout the work was thoroughly 
cleaned twice with three solvents (n-hexane, acetone and methanol, in 
this order) and plastic consumables were avoided as far as possible. 

2.6. Samples and data arrays 

The GC-MS data recorded in the different steps of the study were 
arranged in several data arrays, for each chromatographic window after 
baseline correction, in a three-way array X of dimension (I × J × K); the 

Table 1 
Information regarding the bottled natural mineral water samples and packaging.  

Sample code Packaging Waters 

Material Volume (mL) Colour Recycled (%) Cap colour 

D1_1 RPET 750 Blue 100 White Still 
D1_2 RPET 500 Uncoloured 100 Red Still 
D1_3 PET 2000 Uncoloured – Red Still 
D2_1 RPET 1500 Blue 50 White Still 
D2_2 RPET 500 Uncoloured 50 Blue Still 
D2_3 RPET 500 Uncoloured 25 Grey Still 
D3_1 PET 330 Uncoloured – Red Still 
D3_2 Plastic* 500 Green – Green Sparkling 
D3_3 Glass 250 Uncoloured – Grey metal Sparkling 

RPET: recycled polyethylene terephthalate; PET: polyethylene terephthalate; (*) not indicated. 

Table 2 
Distribution of segments used for the selective monitoring of each analyte for desorption time 5 min (3 min must be subtracted from the start time of each window when 
desorption time 2 min is considered).  

Window Start time (min) Ion dwell time (ms) Analyte m/z ratios 

BHT 12.40 30 BHT 91, 145, 177, 205a, 220 
DEP 13.10 30 DEP 105, 121, 132, 149a, 177 
BP 13.45 30 BP 51, 77, 105a, 152, 182 
DiBPs 14.20 10 IS 80, 153a, 171, 209, 227 

DiBP 104, 149a, 167, 205, 223 
DBP 15.10 30 DBP 104, 121, 149a, 205, 223 
BBP 16.40 30 BBP 91, 104, 149a, 206, 238 
DEHA 17.65 30 DEHA 112, 129a, 147, 241, 259 
DEHP 18.40 30 DEHP 71, 149a, 167, 207, 279 

(a) Base peak. 
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first way being the chromatographic way (I elution times), the second 
one the spectral way (J diagnostic ions), and the third one the sample 
way (K samples). The dimension of the data arrays is shown in Table 3. 

The experimental design step involved a standard solution which 
was analysed over 2 days by applying 14 different HS-SPME procedures 
of an experimental plan. To determine the tolerance intervals, 5 refer-
ence standards were prepared: three of them at 3 different concentration 
levels of the target analytes (covering the wider range of concentrations 
used) and a fixed level of IS, and the other 2 at different concentrations 
of IS and a fixed level of the target analytes. The linear dynamic range 
was estimated from 16 injections: 2 system blanks, 12 standards with 
increasing concentrations of the target analytes and a fixed level of IS, 
and the remaining 2 standards where only the concentration of IS 
changed. 

In the last step of the study, standards, fortified blank samples and 
bottled water samples were analysed over 3 days in such a way that a 
total of 33 injections were done each day: 2 system blanks, 12 standards 
with increasing concentrations of the target analytes and constant con-
centration of IS, 2 standards with fixed concentrations of the target 
analytes and different levels of IS, 8 fortified blank samples (only 5 the 
3rd day) and 9 bottled water samples (12 samples the 3rd day). The data 
arrays corresponding to these analyses were used to determine detection 
capability of the analytical procedure, the precision and the concen-
tration of the target analytes in the bottled water samples. 

2.7. Software 

Scan control and data acquisition were performed using an MSD 
ChemStation version D.02.00.275 (Agilent Technologies, Inc.) with Data 
Analysis software. The TriPlus autosampler was controlled by means of 
TriPlus Sampler version 1.6.9 SPME (Thermo). PLS_Toolbox software, 

version 9.0 Eigenvector Research Inc. (Wenatchee, WA, USA, 2021), for 
use within the MATLAB environment, version 9.10.0.1739362 (R2021a, 
Mathworks, Inc., Natick, MA, USA, 2021), was used to perform the 
PARAFAC2 decompositions. The program COO-FRO [42] was used to 
obtain the coordinates parallel plot and Pareto front. STATGRAPHICS 
Centurion XVIII, version 18.1.11 (Statpoint Technologies, Inc., Hern-
don, VA, USA, 2018) was used to fit and validate the regression models. 
DETARCHI program [43] was used to calculate the critical value (xC) 
and minimum detectable value (xD) of the concentration. The D-optimal 
designs were built with NEMRODW, version 2015 (L.P.R.A.I., Marseille, 
France, 2015). 

3. Results and discussion 

3.1. Analysis of the HS-SPME experimental factors 

As mentioned above, many parameters are involved in SPME. 
Considering all of these factors [5], the type of fiber, addition of salt to 
the aqueous medium, extraction and desorption time, and extraction 
temperature have been considered in this work. The levels of these 
factors and those of other experimental parameters were chosen based 
on literature and on preliminary results. 

Thus, two fibers based on DVB and on a combination of DVB and 
Carboxen® (CAR) both embedded in polymeric films of poly-
dimethylsiloxane (PDMS) were chosen. PDMS/DVB fibers have been 
widely used in the determination of plastic additives in different 
matrices [44–46] as well as DVB/CAR/PDMS fibers [47–49], where the 
combination of DVB and CAR makes them particularly interesting to 
cover an extended molecular weight range, although they have slightly 
lower capacity for lighter or heavier analytes in comparison to the single 
sorbent fibers. 

Table 3 
Dimension of data arrays (scans × ions × samples) and characteristics of PARAFAC2 models (number of factors, explained variance and CORCONDIA index) built for 
each acquisition window in the different steps of this work.  

Step of the study  Model BHT DEP BP DiBP and IS DBP BBP DEHA DEHP 

Experimental design Day 1 Array dimension 30 × 5 × 7 63 × 5 × 7 70 × 5 × 7 95 × 10 × 7 79 × 5 × 7 53 × 5 × 7 40 × 5 × 7 74 × 5 × 7  
# Factors 1 1 2 3 2 1 1 2  
Expl. Var (%) 99.94 99.95 99.94 99.99 99.99 99.78 99.90 99.98  
CORCONDIA 
(%) 

100 100 100 99 100 100 100 100 

Day 2 Array dimension 30 × 5 × 7 63 × 5 × 7 70 × 5 × 7 95 × 10 × 7 79 × 5 × 7 53 × 5 × 7 40 × 5 × 7 74 × 5 × 7  
# Factors 1 1 2 3 2 1 1 2  
Expl. Var (%) 99.94 99.95 99.98 100 100 99.78 99.96 99.97  
CORCONDIA 
(%) 

100 100 99 100 100 100 100 100 

Tolerance intervals  Array dimension 30 × 5 × 5 63 × 5 × 5 70 × 5 × 5 95 × 10 × 5 79 × 5 × 5 53 × 5 × 5 40 × 5 × 5 74 × 5 × 5  
# Factors 2 1 1 2 1 1 1 1  
Expl. Var (%) 100 99.96 99.60 99.99 99.99 99.84 99.98 99.97  
CORCONDIA 
(%) 

100 100 100 100 100 100 100 100 

Linear dynamic 
range  

Array dimension 30 × 5 × 16 63 × 5 × 16 70 × 5 × 16 95 × 10 × 16 79 × 5 × 16 53 × 5 × 16 40 × 5 × 16 74 × 5 × 16  
# Factors 2 1 1 3 1 1 1 1  
Expl. Var (%) 99.98 99.95 99.60 100 99.99 99.84 99.98 99.97  
CORCONDIA 
(%) 

100 100 100 100 100 100 100 100 

Bottled water 
analysis 

Day 1 Array dimension 30 × 5 × 33 63 × 5 × 33 70 × 5 × 33 95 × 10 × 33 79 × 5 × 33 53 × 5 × 33 40 × 5 × 33 74 × 5 × 33  
# Factors 2 1 2 3 2 1 1 2  
Expl. Var (%) 99.94 99.95 99.96 100 100 99.77 99.91 99.97  
CORCONDIA 
(%) 

100 100 100 100 100 100 100 100 

Day 2 Array dimension 30 × 5 × 33 63 × 5 × 33 70 × 5 × 33 95 × 10 × 33 79 × 5 × 33 53 × 5 × 33 40 × 5 × 33 74 × 5 × 33  
# Factors 2 1 1 3 2 1 1 2  
Expl. Var (%) 99.78 99.95 99.95 100 100 99.75 99.92 99.94  
CORCONDIA 
(%) 

100 100 100 100 100 100 100 100 

Day 3 Array dimension 30 × 5 × 33 63 × 5 × 33 70 × 5 × 33 95 × 10 × 33 79 × 5 × 33 53 × 5 × 33 40 × 5 × 33 74 × 5 × 33  
# Factors 2 1 1 2 2 1 1 2  
Expl. Var (%) 99.97 99.95 99.59 99.99 100 99.77 99.96 99.96  
CORCONDIA 
(%) 

100 100 100 100 100 100 100 100  
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The levels for extraction temperature were set at 70 and 80 ◦C, usual 
values found for these kind of compounds [44,47]; high enough to 
promote their evaporation but to avoid water boiling which may dam-
age the fiber. Extraction time is a crucial parameter because it also in-
fluences the partition equilibria. A wide range of values can be found in 
literature of up to 60 min [45,47,48], but such long times are not 
generally needed. In order to not excessively extend the total analysis 
time of each sample, four levels of extraction times were studied in this 
work, from 10 to 40 min, in 10 min increments. Desorption times of 2 
and 5 min were chosen [47,48]. 

On the other hand, the presence of salt in the aqueous medium can 
promote the mass transfer of target analytes to the headspace [44, 
47–49], mainly for compounds with log P < 3, although it could nega-
tively affect those most polar. For that reason, the addition of salt has 
been considered as a factor with two levels, adding salt or not [45]. 

In addition to the five factors referred to above, a block factor is 
included in the design so that in the event that the experimental design 
cannot be completed in a single laboratory session the day-to-day vari-
ability is considered. Therefore, based on the analysis of the literature 
made above, the six factors in Table 4 were considered in the design, all 
of them at two levels except for extraction time that was at four levels. 

3.1.1. Construction of the D-optimal experimental design 
The experimental design methodology is the appropriate tool for 

exploring the effect of the six factors at the levels in Table 4 on the yield 
of the HS-SPME and then to decide the conditions in which the best 
results are achieved. The use of this methodology requires defining the 
experimental domain and the functional model that relate factors and 
levels with the experimental response. In this case, the experimental 
domain is constituted by the 128 combinations of the factors at the levels 
in Table 4. 

Only when a linear model (in the coefficients) is proposed to relate 
factors and responses, and it is estimated by least squares, it is possible to 
factorize the variability in coefficients and responses in two factors: 1) 
the variability due to the arrangement of the experiments in the domain, 
and 2) the experimental variability. In this way, the experiments to be 
performed can be selected in such a way that the quality of estimate is 
not undermined. Additionally, it is possible to check the compatibility of 
the chosen model with the experimental data. Such a strategy is not 
possible when other types of regression are used as a neural network. 

The functional model for factors with a different number of levels, as 
that in Table 4, is the “presence-absence” model. This model requires to 
define a “reference level” and is used in such a way that the effect of 
changing the factor to another level is evaluated in relation to the 
reference level. In this case, the reference level is L2 for factors 1 to 5 and 
L4 for the sixth. As a consequence, a binary variable is required for 
factors 1 to 5 and three variables for factor 6 (Table 4). The variables xiA, 
i = 1, …,5, are 1 when the i-th factor is at level A and − 1 when is at level 
B. To indicate that factor 6 is at level A, variables x6A, x6B and x6C are 1, 
0, and 0, respectively; and these variables take the values 0, 1 and 
0 when it is at level B, 0, 0 and 1 for level C, and finally, − 1, − 1 and − 1 
for level D. Therefore, the model, with one order interactions to relate 

the experimental response, y, to factor and level indicator variables, xij, 
is given by equation (1); with 34 coefficients, b, that, except b0, are the 
value of the effect of each factor and interaction on the response. 

y= b0 +
∑5

i=1
biAxiA +

∑C

k=A
b6kx6k +

∑5

i=1

∑5

j>i
biAjAxiAxjA

+
∑5

i=1

∑C

k=A
biA6kxiAx6k (1) 

At least 34 experiments are thus necessary to estimate this model, 
which still requires a great experimental effort. However, it is not ex-
pected that most of these interactions will have effect on the response, 
such as interaction 1–4 (block - to add salt). If the interaction between 
factors 5 and 6 (extraction temperature and extraction time) is consid-
ered as the only interaction that could have effect, the model is reduced 
to that in equation (2), which have 12 coefficients. 

y= b0 +
∑5

i=1
biAxiA +

∑C

k=A
b6kx6k +

∑C

k=A
b5A6kx5Ax6k (2) 

This means that at least 12 experiments, chosen among those of the 
full factorial design which are 128 (25 × 4) for levels and factors in 
Table 4, are required to estimate this model. A D-optimal design [17], 
which provides an “ad-hoc” experimental design for the problem at 
hand, was used to decide what experiments, among the 128, should be 
carried out. This is a well-established procedure to reduce the experi-
mental effort to that strictly necessary in order to precisely estimate the 
main effects and the interactions of interest that have been established a 
priori by using the model in equation (2). 

To define the D-optimal design, the starting point is a search space, in 
this case the 128 possible experiments of the full factorial design. For 
each size, n > 12, the set of n experiments that provide the joint estimate 
of the 12 coefficients with the best possibly precision was searched; this 
is the D-optimal design for that value of n and may be not unique. Then, 
the maximum variance inflation factor (VIF) for each coefficient was 
examined; it has to be the smaller as possible. For n = 14 there are two D- 
optimal designs, 1.39 being the lowest maximum for the VIF. For this 
design, the VIF for the estimate of each coefficient in equation (2), other 
than b0, ranges from 1.19 to 1.39. This is therefore a design very 
appropriate to precisely estimate the effect of the factors and interaction 
through the coefficients of model in equation (2). Table 5 shows the 
experiments of the D-optimal design chosen which was used to carry out 
the study. 

3.1.2. Experimentation and obtention of the responses 
The experiments in Table 5 were conducted by applying the exper-

imental procedure in section 2.5 to samples containing 0.4 μg L− 1 of 
BHT, 10 μg L− 1 of DEP, 2 μg L− 1 of BP and IS, 1 μg L− 1 of DiBP, 4 μg L− 1 

of DBP, 200 μg L− 1 of BBP, 100 μg L− 1 of DEHA and 300 μg L− 1 of DEHP. 
Fig. 1(a–b) shows the chromatograms recorded from the HS-SPME 
conditions of experiments 37 and 24 in Table 5, respectively. It is 
clear that the size of the different chromatographic peaks depends very 
much on the experimental conditions set at the HS-SPME step under 
study. 

On completion of the 14 experiments, for each chromatographic 
window, the GC-MS data obtained were arranged in a three-way array as 
explained in section 2.6; Table 3 shows the dimension of each data array. 
DiBP and the IS (DiBP-d4) overlap due to their similar structures, so they 
were recorded in the same chromatographic window. 

The data arrays were decomposed using PARAFAC2 by applying the 
ALS algorithm with non-negativity constraints in the three ways. This 
multi-way technique was used because it makes discrimination between 
target compounds and unexpected interferents, which are those com-
pounds that co-elute and share m/z ratios with the first ones, possible. 
The possibility of determining a compound in the presence of unknown 
interferents is called the second-order property. PARAFAC2 was used to 
model slight chromatographic peak shifts observed, but the second- 
order property is maintained if correlation between retention times is 
the same in all chromatograms [19]. In addition, if data are trilinear, the 

Table 4 
Level coding and variable name, in the model, for the factors of the SPME 
optimization.   

Factor Level/code Variable 

L1/ 
A 

L2/ 
B 

L3/ 
C 

L4/ 
D 

1 Block (day) 1 2 – – x1A 

2 Type of fiber 1 2 – – x2A 

3 Desorption time (min) 2 5 – – x3A 

4 To add salt no yes – – x4A 

5 Extraction temperature 
(oC) 

70 80 – – x5A 

6 Extraction time (min) 10 20 30 40 x6A x6B x6C  
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chromatographic, spectral and sample profiles are obtained for each 
target compound due to the uniqueness property of this array decom-
position. This also enables the unequivocal identification of target 
compounds, by means of their chromatographic and spectral profiles, 

according to official regulations and guidelines [50]. 
The PARAFAC2 models were built with different number of factors 

for each data array. After outlier detection, the chosen model in each 
case was that with higher explained variance and core consistency 

Table 5 
Experimental plan of the D-optimal design chosen for the optimization of the SPME.  

Experiment Block (day) Type of fiber Desorption time (min) To add salt Extraction temperature (oC) Extraction time (min) 

7 1 2 5 no 70 10 
10 2 1 2 yes 70 10 
24 2 2 5 no 80 10 
25 1 1 2 yes 80 10 
37 1 1 5 no 70 20 
44 2 2 2 yes 70 20 
50 2 1 2 no 80 20 
63 1 2 5 yes 80 20 
67 1 2 2 no 70 30 
78 2 1 5 yes 70 30 
81 1 1 2 no 80 30 
96 2 2 5 yes 80 30 
106 2 1 2 yes 70 40 
117 1 1 5 no 80 40  

Fig. 1. Chromatograms obtained from solutions 
containing the same levels of analyte concentration. 
(a) Chromatogram of experiment 37 in Table 5 
(fiber1; without addition of salt; desorption time: 5 
min; extraction temperature: 70 ◦C; and extraction 
time: 20 min), (b) chromatogram of experiment 24 in 
Table 5 (fiber2; without addition of salt; desorption 
time: 5 min; extraction temperature: 80 ◦C; and 
extraction time: 10 min), and (c) chromatogram 
recorded in the chosen conditions (fiber 2; addition of 
salt; desorption time: 5 min; extraction temperature: 
80 ◦C; and extraction time: 40 min). Analytes: 1 
(BHT), 2 (DEP), 3 (BP), 4 (IS), 5 (DiBP), 6 (DBP), 7 
(BBP), 8 (DEHA), 9 (DEHP).   
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diagnostic (CORCONDIA) values, and ensuring that the unequivocal 
identification of the corresponding compounds was successful. By way 
of example, the characteristics of the models built, with different num-
ber of factors for the data arrays of Day 1, are shown in Table S1 in the 
supplementary material. In general, in those cases where the compounds 
of interest are unequivocally identified, the models with higher 
explained variance and CORCONDIA values were chosen (this is the case 

of BP, DBP and DEHP). The model was considered invalid when COR-
CONDIA values are less than zero (then trilinearity is not fulfilled as 
shown in Ref. [51], as occur for DEP with 2 factors; BP, DBP and DEHP 
with 3 factors; and DiBP and IS with 4 factors, or when the unequivocal 
identification is not proper, as occurs for BHT, DiBP and IS, BBP and 
DEHA with 2 factors. 

The number of factors and the explained variance of the final 

Fig. 2. Loadings of the chromatographic (a, d), spectral (b, e) and sample (c, f) modes of the PARAFAC2 models fitted for BHT: (a, b and c) in the optimization step 
(PARAFAC2 model calculated with experiments of day 2: experiments 10, 24, 44, 50, 78, 96 and 106 in Table 5); and (d, e and f) in the determination of commercial 
water samples (day 3 array: system blanks (samples 1 and 33), calibration standards (samples 2–13), standards at a fixed concentration were only the concentrations 
of IS varies (samples 14 and 15), replicates of a calibration standard (samples 16–20), sample D3_1 (samples 21–23), sample D3_2 (samples 24–26), sample D3_3 
(samples 27–29), sample D3_3 diluted (samples 30–32)). First factor in solid blue, second factor in dashed/empty orange. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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PARAFAC2 models are shown in Table 3 (rows related to the experi-
mental design). No outliers were found in any of the models built, being 
the confidence level for Q residual and Hotelling’s T2 indices 99% and 
95%, respectively. Explained variance values above 99.8% were ob-
tained in all cases. CORCONDIA [52] values > 99%, which imply 
appropriate models, were calculated in all cases. Three factors were 
required for the joint model built for DiBP and IS, and two factor models 
were obtained for BP, DBP and DEHP, which highlighted the need to use 
a decomposition method with the second order property such as PAR-
AFAC2 to extract the part of the signals corresponding to unknown 
interferents in separate factors. The models for the remaining analytes 
were one factor models; Fig. 2 shows the loadings of the chromato-
graphic (a), spectral (b) and sample (c) modes of the model fitted for 
BHT from experiments of day 2 (experiments 10, 24, 44, 50, 78, 96 and 
106 in Table 5). In this case, it can be observed a small displacement in 
the chromatographic peaks (Fig. 2(a)). 

In fact, before fitting the experimental design, it is necessary to 
guarantee that the loadings of the sample profiles, that will be used as 
responses, correspond unequivocally to the analytes and IS. In this work, 
their unequivocal identification was performed according to EUR 24105 
EN [53]. To calculate the permitted tolerance intervals, the five refer-
ence standards were prepared and analysed by using the procedure 
described in section 2.5. The data were arranged in data arrays which 
were decomposed by using PARAFAC2; Table 3 (rows related to toler-
ance intervals) shows the characteristics of the corresponding arrays and 
models. Tolerance intervals for relative ion abundances were calculated 
according to the tolerances established in EUR 2410 EN [53], from the 
unique spectral profile provided by PARAFAC2 for each compound. 
Intervals for relative retention time were estimated with a margin of 
±0.5%, according to the above regulation, from the corresponding 
chromatographic profiles. These tolerance intervals (see Table S2 in the 
supplementary material) were used throughout the paper to unequivo-
cally identify the analytes in the PARAFAC2 models obtained from the 
different data array analysed. 

The target analytes and IS were unequivocally identified in all 14 
experiments of the D-optimal design since retention times and relative 
ion abundances of the corresponding chromatographic and spectral 
profiles from PARAFAC2 are inside the tolerance intervals in Table S2 in 
the supplementary material. At least 3 relative ion abundances were 
within the tolerance intervals for all the compounds, as EUR 2410 EN 
[53] requires for EI-GC-MS determinations. 

The loadings of the sample profiles are proportional to concentra-
tion, so that the effect of the SPME conditions of the experiments on the 
quantitative determination of the target analytes may be assessed via the 
effect on the loading corresponding to the analytes, and ensuring that 
the analytes are unequivocally identified. For each compound, the 
loadings of the sample profile in Table 6 are the responses to be 
modelled through equation (2). 

3.1.3. Model fitting 
When fitting the models, it was possible to estimate the standard 

deviation of residuals and assess the significance of the fitted models 
since there were 14 experiments and 12 coefficients. On this basis, and 
noting the very wide range of the responses, the Box-Cox transformation 
[17,54] were taken as the response for the nine models. The trans-
formation of each response variable and the coefficients and p-values of 
the test of the significance of the fitted models are shown in Table 7. All 
models were significant at 5% significance level except those fitted for 
DEHA and DEHP, which would be significant at a 11 and 12% signifi-
cance levels. This is admissible because the residual standard deviation 
has only two degrees of freedom and this affect the validity of the sig-
nificance tests of both the model and the coefficients. 

3.1.4. Joint analysis of responses within the experimental domain 
In order to explore the different HS-SPME conditions over the whole 

experimental domain, the responses were estimated for the 128 exper-
iments of the full factorial design from the models in Table 7. The aim 
was to choose a HS-SPME conditions, among the 128 possible, that led 
simultaneously to the greatest value of the loadings of the sample profile 
(yi, i = 1, …,9) associated to each analyte, resulting in a higher yield. 

The strategy used was similar to that in reference [42]. The tools for 
the analysis are the parallel coordinates plots [21,55] and, in case of 
conflict between different experimental conditions for the SPME in that 
they were suitable for some analytes but for other they were not, the 
Pareto front [24] for the optimal solutions would be calculated. 

The Box-Cox transformation for the first six response variables, yi i =
1, …, 6, was an increasing monotone function of each of them, so the 
SPME conditions that maximize the transformation of the variable are 
the same that maximize the variable itself. On the contrary, the trans-
formation of the last three responses, yi i = 7, 8, 9, was a decreasing 
monotone function, thus the greater value of the response is reached 
with the SPME conditions that lead to the lower value of its trans-
formation. The SPME conditions that simultaneously maximize the first 
six responses and minimize the last three had to be found, as the analysis 
was made with the models in Table 7 (transformed responses). 

Once the value of each transformed response was calculated for each 
of the 128 experiments there was a vector of dimension nine (ln(y1), 
(y2)0.3, (y3)0.4, (y4)0.6, (y5)0.5, (y6)0.1, (y7)− 0.2, (y8)− 0.18, (y9)− 0.33) which 
described the conditions of each SPME. A Cartesian representation in 9 
dimensions was not possible, so the parallel coordinates plot was used. 
In the plot, the values of each response are represented in vertical lines, 
and joining the values that correspond to one of the experiments, the 
vector (ln(y1), (y2)0.3, …, (y9)− 0.33) is represented by a broken line. The 
parallel coordinates plot with the effect of the 128 experiments on the 
transformed responses is shown in Fig. 3 (the levels of the six factors and 
their corresponding nine responses for the full design can be seen in 
Table S3 in the supplementary material). Maximum and minimum 
values for each response are shown because the responses have been set 

Table 6 
Responses (loadings of the sample profile of the PARAFAC2 models) for the 14 experiments of the D-optimal design.  

Experiment y1 (BHT) y2 (DEP) y3 (BP) y4 (IS) y5 (DiBP) y6 (DBP) y7 (BBP) y8 (DEHA) y9 (DEHP) 

7 15153 7673 8282 10228 21842 10740 7417 5051 8213 
10 1076 264000 123600 49506 89385 46459 10894 994 1768 
24 16092 9314 12393 10986 21566 13172 9766 5587 9666 
25 913 238430 109220 59194 111170 53880 14420 3549 4338 
37 50279 17694 17111 24386 46308 19592 6172 3339 7110 
44 2278 269510 190850 106300 185880 124220 107540 9802 17763 
50 53084 27051 28254 62109 100070 64554 18478 12427 12284 
63 663 857210 383010 466670 773210 542420 569600 41185 48899 
67 27784 23234 26733 41468 69776 33183 24539 21545 25340 
78 615 745270 353900 404280 662930 403590 48110 3708 4491 
81 67139 51005 47771 107380 180380 83099 27075 24057 19703 
96 1016 1082600 547100 585910 965580 892760 1611700 271970 393910 
106 506 824120 418410 644300 1042100 758110 134010 10511 10262 
117 69233 74453 68008 178360 274140 149750 51375 121930 92718  
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on a common scale, with minimum 0 and maximum 1, to make the joint 
visualization of values possible. 

Fig. 3 shows that the different SPME conditions have a similar effect 
on 4th and 5th responses because the segments that joint the values for 
both responses are parallel. This is consistent with the fact that the 
corresponding analytes are IS (DiBP-d4) and DiBP, respectively. The 
opposite case, demonstrated through segments that intersect, is e.g. for 
1st and 2nd variables, which are related to the effect on the extraction of 
BHT and DEP; SPME conditions that increase the extraction of BHT 
clearly have the opposite effect on DEP. In other cases, for example for 
3rd and 4th responses, do not have this antagonistic effect for all the 
SPME conditions but just for a group of them. The same applies to the 
effect of SPME conditions on DEHA and DEHP, but in these cases it 
should be reminded that, due to the transformation of the original 
response, the maximum extraction is achieved for the lower values of the 
transformed responses. 

It is at any rate clear that none of the conditions of the 128 

experiments has simultaneously a high and positive effect on the re-
sponses of the 9 analytes. For that reason, a compromise has to be 
reached in order to choose the SPME conditions. To address this issue, it 
is helpful to consider just those SPME conditions that have the same 
effect on all analytes and are the best for at least one of them. The set of 
SPME procedures that fulfils this condition is the Pareto front of the 128 
vectors formed from the 9 responses. The 40 vectors (ln(y1), (y2)0.3, …, 
(y9)− 0.33) contained in the Pareto front are shown in Fig. 4 (the levels of 
the factors related to these responses can be seen highlighted in yellow 
in Table S3 in the supplementary material). It has to be considered that 
none of them has extraction time shorter than 30 min; which excludes 64 
experiments, i.e. half of the domain under study. That this, if a SPME 
with extraction time less than or equal to 20 min is used, a lower yield is 
achieved for at least one of the analytes. This is not the case for the rest 
of factors, e.g. extractions with and without addition of salt are in the 
Pareto front. 

When comparing Figs. 3 and 4, it is observed that for all analytes, 

Table 7 
Box-Cox transformations and coefficients and p-values of the test of significance of the fitted models. The coefficients significantly different from zero at 5% signif-
icance level are in italics.  

Coeff. ln(y1) (y2)0.3 (y3)0.4 (y4)0.6 (y5)0.5 (y6)0.1 (y7)− 0.2 (y8)− 0.18 (y9)− 0.33 

b0 8.629 37.589 108.600 1409.655 523.269 3.225 0.119 0.180 0.041 
b1A − 0.048 0.077 − 2.486 − 6.961 1.500 − 0.023 0.001 − 0.004 − 0.002 
b2A 0.102 0.170 − 3.019 − 32.517 − 7.184 − 0.015 0.015 0.024 0.011 
b3A 0.281 − 3.228 − 9.680 − 310.994 − 90.711 − 0.080 0.000 − 0.001 0.000 
b4A 1.765 − 16.025 − 45.239 − 565.186 − 185.888 − 0.300 0.021 − 0.000 − 0.001 
b5A − 0.262 − 1.362 − 4.363 − 42.484 − 18.253 − 0.083 0.012 0.025 0.008 
b6A − 0.352 − 9.212 − 35.417 − 933.083 − 291.510 − 0.472 0.038 0.056 0.020 
b6B 0.354 − 1.840 − 6.029 − 225.246 − 62.771 − 0.053 0.002 0.008 0.000 
b6C 0.044 4.570 15.536 298.878 98.158 0.152 − 0.010 − 0.015 − 0.004 
b5A6A 0.288 1.461 4.062 21.135 9.875 0.059 − 0.008 − 0.009 − 0.002 
b5A6B 0.557 − 3.694 − 8.781 − 408.841 − 119.080 − 0.130 0.004 − 0.002 − 0.003 
b5A6C − 0.084 − 1.707 − 7.381 − 215.144 − 63.996 − 0.060 0.003 0.006 0.003 
p-value* <10− 4 5.31 10− 3 1.10 10− 3 1.14 10− 3 2.30 10− 3 5.98 10− 3 2.69 10− 3 0.127 0.113 

y1: BHT; y2: DEP; y3: BP; y4: IS; y5: DiBP; y6: DBP; y7: BBP; y8: DEHA; y9: DEHP; (*) Test of significance of the model. 

Fig. 3. Scaled parallel coordinates plot of the nine transformed responses for the 128 experiments of the full factorial design. Responses and analytes: y1 (BHT), y2 
(DEP), y3 (BP), y4 (IS), y5 (DiBP), y6 (DBP), y7 (BBP), y8 (DEHA) and y9 (DEHP). 
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except BHT, the worst extractions are not a part of the Pareto front. On 
the contrary, the effect of extractions contained in the Pareto front are in 
the full range of the response related to BHT. 

The SPME conditions chosen, red line in Fig. 4, kept the extraction of 
BBP, DEHA and DEHP close to the maximum, as well as that for DBP, 
DEP and BP, and slightly lower for DiBP and IS. It should also be noted 
that if the SPME conditions that lead to the maximum extraction for 
these last five analytes would have been chosen, a minimum extraction 
had been for BHT. Whichever of the extraction procedures related to the 
maximum yield for BHT led to much worse values for the rest of the 
analytes. The final conditions were: using fiber 2 (50/30 μm DVB/CAR/ 
PDMS), 5 min of desorption time, addition of salt, and temperature and 
time of extraction, 80 ◦C and 40 min, respectively. 

Fig. 1(c) shows the chromatogram recorded from the final SPME 
conditions chosen. Clearly, in the extraction conditions obtained from 
the developed procedure the higher sensitivity was achieved for all the 
target compounds but BHT; it should be noted that the maximum 
abscissae for plot (c), chromatogram obtained in the chosen conditions, 
and those for plots (a) and (b) differ by two orders of magnitude. 
Changing the level of the block factor (day) by maintaining the 
remaining factors at the chosen levels had a completely negligible in-
fluence on the extraction of all compounds; nevertheless, without the 
addition of salt, all extractions got notably worse except for BHT, for 
which the yield of extraction was increased, as green line in Fig. 4 shows. 

3.2. Some figures of merit of the analytical procedure 

With the aim of characterizing the analytical procedure, some figures 
of merit were determined: linear dynamic range, accuracy (trueness and 
precision), critical value of the concentration and minimum detectable 
value of the concentration. Firstly, a set of 14 standards and 2 system 
blanks were injected, in accordance with the procedure described in 
section 2.5 with the final SPME conditions chosen in section 3.1.4, for 
establishing the linear dynamic range. On completion of the chro-
matographic analysis, data were arranged in data arrays and then the 
PARAFAC2 models detailed in Table 3 (rows related to the linear dy-
namic range) were built which explained variances greater than 99.6% 

with CORCONDIA index equal to 100 in all cases. The unequivocal 
identification of the compounds was carried out as in section 3.1.2. In 
this case, as for the remainder of the paper, the standardized sample 
loadings, i.e. sample loadings of the target analytes divided by the 
loadings IS, were considered. 

Linear regression models between the standardized loadings of the 
sample mode of the PARAFAC2 and the analyte concentration were 
fitted; outliers, data with absolute value of standardized residue greater 
than 2.5, were previously found using the least trimmed squares (LTS) 
regression [56] and removed. The linear dynamic ranges found for the 
different target analytes are shown in Table 8. The corresponding ac-
curacy lines were used to assess trueness and precision; the parameters 
in Table 8 are that of the least squares regression models fitted for the 
different analytes. The correlation coefficients of the latter regressions 
are the same as those of the corresponding models obtained when esti-
mating the linear dynamic range. 

Trueness was determined by checking the p-value to joint hypotheses 
test “H0: the intercept of the accuracy line is 0 and the slope is 1”. In all 
cases, the values were higher than 0.05 so there is no evidence to reject 
the null hypothesis, i.e. intercept and slope are zero and unity respec-
tively, therefore it was concluded that no bias was present in any of the 
determinations. The standard deviation of regression (syx in Table 8) is 
an estimate of the intermediate precision of the analytical method for 
each target compound. 

The critical value of the concentration (xC) and minimum detectable 
value of the concentration (xD) were estimated according to ISO 11843 
[57] by using the method proposed in Ref. [58], based in three cali-
bration lines carried out in three different days and fitted in a reduced 
range of concentrations (from 0 to 1.0 μg L− 1 for BHT, to 12.5 μg L− 1 for 
DEP, to 2.5 μg L− 1 for BP, to 5 μg L− 1 for DiBP, to 3 μg L− 1 for DBP, to 30 
μg L− 1 for BBP, to 50 μg L− 1 for DEHA and to 40 μg L− 1 for DEHP). The 
details about the corresponding PARAFAC2 models are shown in 
Table 3. The values estimated for both figures of merit are shown in 
Table 8. The analytical procedure allows to detect up to 0.26 μg L− 1 of 
BP, and 9.69 μg L− 1 in the case of DEHP, with a probability of false 
positive set at 0.05. 

Finally, eight (five for the highest concentration level) fortified blank 

Fig. 4. Scaled parallel coordinates plot of the nine 
transformed responses for the 40 experiments of the 
Pareto-optimal front. The red line highlights the 
transformed responses expected from the SPME con-
ditions chosen (fiber 2, 5 min of desorption time, 
addition of salt, 80 ◦C of extraction temperature and 
40 min of extraction time). The green line highlights 
the responses expected when apply these same SPME 
conditions but with no addition of salt. Responses and 
analytes: y1 (BHT), y2 (DEP), y3 (BP), y4 (IS), y5 
(DiBP), y6 (DBP), y7 (BBP), y8 (DEHA) and y9 (DEHP). 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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samples at three levels of concentration for each analyte were measured 
in three different days. These data were included to study the location 
and dispersion of the measurements. The robust standard deviation 
(rSD) was calculated by means of: rSD = MAD*1.4826. MAD is the 
median absolute deviation which is estimated based on the median 
absolute deviation (the median of the absolute differences between each 
data value and the median of the population) [59]. In addition, the 
robust coefficient of variation (rCV) was calculated. These values are 
shown in Table 9. In general, the best values of rCV appear for the higher 
true concentration. 

3.3. Analysis of bottled natural mineral water samples 

Lastly, the target analytes were determined in the 9 bottled water 
samples in Table 1, involving different types of waters in different types 
of packaging. The samples were analysed, in triplicate, over 3 days. The 
corresponding data arrays, together with the characteristics of the 
PARAFAC2 models, are shown in Table 3 (rows related to the bottled 
water analysis). The PARAFAC2 models explain variances greater than 
99.5%, with CORCONDIA indices equal to 100, in all cases. 

By way of example, Fig. 2(d–f) show the loadings of the chromato-
graphic, spectral and sample modes of the two factor PARAFAC2 model 
built for BHT from the data set of day 3. The first factor (in blue) was 
unequivocally identified as that corresponding to BHT since both the 

relative abundances and relative retention times, estimated from the 
spectral and chromatographic modes, were inside the corresponding 
tolerance intervals (these intervals are shown in the last columns in 
Table S2 in the supplementary material). The second factor (in orange) 
was related to an unknown interferent. This is a clear example of the 
advantage of using the multi-way technique; as can be seen in Fig. 2, the 
interferent appear both in the chromatographic (Fig. 2(d)) and spectral 
modes (Fig. 2(e)), so its presence in the sample could have cause false 
negative during BHT identification. The loadings of the sample mode of 
the second factor do not increase with the concentration of BHT for the 
calibration standards (samples 2–13, Fig. 2(f)), which support the fact 
that the factor was not related to this target compound. 

Most of the concentrations of the target analytes found in the bottled 
water samples in Table 1 were statistically equal to zero or below the 
minimum detectable value of the concentration (xD). BHT was found in 
sample D3_3, which was analysed from three different bottles. In the last 
bottle a concentration of 1.05 μg L− 1 was found, whereas in the other 
two bottles the concentrations were over the calibration range (the 
standardized loadings can be seen in Fig. S1 in the supplementary ma-
terial). The values of BHT found may be attributed to the metal cap used 
in the packaging of that sample; residues of similar compounds have 
been found in this type of packing [60]. As is mentioned above, Fig. 2(f) 
shows the loadings of the sample mode for BHT. Samples from 21 to 29 
are the loadings of the 3 last commercial brands in Table 1. The loadings 
of the samples 27–29 (sample D3_3), while they have not yet been 
standardized, were over the range of calibration (high chromatographic 
peaks were detected in the experimental session), for that reason, sam-
ple D3_3 was diluted (samples 30–32) were analysed too. 

Nevertheless, the concentrations found for the target analytes in the 
bottled water samples analysed in this work were really low, that is, the 
compounds are not present in quantities that may be injurious to human 
health. 

4. Conclusions 

Using a D-optimal design, 14 experiments, among the 128 of the full 
factorial design, were sufficient to estimate the mathematical models 
that related the responses to the effect of the experimental factors on the 
extraction of the considered compound. As a result, a very significant 
reduction in the experimental effort required by the study as well as in 
its cost was achieved. 

The methodology developed has led to find the conditions for the six 
HS-SPME experimental factors considered that jointly satisfied the re-
quirements of eight different target analytes in order to increase the 
efficiency of the extraction procedure. The use of the Pareto front and 
parallel coordinates greatly helped to effectively address the multi- 
objective optimization. 

PARAFAC2 decomposition has allowed the coelution of interferents 
that share m/z ratios with the target analytes to be successfully 
addressed. Consequently, it has been possible to unequivocally identify 
the latter, according to EUR 2410 EN, thereby avoiding to cause possible 

Table 8 
Figures of merit of the analytical procedure.  

Analyte Linear range (μg L− 1) Accuracy line xC (μg L− 1) xD (μg L− 1) 

Intercept Slope r syx (μg L− 1) p-value 

BHT 0–1 − 0.002 1.003 0.995 0.047 0.806 0.36 0.69 
DEP 0–12.5 0.001 1.000 0.999 0.195 1.000 0.65 1.27 
BP 0–2.5 0.000 1.000 0.997 0.085 1.000 0.26 0.51 
DiBP 0–5 − 0.001 1.001 0.999 0.066 0.999 0.40 0.79 
DBP 0–5 − 0.001 1.000 0.985 0.372 1.000 0.27 0.53 
BBP 0–250 − 0.001 1.000 0.988 16.04 1.000 3.65 7.06 
DEHA 0–250 0.002 1.000 0.989 20.20 1.000 6.36 12.35 
DEHP 0–500 − 0.008 1.000 0.991 36.23 1.000 9.69 18.30 
r: correlation coefficient; syx: standard deviation of regression; p-value to jointly test the intercept = 0 and slope = 1; xC: critical value of the concentration (α = 0.05); xD: minimum 

detectable value of the concentration (α = β = 0.05).  

Table 9 
Location and scale robust estimates for the measurements of eight replicates at 
three levels of concentration for each analyte (five for the highest concentration 
level).  

Analyte Ctrue (μg L− 1) Median (μg L− 1) rSD (μg L− 1) rCV (%) 

BHT 0.2* – – – 
0.4* – – – 
0.6* – – – 

DEP 0.8* – – – 
2.5 2.79 1.20 43.01 
10 10.89 1.10 10.07 

BP 0.3* – – – 
0.5* – – – 
2 1.18 0.19 8.84 

DiBP 2 1.75 0.16 9.32 
3 3.07 0.20 6.51 
4.5 4.55 0.030 0.65 

DBP 0.8 0.74 0.13 17.03 
1.2 1.12 0.12 10.59 
2.5 2.57 0.074 2.88 

BBP 5* – – – 
12.5 12.41 1.08 8.66 
20 20.99 8.09 38.53 

DEHA 10* – – – 
20 20.08 8.24 41.05 
40 21.11 7.78 36.87 

Ctrue, true concentration; rSD robust standard deviation; rCV, robust coefficient 
of variation, rCV (%) = (rSD/median) × 100; (*) the concentrations were below 
the minimum detectable value of the concentration. 
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false negative results due to a mistake in the identification of them 
because of the interferents. 

Null or below the minimum detectable value of the concentrations 
have been found for all the target analytes except for BHT, which was 
found in three of the bottled natural water analysed with metal cap, but 
at so low levels that do not pose any risk to human health. 

Annex 

X is a data cube of dimension I × J × K where I is the number of 
elution times, J the number of values of the recorded spectrum at each 
time (e.g. the number of wavelengths in HPLC-DAD or the m/z ratios in 
GC-MS) and K the number of samples analysed. The structural model for 
PARAFAC with F factors is given by equation (A1) for each one of the 
matrices which forms the cube X. 

Xk =BDkAT + Ek k = 1, ...,K (A1) 

B is a I × F matrix which columns are the elution profiles common to 
the K samples. Dk is a F × F diagonal matrix which contain the contri-
bution to the k-th sample of the F factors (analytes). A is a J × F matrix 
which contains the spectral profiles of the F analytes that are also 
common in all the samples. Finally, Ek is the k-th residual I × J matrix. 

The structural model in equation (A1) is a trilinear model. Unlike the 
bilinear structural models, it has not rotational ambiguity and so the 
solution is unique. This guarantees that the PARAFAC decomposition of 
X provides the elution and spectral profiles of the compounds present in 
the analysed samples, making it possible the unequivocal identification 
of them by two independent ways. In addition, it provides the second- 
order property: analytes may be quantified in the presence of co- 
eluent not present in the calibration standards. 

When retention time shifts occur, equation (A1) is no longer suitable 
for X, and there is equation (A2) instead. 

Xk =BkDkAT + Ek k = 1, ...,K (A2) 

Bk remains a I × F matrix which columns are the F elution profiles in 
the k-th sample, because of the shift change from one sample to another. 

Between laying down that all the Bk are equal, as PARAFAC model 
does, and admit that all are different without no relationship among 
them, there is the possibility of introducing constraints. It is particularly 
relevant the case in which it is imposed that the cross-product of the 
matrix is equal for all k, equation (A3). 

BT
k Bk =BTB k = 1, ...,K (A3) 

The structural model in equation (A2) with the constrain in equation 
(A3) is PARAFAC2 and it has unique solution and therefore the second- 
order property. 

Then, we will show that when there is a shift of the elution profile, 
the constrain of equation (A3) is fulfilled. The F elution profiles in the 
sample k-th would be formally given by equation (A4). 

Bk =
( kb1,

kb2, ...,
kbF

)
k= 1, ...,K (A4) 

It may be assumed that the F profiles have the same shift in the k-th 
sample and that, in the acquisition window, the elution base line is 
represented both before and after all analytes appear. Taking the B1 
profiles as a reference, which is not a loss of generality, and assuming 
that a shift to the right of L time units occurs for k-th sample, there is 

bf
k = PT bf

1 f = 1, ...,F with PI×I =

⎛

⎝
0(I− L)×L | II− L

|

IL | 0L×(I− L)

⎞

⎠ (A5) 

Being P the I × I matrix formed by the unity matrices with dimension 
L and I-L and the rectangular matrices formed by ceros. The columns of P 
are orthogonal two by two and with norm 1, for that reason it is an 
orthonormal matrix and PTP = PPT = I is fulfilled. If the shift had been 
to the left, the matrix in equation (A5) would be PT. 

When you consider equation (A5), the cross-product matrix of the 
elution profiles of the k-th sample, using the dot product, is written as: 

BT
k Bk =

(
kbT

f . kbg

)
=

((
bT

f
1P
)
.
(
PT bg

1)
)
=

(
1bT

f . 1bg

)
= BT

1 B1 (A6) 

It is clear that the shifts do not need to be of equal length L from one 
matrix to another, not even in the same direction, but always the 
constrain in equation (A3) is fulfilled. 

This means that theoretically the PARAFAC2 structural model is 
suitable for chromatographic data with shifts in the elution profile. 
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[14] J.M. Muñoz-Redondo, M.J. Ruiz-Moreno, B. Puertas, E. Cantos-Villar, J. 
M. Moreno-Rojas, Multivariate optimization of headspace solid-phase 
microextraction coupled to gas chromatography-mass spectrometry for the analysis 
of terpenoids in sparkling wines, Talanta 208 (2020), 120483, https://doi.org/ 
10.1016/j.talanta.2019.120483. 

[15] J. Pico, E.M. Gerbrandt, S.D. Castellarin, Optimization and validation of a SPME- 
GC/MS method for the determination of volatile compounds, including 
enantiomeric analysis, in northern highbush blueberries (Vaccinium corymbosum 
L.), Food Chem. 368 (2022), 130812, https://doi.org/10.1016/j. 
foodchem.2021.130812. 

[16] A.C. Vieira, A.C. Pereira, J.C. Marques, M.S. Reis, Multi-target optimization of solid 
phase microextraction to analyse key flavour compounds in wort and beer, Food 
Chem. 317 (2020), 126466, https://doi.org/10.1016/j.foodchem.2020.126466. 

[17] L.A. Sarabia, M.C. Ortiz, M.S. Sánchez, Response surface methodology, in: 2a Ed., 
in: S. Brown, R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics. 
Chemical and Biochemical Data Analysis, vol. 1, Elsevier, 2020, pp. 287–326, 
https://doi.org/10.1016/B978-0-12-409547-2.14756-0. 

[18] A. Herrero, S. Sanllorente, C. Reguera, M.C. Ortiz, L.A. Sarabia, A new 
multiresponse optimization approach in combination with a D-Optimal 
experimental design for the determination of biogenic amines in fish by HPLC-FLD, 
Anal. Chim. Acta 945 (2016) 31–38, https://doi.org/10.1016/j.aca.2016.10.001. 

[19] A. Herrero, M.C. Ortiz, L.A. Sarabia, D-optimal experimental design coupled with 
parallel factor analysis 2 decomposition a useful tool in the determination of 
triazines in oranges by programmed temperature vaporization–gas 
chromatography–mass spectrometry when using dispersive-solid phase extraction, 
J. Chromatogr. A 1288 (2013) 111–126, https://doi.org/10.1016/j. 
chroma.2013.02.088. 

[20] A. Herrero, C. Reguera, M.C. Ortiz, L.A. Sarabia, Determination of dichlobenil and 
its major metabolite (BAM) in onions by PTV-GC-MS using PARAFAC2 and 
experimental design methodology, Chemometr. Intell. Lab. Syst. 133 (2014) 
92–108, https://doi.org/10.1016/j.chemolab.2013.12.001. 

[21] M. Bystrzanowska, M. Tobiszewski, Multi-objective optimization of 
microextraction procedures, TrAC Trends Anal. Chem. 116 (2019) 266–273, 
https://doi.org/10.1016/j.trac.2018.12.031. 

[22] G.C. Derringer, R. Suich, Simultaneous optimization of several response variables, 
J. Qual. Technol. 12 (1980) 214–219, https://doi.org/10.1080/ 
00224065.1980.11980968. 

[23] R. Morales, L.A. Sarabia, M.S. Sánchez, M.C. Ortiz, Experimental design for the 
optimization of the derivatization reaction in determining chlorophenols and 
chloroanisoles by headspace-solid-phase microextraction–gas chromatography/ 
mass spectrometry, J. Chromatogr. A 1296 (2013) 179–195, https://doi.org/ 
10.1016/j.chroma.2013.04.038. 

[24] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, Wiley, 2001. 

[25] M.C. Ortiz, L.A. Sarabia, A. Herrero, M.S. Sánchez, Vectorial optimization as a 
methodogical alternative to desirability function, Chemometr. Intell. Lab. Syst. 83 
(2006) 157–168, https://doi.org/10.1016/j.chemolab.2005.11.005. 

[26] R. Bro, PARAFAC. Tutorial and applications, Chemometr. Intell. Lab. Syst. 38 
(1997) 149–171, https://doi.org/10.1016/S0169-7439(97)00032-4. 

[27] H.A.L. Kiers, J.M.F. ten Berge, R. Bro, PARAFAC2-Part I. A direct fitting algorithm 
for the PARAFAC2 model, J. Chemom. 13 (1999) 275–294, https://doi.org/ 
10.1002/(SICI)1099-128X(199905/08)13:3/4%3C275::AID-CEM543%3E3.0.CO; 
2-B. 

[28] R. Bro, C.A. Andersson, H.A.L. Kiers, PARAFAC2-Part II. Modeling 
chromatographic data with retention time shifts, J. Chemom. 13 (1999) 295–309, 
https://doi.org/10.1002/(SICI)1099-128X(199905/08)13:3/4<295::AID- 
CEM547>3.0.CO;2-Y. 

[29] M.C. Ortiz, L.A. Sarabia, M.S. Sánchez, A. Herrero, S. Sanllorente, C. Reguera, 
Usefulness of PARAFAC for the quantification, identification, and description of 
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