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A B S T R A C T   

This work shows the potential of modified screen-printed carbon electrodes (SPCEs) for sensitive and selective 
detection of 4-ethylphenol in wine. Gold nanoparticles (AuNPs) and fullerene C60 (C60), modified sensors have 
been compared. pH of the supporting electrolyte, deposition time and working temperature have been optimized 
considering their influence in the voltammetric pulse response of 4-ethylphenol. Under the optimal conditions of 
measurement, the developed activated C60/SPCE (AC60/SPCE) shows the best performance, with a detection 
capability of 400 μg/L and 700 μg/L, when using deposition times of 14 min and 6 min, respectively (α = β =
0.05). The reproducibility of the developed sensor resulted better when a deposition time of 6 min was used (5.4 
%, n = 3). The influence of different interferents on the analytical response has been studied, as well as their 
application in the determination of 4-ethylphenol in different wine samples.   

1. Introduction 

In wine industry, quality control of the final product is an issue of 
growing importance for manufacturers to guarantee the obtention of 
more competitive final products. In this sense, the organoleptic prop-
erties of a wine are one of the key parameters to determine its quality. 
The appearance of compounds that produce unpleasant odours in these 
products may cause serious economic losses to the wine industry. 
Among the most common compounds that may reduce wine quality are 
volatile phenols, including 4-ethylphenol [1,2]. The formation of 4-eth-
ylphenol takes place by decarboxylation of hydroxycinnamic acids by 
yeasts of the Brettanomyces/Dekkera bruxellensis genus, existing in the 
microflora of grapes [3-5]: they are first converted to hydroxystyrene by 
the action of hydroxycinnamate descarboxylase enzyme and subse-
quently reduced to ethyl derivatives by vinylphenol reductase enzyme. 
Furthermore, the concentration of 4-ethylphenol frequently increases 
during aging process and even after the wine is bottled, producing un-
desirable off-flavours to wine, described as animal odours, horse sweat, 
stable or varnish [1,2]. Thus, different analytical methods have been 
developed for the determination of this compound in wine quality 
control, being gas chromatographic techniques the most widely used 
including mass spectrometry detection [2,6-16] and, in a less extent, 
flame ionisation detection [17-21]. These chromatographic procedures 
involve the extraction of 4-ethylphenol from wine matrix using different 

approaches, such as liquid–liquid extraction [10,11,19], dispersive liq-
uid–liquid microextraction [8,15,16], solid-phase extraction [12,15], 
solid phase microextraction [10,14,18-20] or stir bar sorptive extraction 
[9,13]. Thus, chromatographic procedures result time consuming, using 
high-cost equipment that is often not useful for real-time or in situ 
analysis. On the contrary, electroanalytical techniques offers an effec-
tive approach in biological an environmental analysis due to important 
advantages such as cost-effectiveness, fast response and ease of minia-
turization and portability, keeping a high degree of selectivity and 
sensitivity [22-27]. Their use for the determination of 4-ethylphenol is 
currently emerging using different types of electrodes including carbon 
electrodes [28-33], gold electrodes [34-36] and electrochemical bio-
sensors [32,33]. Nevertheless, only a few of these works have been 
applied in the determination of this molecule in wine (Table 1). Due to 
the complex matrix of wine samples, modification of the working elec-
trode with molecularly imprinted polymers [29] or the use of chemo-
metric tools [31] has been attempted in order to obtain selective signals. 
However, these methods are still characterized by poor sensitivity. It is 
well-known that both sensitivity and selectivity in the determination of 
different analytes can be improved by using nanomaterials, such as 
metallic nanoparticles [37-40] and fullerene C60 (C60) [41-44]. 

Metallic nanoparticles are characterized by large response surface, 
high catalytic and mass transfer activities that may increase the selec-
tivity and sensitivity of sensors [45]. Among them, gold nanoparticles 
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(AuNPs) are the most used due to their high surface-to-volume ratio and 
biocompatible and low toxicity [39,40,45,46]. Another alternative for 
electrode modification is C60, which is a carbon allotrope whose struc-
ture is completely different from that of other carbonated compounds. It 
is an electrochemically attractive material widely used due to its ability 
to accept and donate electrons [47]. Thus, the present work is focused on 
the preparation of novel electrochemical sensors for 4-ethylphenol using 
screen-printed carbon electrodes (SPCEs) modified with C60 and/or 
AuNPs. These electrodes have been selected considering their excep-
tional properties compared to those of conventional electrodes, 
including low cost and mass production, disposability, high versatility to 
modification and high ability to connect to portable devices that make 
them useful for in situ analysis [24,48-50] The performance of the 
developed method has also been studied in terms of reproducibility, 
capability of detection, as well as by its application to the quantification 
of 4-ethylphenol in different commercial wine samples. 

2. Material and methods 

2.1. Reagents 

Analytical-reagent grade chemicals were used. Type-I water (Milli-
pore, Bedfrod, MA, USA), 18.2 MΩ cm, was used for the preparation of 
all solutions. Britton Robinson (BR) buffer solutions, containing 0.04 M 
phosphoric acid (Panreac, Barcelona, Spain), 0.04 M acetic acid (VWR 
Chemical, Fontenay, France) and 0.04 M boric acid (Panreac, Barcelona, 
Spain), were used as supporting electrolyte for the electrochemical 
measurements. 1 M NaOH (Ecros, Barcelona, Spain) solutions were used 
to adjust the pH value of the buffer solutions. 

HAuCl4 solutions were prepared by dissolving the appropriate 
amount of hydrogen tetrachloroaurate-(III) trihydrate (Acros Organics, 
Geel, Belgium) in 0.5 M sulfuric acid (Merck, Darmstadt, Germany). C60 
solutions were prepared from fullerene (Acros Organics, Geel, Belgium) 
using dichloromethane (Panreac, Barcelona, Spain) as solvent. 

Stock standard solutions of 4-ethylphenol (Alfa Aesar, Haverhill, 
Massachussetts, USA) were prepared by dissolving the adequate amount 
in Milli-Q water. 

2.2. Preparation of AuNPS/SPCEs 

The electrochemical deposition of AuNPs was performed in a 100 μL 
drop of a 0.1 mM HAuCl4 solution prepared in 0.5 M H2SO4, applying a 
potential of + 0.18 V, according to a previously described procedure 
[48,51]. The optimum deposition time for the AuNPs formation was 
estimated by means of cyclic voltammetric measurements performed in 
a 0.05 M H2SO4 solution in the potential range from 0 to + 1.5 V, at a 
scan rate of 100 mV/s. It was observed a well-defined reduction peak at 
+ 0.50 V as AuNPs were deposited on the electrode surface, which can 
be associated to the reduction of gold surface oxide. Longer deposition 

times led to higher intensities of this peak. In the case of using deposition 
times higher than 350 s, an oxidation peak gave rise at + 1.0 V aprox. 
This oxidation peak was related to the formation of a gold film on the 
electrode surface [52,53], which leads to the loss of the unique prop-
erties provided by the modification with nanoparticles [38-40,46]. 
Thus, a value of 350 s was selected as the optimum to guarantee the 
formation of AuNPs on the SPCE surface. 

2.3. Preparation of AC60/SPCEs 

The modification of the SPCE surface by C60 was performed 
following a previous reported method [42]. Briefly, 40 µL of 0.1 mg 
mL− 1 solution of C60 in dichloromethane, except for the optimization 
process, was deposited on the SPCE surface and left to dry at room 
temperature. 

The C60/SPCE surface was then activated by means of cyclic vol-
tammetry. 50 µL of a 1.0 M KOH solution were deposited on the working 
electrode surface and the C60 film was partially reduced by ranging the 
potential from 0 to + 1.5 V, for 1 cycle at a scan rate of 10 mV s− 1. After 
this partial reduction, the activated C60/SPCE (AC60/SPCE) becomes 
sufficiently conductive to be used as a sensitive working electrode 
[43,54,55]. 

2.4. Electrochemical measurements 

Electrochemical measurements were carried out using a PalmSens4 
potentiostat (Palmsens BV, Houten, The Netherlands) using SPCEs (DRP- 
C11L, Metrohm DropSens, Oviedo, Spain) modified with C60 and/or 
AuNPs. 

The accumulation of 4-ethylphenol on the AC60/SPCE surface was 
performed at the headspace of a sealed cell [56]. 1.0 mL of the corre-
sponding concentration of the target analyte solution, prepared in BR pH 
5.8, were placed into a sealed cell, with the AC60/SPCE on set the top, as 
far as possible from the solution. The accumulation of the 4-ethylphenol, 
present in the headspace of the sample, was carried out under stirring 
during a deposition time of 360 s. The temperature was also controlled 
during this accumulation step and a value of 54 ◦C was settled, except for 
the optimization process. The accumulation of 4-ethylphenol on AuNPs/ 
SPCEs was performed following a similar procedure by means of the 
stirred deposition of the analyte in BR pH 5.0 during 650 s. 

After the incubation process, the electrochemical sensor was care-
fully removed from the cell and rinsed with Milli-Q water. Next, 100 µL 
of a BR solution of pH 5.8 for AC60/SPCEs or pH 5.0 for AuNPs/SPCE, 
were placed on the electrode and differential pulse voltammograms 
(DPVs) were recorded from − 0.2 V to + 0.8 V, at room temperature. 
Other instrumental parameters were pulse potential, +0.01 V; step po-
tential, +0.02 V; pulse time, 0.02 s and scan rate, 50 mV s− 1. 

Table 1 
Electrochemical determination of 4-ethylphenol.  

Technique Electrode Modification Limit of detection (μg/L) Reprod. Sample Recovery Ref 

DPV GCE – –  – – – [28] 
MIP with polypirrol 24.4  3.0% Wine 101% [29] 

GECE MIP with divinylbencene 1300  – – – [30] 
Gold – 290  – – – [34] 

MIN with 4-vinylpyiridine 70  – – [34] 
68  17.4 % – – [35] 

MIP with 4-vinylpyridine and ethylene dimethacrylate 36  10.0 % – – [36] 
CV GECE CuNPs, WO3NPs, Cophtalocyanine, 

Bi2O3NPs and polypyrrole 
1800  4.6 % Spiked wine samples – [31] 

CNT/GCE Tyr 25.7  – Synthetic cocktail – [32] 
Amp SPCE Tyr 1.4  7.0 % Water – [33] 

CNT/GCE Tyr 12.2  – Synthetic cocktail 108% [32] 

GCE, Glassy carbon electrode; CNT/GCE, Glassy carbon electrode modified with carbon nanotubes; GECE, Graphite Epoxy Composite Electrode; MIN, molecularly 
imprinted nanoparticle; MIP, molecularly imprinted polymer; SPCE, Screen Printed Carbon Electrode; Tyr, Tyrosinase. 
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3. Results 

The electrochemical response of 4-ethylphenol has been described as 
an oxidation process in the ortho position of the molecule, giving rise to 
the corresponding quinone [28]. This oxidation response may be used 
for the quantitative analysis of 4-ethylphenol, so it is very important that 
it is sensitive and selective enough. Different nanomaterial modified 
electrodes, including AuNPs and AC60, have been tested with this aim. 

3.1. DPV determination of 4-ethylphenol using AuNPs/SPCEs. 

The DPV oxidation behaviour of 4-ethylphenol using a AuNPs/SPCE 
was first studied. The AuNPs/SPCE used for this aim was constructed 
following the procedure defined in section 2.2, based on the electrode-
position of AuNPs on the SPCE surface applying a potential of + 0.18 V 
during 350 s. 

In order to ensure the quality of the analytical results, the experi-
mental parameters that may have influence in the oxidation response of 
4-ethylphenol, using the described AuNPs/SPCEs, were optimized. 
Thus, the joint optimization of pH of BR solutions and deposition time of 
4-ethylphenol on the electrode surface was performed using the exper-
imental design methodology. A central composite design 22, in which 
the oxidation intensity of a 10 mg/L 4-ethylphenol solution was taken as 
response variable, was carried out. Eleven experiments were performed 
to analyse five levels for each of the factors, obtaining a maximum in the 
response surface for pH and deposition time values of 5.0 and 650 s, 
respectively. Under these experimental conditions, a well-defined 
oxidation peak at + 0.48 V, useful for quantitative determination of 4- 
ethylphenol, was observed (Fig. 1). Hence, different calibrations 
curves were constructed, which were used to validate the analytical 
method in terms of precision and capability of detection. 

The dispersion of the results was evaluated in terms of the relative 
standard deviation (RSD) of the slopes associated with different cali-
bration curves. This procedure avoids obtaining incorrect results when 
considering just a single concentration, since the dispersion may be 
usually stabilized at high concentration values. Therefore, three cali-
brations were made in the concentration range from 3 to 25 mg/L of 4- 
ethylphenol, using a AuNPs/SPCE to estimate the reproducibility. Out-
liers points with a studentized residual above 2.5 in absolute value were 
removed in order to provide a correct evaluation of the calibration 

parameters, obtaining a RSD value of 8.2 %. 
Decision limit (CCα) and capability of detection (CCβ) were esti-

mated using also the validated calibration curves. CCα of the procedure 
is defined as the lowest concentration level at which the method can 
discriminate if the analyte of interest is in the sample with a probability 
of 1-α, where α is the false positive. In the same way, CCβ is estimated as 
the lowest concentration level of analyte, with a probability of 1-β (β, 
false negative), that the method is able to detect [57]. When using and 
an α = β = 0.05 value, a CCα of 2.78 mg/L was obtained, while CCβ 
resulted to be lower than the concentration of the first calibration point. 
Therefore, a concentration of 3 mg/L was taken as the capability of 
detection of the developed method. 

3.2. DPV detection of 4-ethylphenol using an AC60/SPCE. 

In order to improve the selectivity and sensitivity of the above 

Fig. 1. Differential pulse voltammograms for 4-ethylphenol solutions of con-
centrations ranging from 0 to 100 mg/L using a AuNPs/SPCE (BR pH 5.0, 
deposition time, 650 s; pulse potential, +0.01 V; step potential, +0.02 V; pulse 
time, 0.02 s and scan rate, 50 mV s− 1). 

Fig. 2. Cyclic voltammetric voltammograms obtained for 1 mM Fe(CN)6
3− so-

lution in BR pH 6 using AC60/SPCEs modified with C60 solutions prepared in 
different solvents: (1) dichloromethane; (2) toluene; (3) dimethylformamide. 

Fig. 3. Differential pulse voltammograms for 4-ethylphenol solutions of con-
centrations ranging from 0 to 25 mg/L using an AC60/SPCE (BR pH 5.8, 
deposition time, 14 min; deposition temperature, 54 ◦C; pulse potential, +0.01 
V; step potential, +0.02 V; pulse time, 0.02 s and scan rate, 50 mV s− 1). 

P. Portugal-Gómez et al.                                                                                                                                                                                                                       



Microchemical Journal 180 (2022) 107599

4

electrochemical method, a modification of the electrode surface with 
AC60 was also performed. The optimization of this electrochemical 
response began through a series of experiments to find the best experi-
mental conditions for the modification of the electrode surface. Thus, 
different solvents were first tested, named dichloromethane, toluene and 
dimethylformamide, for the preparation of C60 solutions [41,42,44]. 
The electrochemical response of the different modified electrodes was 
characterized by cyclic voltammetry using Fe(CN)6

3− /4− as redox probe, 
achieving the best results when C60 was solved in dichloromethane 
(Fig. 2). 

Next optimization experiments, consisted of finding the best values 
of the experimental variables that may have significant influence on the 
analytical response, were performed. For this reason, pH of the sup-
porting electrolyte and deposition time of 4-ethylphenol were opti-
mized. Moreover, in this case, the working temperature was also 
considered as an influence factor in the deposition of 4-ethylphenol on 
the electrode surface. The joint optimization of the influence of these 
variables in the analytical response of a 10 mg/L 4-ethylphenol solution, 
using central composite designs, led to an optimum value for pH of 5.8 
and, 14 min and 54 ◦C for time and temperature of incubation, respec-
tively. Under these optimized conditions, the electrochemical response 
of 4-ethylphenol by DPV showed an oxidation peak at + 0.2 V (Fig. 3). 
Thus, C60 modification of the working electrode led to significantly 
lowering of peak potential improving the selectivity. 

The precision and the capability of the detection of the procedure 
based on the use of AC60/SPCEs were also calculated, by means of the 
construction of different validated calibration curves in the range from 
400 to 800 μg/L. The reproducibility was calculated in terms of RSD for 
the slopes of 3 calibration sets using different electrode surfaces, 
obtaining a value of 9.4 %. CCα (101.9 μg/L) and CCβ values were also 
calculated according to ISO 11,843 for α = β = 0.05 [57]. The value 
obtained for CCβ was lower than the concentration of the first calibra-
tion point, so 400 μg/L was considered as the capability of detection of 
the method, leading to a higher sensitivity than the previously described 
AuNPs/SPCEs. 

An incubation time of 14 min implies spending a long time for each 
calibration analysis, which is incompatible with real-time analysis. 
Therefore, a study of the influence of this parameter on the sensitivity of 
the method was carried out. Thus, calibration curves using different 
deposition times ranging from 4 to 14 min were constructed in the 

concentration range from 700 to 1300 μg/L. The analysis of the slopes, 
obtained for the different analysed times, shown that a deposition time 
of 6 min gave rise to a similar sensitivity value to that obtained for 14 
min, reducing the analysis time to less than half. The capability of 
detection obtained using this shorter time was 700 μg/L, slightly higher 
than that obtained for 14 min. However, the reproducibility of the 
method (RSD, 5.4 %; n, 3) was better than that obtained with longer 
deposition times. Therefore, 6 min can be selected as good enough for 
the determination of 4-ethylphenol in real samples. 

Moreover, a study of the possible improvement that the presence of 
AuNPs could exert on the described AC60/SPCEs was also carried out. 
Thus, AC60/SPCEs were modified with AuNPs by means of the electro-
deposition procedure described in section 2.2. The electrochemical 
response obtained for the developed AuNPs/AC60/SPCEs together with 
the analytical responses obtained for SPCEs, AuNPs/SPCEs and AC60/ 
SPCEs can be observed in Fig. 4. This figure shows that a higher sensi-
tivity was obtained when the SPCEs were just modified with C60, 
following the optimized method described above. Bearing in mind these 
analytical results AC60/SPCEs were selected as working electrodes for 
next experiments. 

3.3. Interference studies. 

The selectivity of the developed AC60/SPCEs was analysed by 
studying the influence of the presence of 4-ethylguayacol on the 
analytical response of 4-ethylphenol. This interferent was selected 
considering its simultaneous presence in wine and similar chemical 
structure to that of 4-ethylphenol. Thus, the influence of different con-
centrations of the interfering compound, ranging from 700 to 1300 μg/ 
L, in the analytical signal of a 700 μg/L 4-ethylphenol solution was 
analysed. The obtained results shown no significant interference by 4- 
ethylguaicol concentration levels lower than 1100 μg/L (Fig. 5). 
Therefore, this compound cannot be considered as an interferent, taking 
into account that the concentration of 4-ethylguaicol in wine is often 
lower [10,13,16]. 

Fig. 4. Differential pulse voltammograms for a 1000 μg/L 4-ethylphenol so-
lution using different electrodes (BR pH 5.8, deposition time, 6 min; deposition 
temperature, 54 ◦C; pulse potential, +0.01 V; step potential, +0.02 V; pulse 
time, 0.02 s and scan rate, 50 mV s− 1). 

Fig. 5. Differential pulse voltammograms for [4-ethylphenol], 700 μg/L; [4- 
ethylguaiacol], 900 μg/L (1) and [4-ethylphenol], 700 μg/L; [4- 
ethylguaiacol], 1100 μg/L (2) using an AC60/SPCE (BR pH 5.8, deposition 
time, 360 s; deposition temperature, 54 ◦C; pulse potential, +0.01 V; step po-
tential, +0.02 V; pulse time, 0.02 s and scan rate, 50 mV s− 1). 
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3.4. Wine sample analysis. 

The performance of the developed electrochemical sensor was 
analyzed by the direct determination of 4-ethylphenol in different wine 
samples. The voltammetric responses obtained for these samples are 
shown in Fig. 6. Four different commercial samples from different ori-
gins and different grape variety were studied by the standard addition 
method, without finding the presence of analyte in any of them 
(Table 2). Recovery experiments were also performed by the analysis of 
spiked wine samples obtaining good analytical values from 100.3 to 
101.8 %, which indicates a nice applicability and reliability of the 
developed analytical method. 

4. Conclusions 

A novel and easy electrochemical method for the determination of 4- 
ethylphenol in wine has been developed. The modification of SPCEs 
with C60 gave rise to selective and sensitive sensors for the determina-
tion of 4-ethylphenol, even in the presence of high concentrations of 4- 
ethylguayacol. Under the properly optimized experimental conditions 
the sensor showed a wide linear range (from 700 to 1300 μg/L), as well 
as good precision (5.4 %) and capability of detection (700 μg/L). 
Additionally, it was successfully applied to the determination of 4-ethyl-
phenol in different wine samples, obtaining good recovery values ranged 
from 100.3 to 101.8%. 
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[30] A. Herrera-Chacon, A. González-Calabuig, I. Campos, M. del Valle, Bioelectronic 
tongue using MIP sensors for the resolution of volatile phenolic compounds, 
Sensors Actuators, B Chem. 258 (2018) 665–671, https://doi.org/10.1016/j. 
snb.2017.11.136. 
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