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b Department of Construction, Escuela Politécnica Superior, University of Burgos, c/Villadiego s/n, 09001 Burgos, Spain 
c TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, Astondo Bidea, Edificio700, 48160 Derio, Bizkaia, Spain   

A R T I C L E  I N F O   

Keywords: 
Self-compacting concrete 
Recycled aggregate 
Cyclic temperature change 
Thermal internal damage 
Microstructural characterization 
Indicator non-destructive property 

A B S T R A C T   

Recycled Aggregate (RA) usually increases porosity and weakens Interfacial Transition Zones (ITZs) of concrete, 
which favors the appearance of internal thermal damage. Four Self-Compacting Concrete (SCC) mixes with 
coarse and fine RA were subjected to positive and negative cyclic temperature variations to characterize their 
thermal damage and quantify its effects. Two damage mechanisms were found. On the one hand, micro-cracks 
appeared in the ITZs. On the other hand, micro-cracks arose from the micro-pores and propagated through the 
cementitious matrix. Both damage mechanisms were promoted by the use of coarse and fine RA, respectively. 
The damage was most notable at sub-zero temperatures and when adding coarse RA. Furthermore, it primarily 
affected compressive strength, although ultrasonic pulse velocity and hardened density also decreased, which 
served as non-destructive indicators to indirectly quantify the level of thermal internal damage of SCC.   

1. Introduction 

Concrete sustainability can be increased by using industrial by- 
products as raw materials. The use of aggregates from industrial pro-
cesses to replace Natural Aggregate (NA) allows obtaining concrete 
mixes with an adequate balance between sustainability, mechanical 
response and durability [1]. 

Recycled Aggregate (RA) consists of crushed out-of-use concrete, 
which may be added as coarse and fine aggregate in any concrete type, 
such as Self-Compacting Concrete (SCC), which needs no vibration [2]. 
The adhered mortar in the coarse RA, and the mortar particles in the fine 
fraction reduce concrete workability, increase porosity, and weaken 
Interfacial Transition Zones (ITZs) [3], which generally reduce strength 
and durability [4]. However, an SCC with adequate behavior can be 
obtained by a mix design focused on RA properties [5]. 

RA also affects the thermal response of concrete, reducing its thermal 
conductivity [6] and increasing its thermal deformability and damage 
[7]. This letter supplements previous studies by the authors that address 
this issue in SCC containing RA. Firstly, the deformability of SCC with 
RA under cyclic temperature changes was evaluated. The appearance of 
a remaining strain as the cycles went by was found, which indicated the 

existence of internal damage [8]. Subsequently, the evolution over the 
thermal cycles of the level of internal damage was analyzed [9]. This 
letter aims to complete this research by deepening the microstructural 
characterization of the damage experienced by SCC with RA under cyclic 
temperature changes, and by providing indicator properties to quantify 
it. Both aspects are novel in the scientific literature. 

2. Materials and methods 

Four SCC mixes of slump-flow class SF3 [10] were produced. They 
incorporated 300 kg/m3 of CEM I 52.5 R and 1855 kg/m3 of aggregate, 
whose proportions, by volume, were 11.4 % limestone filler < 0.063 
mm, 6.2 % limestone fines 0/1 mm, 31.0 % coarse aggregate 4/12.5 
mm, and 51.4 % fine aggregate 0/4 mm. The effective water-to-cement 
ratio was 0.50–0.60, and the admixture content, 2.2 % of cement mass. 
Accordingly, mix N incorporated 100 % natural siliceous aggregate; mix 
C, 100 % coarse RA 4/12.5 mm; mix F, 100 % fine RA 0/4 mm; and mix 
CF, 100 % coarse and fine RA. 

At an age of 180 days, 75 × 75 × 275-mm prismatic specimens of 
each mix were subjected to freezing and heating conditionings, which 
consisted of 20 cycles of 12 h either at − 15 ◦C in a freezer or at 70 ◦C in 
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an oven, followed by 12 h at 20 ◦C in a climatic chamber. After condi-
tioning completion, Ultrasonic Pulse Velocity (UPV), EN-12504-4 [11], 
and hardened density, EN-12390-7, were measured. Then, 75 × 75 ×
75-mm cubes were extracted from those prismatic specimens to deter-
mine their compressive strength, EN-12390-3, and modulus of elasticity, 
EN-12390-13. The values of the properties tested on the thermally 
stressed specimens were compared with those of other specimens of the 
same age that had not been subjected to thermal conditioning. A Scan-
ning Electron Microscope (SEM) analysis was also conducted on the cut 
faces of the 75 × 75 × 75-mm cubes before its mechanical testing. 

3. Results and discussion 

3.1. Characterization and effects of thermal internal damage 

Table 1 details the compressive strength, modulus of elasticity, UPV, 
and hardened density of the four mixes in unconditioned and thermally 
conditioned specimens. Both thermal conditionings, especially the 
freezing one, caused significant internal damage in the mixtures, which 
worsened all four properties evaluated. 

The thermal internal damage in SCC resulted from the appearance of 
micro-cracks in the ITZs, due to the different thermal deformability 
between the aggregate and the cementitious matrix, or micro-cracks that 
started in micro-pores and then propagated through the cementitious 
matrix. These two damage mechanisms can be observed in the SEM 
images in Fig. 1: 

• Fig. 1a shows a zone of a mix-C specimen where an RA particle de-
tached from the cementitious matrix, a phenomenon favored by the 
micro-crack that appeared due to thermal variation and propagated 
through the ITZ. Adding RA > 2 mm to concrete weakens the ITZs 
due to its adhered mortar [4], which is promoted by cyclic thermal 
variation.  

• Fig. 1b shows a 500-μm-diameter pore from a mix-F specimen. It can 
be noted that a crack begins in that pore and propagates towards the 
cementitious matrix. The presence of mortar particles in fine RA 
causes a considerable increase in porosity [3], so this kind of micro- 
cracking was favored when adding this RA fraction. 

The aforementioned thermal-damage mechanisms worsened all the 

properties evaluated (Table 1). However, the decrease in each property 
was different, as detailed in Fig. 2. The highest reduction was in 
compressive strength, which showed decreases of up to 15–35 % after 
the freezing conditioning. However, the modulus of elasticity experi-
enced an almost negligible reduction. Therefore, the thermal micro- 
cracking suffered by SCC mainly affected its mechanical behavior 
under failure conditions. On the other hand, thermal micro-cracking 
increased the discontinuity in the cementitious matrix, which in turn 
led to a decrease in UPV of around half of the percentage loss of 
compressive strength. UPV is a non-destructive measure of the conti-
nuity and compactness of concrete [9], and both features were reduced 
due to cyclic temperature variations. Finally, the remaining strain that 
appeared in the concretes after thermal stress [8] caused a decrease in 
hardened density of 1–7 %. Those reductions were always higher in the 
freezing conditioning for all properties. It can therefore be stated that 
the micro-cracking produced by the freezing of the capillary water of 
concrete was more severe than the micro-cracking experienced by SCC 
in the heating conditioning, which was mainly caused by the different 
thermal deformability of the aggregate and the cementitious matrix. 

RA also influenced the thermal performance of SCC. Regardless of 
the thermal conditioning, the decrease in the properties was always 
larger in mix C than in mix F. In fact, mix F showed a similar behavior to 
mix N in many cases. Hence, it appears that the damage mechanism 
found in mix C, micro-cracking in the ITZs, was more relevant for the 
behavior of SCC than the micro-cracking originated in the pores, which 
was favored by fine RA. Logically, the simultaneous use of both RA 
fractions led to a combination of both damage mechanisms, so mix CF 
exhibited the highest performance deterioration. 

Table 1 
Average property values.    

Mix N Mix C Mix F Mix 
CF 

Compressive 
strength (MPa) 

Without 
conditioning  

62.6  49.2  45.8  32.7 

After freezing 
conditioning  

52.3  34.6  36.7  21.6 

After heating 
conditioning  

59.4  45.7  43.5  29.9 

Modulus of elasticity 
(GPa) 

Without 
conditioning  

37.2  33.1  29.2  21.2 

After freezing 
conditioning  

36.8  32.6  28.9  20.3 

After heating 
conditioning  

37.1  33.0  29.2  21.0 

UPV (km/s) Without 
conditioning  

4.04  3.69  3.41  2.76 

After freezing 
conditioning  

3.45  3.03  2.89  2.21 

After heating 
conditioning  

3.88  3.51  3.27  2.61 

Hardened density 
(Mg/m3) 

Without 
conditioning  

2.35  2.27  2.22  2.14 

After freezing 
conditioning  

2.33  2.23  2.20  2.09 

After heating 
conditioning  

2.32  2.19  2.17  2.01  

Fig. 1. SEM images of thermally conditioned specimens: (a) mix C with a crack 
in an ITZ; (b) mix F with a cracked micro-pore. 
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3.2. Indicator properties of thermal internal damage 

The direct quantification of the thermal damage by measuring the 
compressive strength in cores extracted from the concrete element may 
not be feasible. Therefore, indicator properties that allow indirectly 
estimating the thermal damage may be of great interest. Thus, Fig. 3 
shows the linear simple regression between the loss of compressive 
strength (the conventional property that best reflects the thermal dam-
age experienced by SCC [7]) and the variation of the other measured 
properties. Modulus of elasticity did not show a high correlation (R2 

coefficients below 80 %), so its use is not adequate for estimating the 
thermal damage of SCC. However, UPV and hardened density did reach 
R2 coefficients higher than 90 % in both thermal conditionings. Thus, a 
traditional indirect measurement such as UPV [2] would be a good way 
to quantify the thermal damage. In addition, the hardened density 
measured in small samples extracted from the surface of the damaged 
concrete elements could be a successful alternative. 

4. Conclusions 

Cyclic thermal variations produced internal damage in SCC, which 
was increased when using RA. This internal damage consisted of micro- 

cracks in the ITZs, a phenomenon favored by the use of coarse RA, or 
micro-cracks that arose in the micro-pores and propagated through the 
cementitious matrix, damage mechanism promoted when adding fine 
RA. Micro-cracking fundamentally decreased the compressive strength 
of concrete. However, UPV and hardened density of SCC were also 
negatively affected and could serve as indirect indicators to successfully 
estimate the level of that thermal damage (loss of compressive strength) 
by a linear simple regression. The internal thermal damage was most 
notable when applying sub-zero temperatures and adding coarse RA, 
although the joint use of both RA fractions had the most detrimental 
effect. 

CRediT authorship contribution statement 

Víctor Revilla-Cuesta: Conceptualization, Methodology, Investiga-
tion, Data curation, Writing – original draft. Marta Skaf: Conceptuali-
zation, Investigation, Supervision, Writing – review & editing. José A. 
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