

PCCP

Physical Chemistry Chemical Physics

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Aparicio, M. Atilhan, A. Gutierrez, S. Martel, J. A. Tamayo, R. Barros, A. Bol, F. C. Gennari and P. Arneodo Larochette, *Phys. Chem. Chem. Phys.*, 2022, DOI: 10.1039/D2CP00346E.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM.

A theoretical study on CO_2 at Li_4SiO_4 and Li_3NaSiO_4

surfaces

Alberto Gutiérrez,^{a,b} Juan Antonio Tamayo-Ramos,^b Sonia Martel,^b Rocío Barros,^b

Alfredo Bol,^{b,c} Fabiana Cristina Gennari,^{d,e} Pierre Arneodo Larochette,^{d,e} Mert Atilhan,^f Santiago Aparicio^{*a,b}

^a Department of Chemistry, University of Burgos, 09001, Burgos, Spain

^b International Research Center in Critical Raw Materials for Advanced Industrial Technologies

(ICCRAM), University of Burgos, 09001 Burgos, Spain

^c Department of Physics, University of Burgos, 09001 Burgos, Spain

^d National Scientific and Technical Research Council (CONICET), Bariloche Atomic Centre

(CNEA), R8402AGP, S. C. de Bariloche, Río Negro, Argentina

^f Department of Chemical and Paper Enginering, Western Michigan University, Kalamazoo MI

49008-5462 USA

^e Balseiro Institute (National University of Cuyo), R8402AGP, S. C. de Bariloche, Río Negro,

Argentina

*Corresponding authors: sapar@ubu.es

ABSTRACT: Lithium silicates have attracted great attention in recent years due to their potential use as high-temperature (450-700 °C) sorbents for CO₂ capture. Lithium orthosilicate (Li₄SiO₄) can theoretically adsorb CO₂ in amounts up to 0.36 g CO₂/g Li₄SiO₄. The development of new Li₄SiO₄-based sorbents is hindered by a lack of knowledge of the mechanisms ruling CO_2 adsorption on the Li₄SiO₄, especially for eutectic mixtures. In this work, the structural, electronic, thermodynamic and CO_2 capture properties of monoclinic phases of Li_4SiO_4 and a binary (Li_3NaSiO_4) eutectic mixture are investigated using Density Functional Theory. The properties of the bulk crystal phases as well as of the relevant surfaces are analysed. Likewise, the results for CO_2 – lithium silicates indicate that CO_2 is strongly adsorbed on the oxygen sites of both sorbents through chemisorption, causing an alteration not only in the chemical structure and atomic charges of the gas, as reflected by both the angles and bond distances as well as atomic charges, but also in the cell parameters of the Li_4SiO_4 and Li_3NaSiO_4 systems, especially in Li₄SiO₄ (001) and Li₃NaSiO₄ (010) surfaces. The results confirm strong adsorption of CO₂ molecules on all the considered surfaces and materials followed by CO₂ activation as inferred from CO₂ bending, bond elongation and surface to CO2 charge transfer, indicated CO_2 chemisorption for all the cases. The Li₄SiO₄ and Li₃NaSiO₄ surfaces may be proposed as suitable sorbents for CO2 capturing in wide temperature ranges.

1 Introduction

In the last decades, a significant increase level of atmospheric carbon dioxide (CO₂), which has been identified as the most important contributor to global warming, has taken place. CO₂ concentration in the atmosphere recently exceeded the threshold of 400 ppm, ¹ and the increasing trend does not appear to slow down. The main source of CO₂ is fossil fuels burning for energy production,² so there is an urgent need to develop cost-effective and environmentally acceptable CO₂-capturing technologies^{3,4} in order to reduce emissions. Concretely, high-temperature adsorption using solid sorbents is an attractive CO₂ capture option because a lot of energy can be saved during the process by recycling the heat emitted from the exothermic adsorption of CO₂ by the solid sorbents in the reactor.

The analysis of surface properties in terms of CO₂ activation via adsorption is of great relevance for understanding the CO₂ capturing mechanism and energetics in solid sorbent. The adsorption and activation on different surfaces is confirmed by large adsorption energies,⁵ bending of CO₂ molecules,⁶ charge transfer from the surface to the gas molecule and even breaking of CO₂ molecules in some cases.⁷ All these parameters are used to quantify the extension of CO₂ activation and thus the possible chemisorption on the surface.

Among the various solid sorbents that have been investigated and proposed in literature, CaO- and Li₂O-based sorbents, as well as hydrotalcite, are the most studied high-temperature sorbents.⁸ Hydrotalcites have lower CO₂ adsorption capacity (0.029 g_{gas} ·g⁻¹sorbent) ⁹ than CaO- and Li₂O-based sorbents (0.79 g_{gas} ·g⁻¹sorbent and 0.36 g_{gas} ·g⁻¹ ¹sorbent</sup> respectively),^{10,11,12} so they are less used in carbon capture. Among the other sorbents, Li₂O-based ones are more desirable because its regeneration does not consume as much energy as CaO-based ones, which is normally operated at 900 °C in practical applications.¹³ Lithium containing materials such as lithium zirconate (Li₂ZrO₃) and lithium orthosilicate (Li₄SiO₄) seem to be promising CO₂ acceptors in the 500-700 °C range. These silicates show fast adsorption rates, high capture capability, and good durability of repeated adsorption-desorption cycles.^{14,15} Specifically, Li₄SiO₄ is considered as one of the most promising candidates at high temperature and low concentrations because it has 30 times faster CO₂ adsorption (at the same sorption

Page 3 of 29

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

conditions) and lower cost of the raw materials involved than Li_2ZrO_3 .¹⁶ However, it usually suffers from slow kinetics at low CO₂ concentrations, so an effective way to enhance the kinetics of pure Li_4SiO_4 is to dope it with heteroatoms such as Na,^{17,18} K, ^{19,20} Al ²¹ or Fe.²²

The CO₂ adsorption behaviour of Li₄SiO₄-based sorbents has been studied in the literature at low temperatures,^{23,24,25} evaluating the dependence of the CO₂ adsorption reaction on the Li₄SiO₄ surface properties. Nevertheless, there are scarce studies on the structural, electronic, thermodynamic and CO₂ capture properties of these compounds, ^{26,27} especially for eutectic mixtures, which can be attained through theoretical studies. One of the eutectic mixtures that have attracted much attention in recent years is Li₂O-Na₂O-SiO₂ system, an important class of material not only for CO₂ adsorption^{28,29} but also for glass,^{30,31} mold-flux,^{32,33} and steel industry.³⁴ The main reason is that Nacontaining silicates are able to form eutectic melts with the Li₂CO₃ shell (one of the products of Li₄SiO₄ carbonation) at high temperatures, which favours the CO₂ diffusion through the product layer.³⁵ In this respect, some studies have reported the prevailing role of newly formed Li₃NaSiO₄ in improving the CO₂ sorption,^{36,37,38} as well as its CO₂ sorption mechanism,³⁹ but the structural, electronic, thermodynamic and CO₂ capture properties of Li₃NaSiO₄ applying Density Functional Theory (DFT) calculations have not been studied.

Therefore, in this work, the structural, electronic, thermodynamic and CO_2 capture properties of monoclinic phases of Li_4SiO_4 and a binary (Li_3NaSiO_4) eutectic mixture were thoroughly investigated by using DFT calculations, considering (001), (010) and (100) surfaces. Kong et al. ⁴⁰ studied low Miller index surfaces of Li_4SiO_4 visa First Principles calculations showing (010) plane as the most stable among low index ones, although with small differences for all the low index ones. Therefore, low index planes (010), (100) and (001) were selected in this work as the most symmetric options between the low index – low energy ones as representative surfaces for CO_2 adsorption.

The reported results allowed to analyse the properties of the eutectic mixture in comparison with the Li_4SiO_4 and the CO_2 properties at the interfaces of both silicates.

2. Methods

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

Electronic structure calculations for pure silicates and for the adsorption of CO_2 on Li₄SiO₄ and Li₃NaSiO₄ surfaces have been carried out using the software package SIESTA⁴¹ (v4.1-b4). The Generalized Gradient Approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE)⁴² scheme was considered. Norm-conserving Troullier-Martins pseudopotentials⁴³ factorized in the Kleinman-Bylander form⁴⁴ with numerical Double zeta plus polarization orbitals (DZP) basis sets were used for all the calculations. An energy cutoff of 500 Ry was used. A *k*-point mesh of $3 \times 5 \times 5$ using the Monkhorst-Pack grid was considered.⁴⁵ Tests for the selection of the number of *k*-points and energy cutoff were carried out (Tables S1 and S2, Supplementary Information), which led to the selection of the parameters used along this work. Structural relaxation using the Conjugated Gradient method was used, with 0.01 eV Å⁻¹ as convergence criteria for forces acting on each atom. Dispersion corrections were considered using Grimme's DFT-D3 method⁴⁶ for all the systems, additional corrections such as Becke-Johnson damping function⁴⁷ are not considered.

Li₄SiO₄ crystal is characterized by a monoclinic structure with a space group $P2_1/m^{20}$ Li₄SiO₄ has another phase (y-Li₄SiO₄) in triclinic structure with space group P1, although this y phase appears at low temperature.²⁶ Therefore, the monoclinic structure was considered for all the Li₄SiO₄ calculations considered in this work in agreement with previous studies.⁴⁸ In the case of Li₃NaSiO₄, there is no crystallographic information, so for its characterization, a monoclinic structure with a space group $P2_1/m$ has also been considered in parallel to Li_4SiO_4 . In the case of Li_4SiO_4 , a crystal structure containing 126 atoms (14 formula units) was considered in agreement with the experimental data by Tranqui et al.⁴⁹ and previously used for DFT studies.^{26,48} An analogous 126-atoms cell was considered for Li₃NaSiO₄, Fig. 1. The bulk structures for both silicates were fully relaxed and new cell parameters and atomic positions were inferred at the considered theoretical level. For developing surfaces, relaxed bulk crystals, Figure S1 (Supplementary Information), were cleaved along the (001), (010) and (100) Miller's planes. In this surface building procedure, a two-layers depth slab demonstrated to be thick enough to obtain consistent energies, while a (2×2) supercell reconstruction turned to be large enough to avoid interaction between the periodic images. For Li_4SiO_4 Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

surfaces, considered systems contained 100 Li + 24 Si + 96 O (001), 63 Li + 14 Si + 56 O (010), and 58 Li + 16 Si + 64 O (100). For Li₃NaSiO₄ surfaces, 30 Li + 14 Na + 12 Si + 48 O (001), 40 Li + 14 Na + 14 Si + 56 O (010), and 42 Li + 14 Na + 16 Si + 64 O (100). These surfaces were fully relaxed, and after relaxation a single CO_2 molecule was placed on top of different surface positions, to analyse the different surface adsorption sites, Figure S2 (Supplementary Information). All the simulations were carried out using periodic boundary conditions in the three space directions. In the case of surfaces a vacuum layer 20 Å long was considered in the direction perpendicular to the surface to avoid interactions with neighbouring cells.

The CO₂ adsorption energy, E_{ads} , was calculated using the following formula:

$$E_{ads} = E_{surf+CO2} - E_{surf} - E_{CO2} \tag{1}$$

where $E_{surf+CO2}$ is the energy of the (relaxed) whole system, E_{surf} , the energy of the clean surface (relaxed in absence of CO₂) and E_{CO2} the energy for the isolated CO₂ (simulated as a single molecule in a 20×20×20 Å³ box). In order to get insight into the nature of CO₂ adsorption on these silicates, we computed Hirshfeld⁵⁰ charges before and after adsorption of CO₂. In this way, it would be possible to identify any possible charge transfers between atoms, getting conclusions on the nature of the adsorption. Hirshfeld charges were used instead of Mulliken ones considering that Mulliken-charges are largely dependent on the applied basis set and they are not suitable when using diffuse orbitals⁵¹ as the DZP ones considered in this work.

Further analysis of CO₂-lithium silicate systems was carried out using Ab initio molecular dynamics (AIMD) simulations for selected systems. The objective of AIMD simulation was to infer dynamic behavior of the systems in comparison with the so-called static calculations as well as to study the temperature effect on the CO₂ adsorption. The simulation boxes used for AIMD studies were the same ones as those used for the aforementioned calculations. AIMDs were carried out in the NVT ensemble at 1528 K (for Li₄SiO₄ systems) or 1050 K (for Li₃NaSiO₄), with the temperature controlled using the Nose thermostat (Nose mass = 100 Ry fs²), with 1 fs time step, up to 1 ps total simulation time. The AIMD simulations were carried out at temperatures according to their melting points.^{52,53}

3. Results and discussion

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

3.1 Properties of Li₄SiO₄ and Li₃NaSiO₄ bulk crystalline structures and interfaces.

The optimized monoclinic $P2_1/m$ structure for Li₄SiO₄ is reported in Figure S1a (Supplementary Information). Results obtained in this work are in fair agreement with available experimental and computational studies (Supplementary Information). In the case of Li₃NaSiO₄, the absence of any experimental or computational results hinders any comparison with the results reported in this work. The Li₃NaSiO₄ optimized crystal structure is reported in Figure S1a (Supplementary Information), crystal cell parameters (a,b,c) are lower than those for Li₄SiO₄, leading to a cell volume 10 % lower, i.e. more compact cell. Nevertheless, the SiO₄ structure is not remarkably changed in Li₃NaSiO₄, as the Si-O bond distance is the same as in Li₄SiO₄ and only a smaller β angle is inferred. The electronic distribution reported in Figure S1b (Supplementary Information) is analogous to that in Li₄SiO₄. The main difference in the electronic properties stands on the DOS reported in Figure S1c (Supplementary Information), which leads to a direct band gap of 3.6 eV, which is lower than the value for Li_4SiO_4 . Therefore, Li_3NaSiO_4 is a semi-conductive material and the presence of Na cations decreases the band gap. Literature results for Li₂O and Na₂O showed band gaps of 5.8 and 2.4 eV,⁵⁴ respectively, thus confirming the effect of sodium on the decrease of Li_3NaSiO_4 with regard to Li_4SiO_4 .

The properties of Li_4SiO_4 and Li_3NaSiO_4 surfaces along the (001), (010) and (100) planes were also studied. The cell parameters are reported in Table 1 as well as the surface energy, E_{surf} , calculated using eq. 2:

$$E_{surf} = \left[E_{slab} - \left(\frac{N_{slab}}{N_{bulk}} \right) E_{bulk} \right] / 2A_{slab}$$
(2)

Where the subscript *slab* and *bulk*, stand for the properties of the systems with surfaces (Table 2) and for those of the bulk crystals (Figure S1, Supplementary Information), respectively. *E* stands for total energy, *N* for the number of atoms in the simulated cells, and *A* for the area of the surfaces. The E_{surf} values reported in Table 1 show that surfaces stability ordering are as follows (100) > (001) > (010), both for Li₄SiO₄ and Li₃NaSiO₄ surfaces. Kong et al.⁴⁰ reported stability ordering (010) > (100) > (001) calculated at GGA/PW91 in contrast wit GGA/PBE values in this work, with the differences being justified considering the different levels for calculations as well as the different performance of PW91 and PBE.⁵⁵ Nevertheless, the E_{surf} values obtained in this works

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

and in reasonable agreement with literature ones. The stability of Li₃NaSiO₄ surfaces is slightly larger than those for Li₄SiO₄, except for (010), the less stable surface. Nevertheless, E_{surf} values for Li₄SiO₄ and Li₃NaSiO₄ surfaces are very similar, thus showing minor effects on surface stability because of the presence of Na ions. Likewise, the (a,b,c) crystallographic parameters are also very similar for both lithium silicates, the slightly larger values for Li₃NaSiO₄ surfaces show a minor expansive effect because of the presence of the bulkiest sodium atoms. The electronic properties are analyzed through the electron density contour maps, Figure 1. The presence of high-density spots on the surface, in the vicinity of oxygen atoms, shows the sites for prevailing adsorption of CO₂ molecules. These concentration of charge sites are present for all the surfaces and both for Li₄SiO₄ and Li₃NaSiO₄.

3.2 CO₂ on Li₄SiO₄ and Li₃NaSiO₄ surfaces.

The adsorption of CO_2 on Li_4SiO_4 and Li_3NaSiO_4 surfaces was studied for (001), (010) and (100) surfaces considering a selection of different adsorption sites, P_i . The selection of adsorption sites was done considering the geometry of the surface, the possible different sites were inferred and the adsorption energy calculated for all of them. The structures before and after CO₂ adsorption are reported in Figures 2 and 3 for the different adsorption sites as well as geometric, charges and energy related parameters in Tables 2 and 3. The reported results for E_{ads} , Table 2, are remarkably large for all the silicates, surfaces and adsorption sites. These large *E_{ads}* values indicate strong chemisorption of CO₂ molecules for all the available adsorption sites, thus leading to a deformation and bending of CO_2 molecules on the lithium silicates surfaces. The E_{ads} values on Li_4SiO_4 surfaces indicate (0 0 1) (-9.8 eV) > (0 1 0) (-7.3 eV) > (1 0 0) (-3.2 eV). Therefore, (001) is clearly favored over other possible surfaces although the large value of E_{ads} for the three studied surfaces show chemical sorption for all of them. In the case of Li₃NaSiO₄ surfaces, values are lower than for Li₄SiO₄ (-7.2 eV in comparison with -9.8 eV, respectively for the stronger adsorption sites) and the surfaces ordering being (0 1 0) (-7.2 eV) >(1 0 0) (-6.9 eV) > (0 0 1) (-2.6 eV). Therefore the (0 0 1) is destabilized in terms of CO₂ adsorption on going from Li₄SiO₄ and Li₃NaSiO₄. Therefore, the introduction of Na atoms on the studied silicate surfaces led to a slight weakening of CO₂ adsorption. Nevertheless, the adsorption kinetics is improved by the doping, thus leading to two

opposite effects upon doping: adsorption weakening (thermodynamics) coupled with faster adsorption rates (kinetics). However, results in Table 2 confirm that CO₂ can be efficiently adsorbed for all the surfaces of both Li₄SiO₄ and Li₃NaSiO₄, which is of great relevance for CO_2 capturing purposes. Likewise, for a fixed surface (e.g. (0 0 1) Li₄SiO₄), results reported in Table 2 show non-negligible differences for E_{ads} when considering the different adsorption sites (e.g. 1 eV for (0 0 1) Li₄SiO₄ or 3.0 for (0 1 0) Li₄SiO₄). Therefore, preferential adsorption sites may be inferred, although small E_{ads} values are not reported for any of the considered adsorption sites, thus confirming that CO₂ molecules can be efficiently adsorbed at different sites on each surface, i.e. allowing large CO₂ capturing ability. The comparison of cell parameters for neat surfaces (in absence of CO_2 , Table 1) with those upon CO_2 adsorption (Table 2) show that upon adsorption of this molecule, both the structural parameters of CO2 as from the surface are affected. Therefore, crystal cell evolving in response to the strong interaction with adsorbed molecules. These changes are in some cases cell expansions (e.g. (001) surfaces for both lithium silicates) and in other ones, cell contractions (e.g. (100) surfaces), which are responses to the strong CO_2 adsorption. These structural changes are also indicated by the adsorbed gas to surface distance reported in Table 2, these distances being in the 2 to 4.2 Å range, depending on the site and surface. The reduced Density Gradient (RDG) for the CO_2 molecule interacting with the surface (Figure 4) confirms strong interaction in the area on the surface below the gas molecule.

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

The effect of adsorbed CO_2 molecules on the electronic properties of the surfaces is analyzed through the DOS reported in Figure 5 for selected adsorption sites corresponding to the largest E_{ads} (Table 2). The DOSs show very minor changes upon CO_2 adsorption, and although the adsorption of CO_2 molecules leads to the modification of the electronic properties of lithium silicates because of the strong adsorption as reported by the large E_{ads} these effects are not remarkable.

Likewise, CO_2 molecules suffer large changes upon adsorption indicating chemical sorption. The changes in CO_2 properties are reported in Table 3. The C-O bond distances are elongated upon adsorption for all the considered sites and these elongations are larger for Li₄SiO₄ than for Li₃NaSiO₄ surfaces. The calculated C-O bond distance for isolated, not adsorbed, CO_2 molecules is 1.18 Å, with results in Table 3 indicating bonds elongated up to 1.50 Å, which is a sign of bond breaking for some Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

adsorption sites. Moreover, the large bending of CO_2 molecules, Figure 3, is quantified by the corresponding O-C-O angles, with values as low as 103° obtained for the stronger adsorption sites. Therefore, the large E_{ads} as well as the changes in the geometrical parameters of CO_2 molecules point to initial stages of breaking of CO_2 molecules in the lithium silicate surfaces. The possible charge transfer surface- CO_2 is analyzed through the Hirshfeld charge, Table 3. For isolated CO_2 molecule, gas phase, the Hirshfeld charge for the carbon atom is +0.218, whereas -0.109 was calculated for the oxygen atoms, thus neutral CO_2 molecule. Results in Table 3 show that upon adsorption non-neutral CO_2 molecules are formed in all the cases. The sign of the total charge for CO_2 depends on the nature of the adsorption site, with sites close to surface oxygen atoms leading to positively charged molecules whereas the reverse effect was inferred for sites closer to silicon atoms.

3.3 AIMD of CO₂ on Li₄SiO₄ and Li₃NaSiO₄ surfaces.

The results reported in the previous section allowed to confirm the chemical adsorption of CO_2 on the surfaces of the considered lithium silicates. The dynamics and temperature effect on this strong adsorption were studied by AIMD simulations at 1528 K (for Li₄SiO₄ systems) or 1050 K (for Li₃NaSiO₄). The AIMD evolution of a single CO₂ molecule adsorbed on the (010) surface of both silicates allowed to analyze relevant structural properties. Radial distribution functions, RDFs, for the center of mass of CO_2 molecules (C atom) and lithium silicate surface atoms are reported in Figure 6. In the case of Li₄SiO₄, Figure 6a, the reported RDFs show closer contacts between C atoms and Li ones, the first peak at 2.2 Å for C-Li RDFs indicates strong interactions with the Li cation. For the interaction with the silicate anions, RDFs for C-O pairs show lower distances than for C-Si ones, as the surfaces are rich in O atoms from the silicates, therefore leading to stronger interactions with the oxygen atoms. Nevertheless, the C-O peak appears at larger distances than C-Li ones, thus, stronger interactions with the cations than with the anions (O atoms) is inferred. This would justify the large negative charge for (010) surface as reported in Table 3, corresponding to the extraction of charge from lithium atoms. In the case of Li₃NaSiO₄, the reported RDFs, Figure 6b, are less defined than for Li_4SiO_4 , with less intense peaks. The presence of Na atoms changes all the RDFs, C-Li and C-Na RDFs appear at roughly the same distance but increases when

compared with Li_4SiO_4 , i.e. CO_2 molecules are pushed away of Li cations, when eutectic mixture is formed. On the contrary, C-O and C-Si decreases in the eutectic, with remarkably low C-O distances, which point to strong contacts of gas molecules with the silicates through the O atoms. Therefore, the mechanism of interaction with the surface is different in the Li_4SiO_4 , prevailing contacts with surface lithium cations, in comparison with Li_3NaSiO_4 , closer contacts with silicate anions through oxygen atoms.

The atomic distribution on the surfaces is analysed through the density profiles in the direction perpendicular to the surfaces, *z*, Figure 7. These density profiles confirm the peaking of density data for Li atoms at the surface in close contact with CO_2 molecules, whereas for the eutectic Na atoms are placed in inner regions not so close to the surface as lithium ones. Nevertheless, the formation of the eutectic changes the properties of the surfaces, especially for silicate anions, which leads to closer contact with CO_2 molecules, especially with the enrichment of O atoms from silicates in the vicinity of CO_2 .

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

The large changes in CO₂ molecules upon adsorption are also analysed with AIMD simulations. The time evolution of bond distances and angles are reported in Figure 8. Although an oscillatory behaviour is inferred for all the properties and both for Li_4SiO_4 and Li₃NaSiO₄, the CO₂ bending and bond elongation is maintained in both surfaces at the studied temperatures, with larger deformations for Li₃NaSiO₄. Likewise, the time evolution of E_{ads} reported in Figure 9 confirms that CO₂ molecules remains strongly adsorbed on both surfaces and no desorption is inferred, which is due to the strong gassurface affinity even at high temperatures. The oscillatory behavior of CO₂ geometrical properties as well as for E_{ads} show gas molecules diffusing on the lithium silicate surface although remaining close to the sorption positions. For this purpose, CO_2 diffusion on the surface was analyzed from mean square displacements, *msd*, reported in Figure 10. The reported *msd* show faster diffusion on Li_3NaSiO_4 than on Li_4SiO_4 , which can be related with the behavior of RDFs in Figure 6, i.e. more localized adsorption for Li₄SiO₄. Nevertheless, the oscillatory behavior inferred for msd in both silicates shows how CO₂ molecules are moving around the localized adsorption sites without leaving these positions, and producing the oscillations in geometrical properties and E_{ads} reported in Figures 8 and 9. This is confirmed by the calculated self-diffusion coefficients on the surface planes, D_{xy}, obtained from msd and Einstein's equation, Figure 10, being 420 and

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

875 Å² ns⁻¹, for Li₄SiO₄ and Li₃NaSiO₄, respectively. Nevertheless, once CO₂ molecules are adsorbed on the lithium silicate surfaces, they move around the corresponding adsorption sites but remain around these sites as indicated by the trajectories reported in Figure 11, thus maintaining strong interaction with the surfaces, Figure 9. Therefore, the chemical sorption with the disruption of the molecular properties of the adsorbed gas molecules is maintained at the high temperatures considered for AIMD simulations, thus these lithium silicates can be used as high temperature sorbents for CO₂.

The theoretical results using both static and dynamic approaches probed CO_2 activation on both silicates surfaces as confirmed by: i) very large adsorption energies, ii) bending of CO_2 molecules, iii) elongation of C – O bonds, iv) charge transfer from sorbent to adsorbed gas molecules and v) efficient adsorption at high temperatures close to salts melting point. The CO_2 activation confirms chemisorption on the considered silicate surfaces for all they studied low Miller index surfaces and the suitability of the considered materials CO2 capture purposes.

4. Conclusions

The properties of lithium silicates for CO₂ capturing purposes are studied in this work using Density Functional Theory. The results show strong chemical adsorption of the different adsorption sites of all the available surfaces, both for Li₄SiO₄ and Li₃NaSiO₄ eutectic. The adsorption is characterized by deformation of adsorbed gas molecules leading to bonds elongation and molecular bending, indicating breaking of CO₂ molecules upon adsorption. The adsorption of CO₂ molecules also changes the properties of the adsorbed surfaces, geometrical and electronic, as a consequence of the great affinity for the gas molecules. In the case of Li₄SiO₄, close contacts with lithium ions is inferred, whereas for Li₃NaSiO₄ interactions with oxygen atoms of silicates are preferred. The adsorption is also characterized by charge transfer resulting in charged CO₂ molecules. Ab initio molecular dynamics simulations show that the adsorption is not largely disrupted by the considered high temperatures with the gas molecules is larger for Li₃NaSiO₄ than for Li₄SiO₄, but in both cases CO₂ molecules remain close to the sorption sites oscillating around the equilibrium positions. This study confirms the

suitability of these silicates for high temperature CO_2 adsorption based on the nanoscopic confirmation of the great affinity of both materials, in all their surfaces, for the gas as well as the activation of CO_2 molecules upon adsorption. The consideration of Li_3NaSiO_4 maintains the capturing ability in comparison with Li_4SiO_4 but at lower temperatures.

Acknowledgements

This work is part of the CO2MPRISE, "CO2absorbing Materials Project-RISE", a project that has received funding from the European Union's Horizon 2020 research and innovation programme, under the Marie Skłodowska-Curie Grant Agreement No 73487. We also acknowledge SCAYLE (Supercomputación Castilla y León, Spain) for providing supercomputing facilities. The statements made herein are solely the responsibility of the authors.

Supplementary information

Tables S1 and S2 (tests on the effect of k-points grid and energy cut-off on (0 0 1) Li₄SiO₄ surface energy; Figure S1 (properties and discussion for bulk systems). Figure S2 (definition in interaction sites on the considered surfaces);

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM.

ior optimi	zeu structures.				
compound	Miller's plane	cell parameters (a, b, c) / Å	cell parameters (α , β , γ) / °	surface energy / J m ⁻²	
Li ₄ SiO ₄	(001)	(21.301, 12.019, 17.692)	(90, 90, 90)	2.17	
	(010)	(16.074, 10.651, 16.129)	(90, 90, 101.01)	3.09	
	(100)	(12.019, 16.074, 18.259)	(90, 90, 90)	1.60	
Li_3NaSiO_4	(001)	(21.439, 12.134, 17.252)	(90, 90, 92.31)	2.00	
	(010)	(16.600, 11.439, 15.974)	(90, 90, 101.33)	3.87	
	(100)	(12.134, 16.600, 18.854)	(90, 90, 90.26)	1.50	

Table 1

Properties of cells for clean surfaces (in absence of CO_2) for the indicated compounds. Values obtained for optimized structures.

Table 2

Properties for Li_4SiO_4/Li_3NaSiO_4 -CO₂ systems. Values obtained for optimized structures. Adsorption sites labelling as in Figures 3 and 4. E_{ads} stands for CO₂ adsorption energy calculated according to eq. 1. *d* stands for the distance between the center-of-mass of CO₂ (C atom) and the center-of-mass of the closest Li_4SiO_4/Li_3NaSiO_4 (Si atom). Values obtained for optimized structures.

compound	Miller's plane	liller's plane site <i>E_{ads}</i> / eV cell parameters* (a, b, c,		cell parameters* (a, b, c, α, β, γ) / Å , °	d/Å
Li ₄ SiO ₄	(001)	.) 1 -8.832		(21.646, 11.962, 17.072, 89.564, 77.487, 89.354)	1.97
		2	-9.753	(21.475, 11.581, 17.186, 94.606, 76.578, 87.947)	3.25
		3	-8.846	(21.265, 11.402, 17.338, 81.277, 81.779, 96.729)	2.68
	(010)	1	-4.241	(15.694, 9.207, 16.465, 88.268, 87.909, 94.409)	4.18
		2	-7.249	(15.542, 8.872, 15.659, 86.893, 82.052, 89.704)	3.76
		3	-4.485	(15.650, 9.387, 15.319, 89.397, 90.466, 94.318)	2.11
		4	-4.202	(15.674, 9.340, 15.503, 86.540, 82.155, 94.311)	3.12
	(100)	1	-3.208	(11.329, 13.015, 20.261, 99.609, 91.567, 97.759)	3.46
		2 -2		(10.994, 13.118, 18.403, 88.191, 81.385, 87.636)	3.21
		3	-1.947	(11.309, 12.874, 18.272, 90.116, 89.137, 89.882)	3.35
Li_3NaSiO_4	(001)	1	-2.556	(11.518, 10.148, 14.254, 85.003, 97.424, 86.877)	3.65
		2	-1.336	(12.104, 10.138, 14.632, 83.140, 82.866, 85.690)	3.48
		3	-1.916	(11.596, 10.177, 16.300, 85.437, 89.572, 86.802)	3.19
		4	-1.929	(11.836, 9.957, 16.562, 81.820, 94.137, 86.318)	3.57
	(010)	1	-7.157	(16.732, 8.448, 13.935, 99.853, 85.635, 90.313)	2.89
		2	-3.624	(16.917, 8.559, 15.564, 99.440, 83.162, 90.619)	3.61
		3	-4.775	(17.161, 8.369, 14.856, 92.626, 81.089, 89.374)	2.94
	(100)	1	-6.907	(10.649, 15.715, 15.863, 98.993, 101.993, 85.311)	3.21
		2	-4.777	(10.533, 15.239, 16.995, 103.350, 94.217, 86.328)	3.56
		3	-5.378	(10.479, 15.229, 18.290, 98.864, 91.577, 85.302)	3.42
		4	-4.575	(10.571, 15.660, 16.487, 96.252, 91.668, 83.686)	3.04
		5	-5.384	(10.294, 15.685, 17.101, 94.869, 91.320, 82.926)	2.71
		6	-6.134	(10.482, 15.493, 18.321, 91.060, 90.989, 82.561)	2.66

Table 3

Properties of CO₂ molecule upon adsorption on Li₄SiO₄/Li₃NaSiO₄ surfaces. Adsorption sites labelling as in Figures 3 and 4. *d* and Φ stand for distance and angle, respectively, considering C, O1 and O2 as CO₂ atoms. *q* stands for atomic charges, calculated using Hirshfeld method. *q*_{CO2} stands for the total charge of CO₂ molecule upon adsorption.

			-						
compound	Miller's plane	site	<i>d</i> _{C-O1 (CO2)} / Å	<i>d</i> _{C-O2 (CO2)} / Å	Ф _{01-С-О2 (СО2)} /°	q_c	q_{O1}	q 02	q _{CO2}
Li ₄ SiO ₄	(001)	1	1.28	1.32	118.38	0.181	-0.098	-0.064	0.019
		2	1.39	1.44	103.52	0.143	-0.069	-0.174	-0.100
		3	1.26	1.26	128.40	0.294	-0.077	-0.068	0.149
	(010)	1	1.25	1.50	108.83	0.024	-0.150	-0.215	-0.341
		2	1.29	1.34	114.91	-0.026	-0.181	-0.199	-0.406
		3	1.26	1.33	115.71	0.110	-0.168	-0.201	-0.259
		4	1.25	1.44	111.19	-0.022	-0.123	-0.180	-0.325
	(100)	1	1.18	1.18	173.51	0.299	-0.010	-0.027	0.262
		2	1.17	1.18	176.80	0.314	-0.005	-0.006	0.303
		3	1.16	1.20	177.42	0.328	0.009	0.007	0.344
Li₃NaSiO₄	(001)	1	1.18	1.18	169.78	0.333	-0.011	0.016	0.338
		2	1.17	1.19	174.22	0.269	-0.066	-0.033	0.170
		3	1.17	1.18	170.25	0.301	-0.021	-0.043	0.237
		4	1.17	1.18	171.84	0.314	-0.009	-0.034	0.271
	(010)	1	1.24	1.30	123.95	0.237	-0.165	-0.187	-0.115
		2	1.17	1.18	169.49	0.292	-0.053	-0.011	0.228
		3	1.23	1.24	137.45	0.246	-0.168	-0.173	-0.095
	(100)	1	1.26	1.27	126.98	0.254	-0.184	-0.195	-0.125
		2	1.17	1.18	177.05	0.325	0.010	-0.002	0.333
		3	1.25	1.28	125.46	0.241	-0.165	-0.156	-0.080
		4	1.17	1.18	176.88	0.313	0.019	-0.038	0.294
		5	1.24	1.27	133.78	0.223	-0.192	-0.190	-0.159
		6	1.25	1.28	127.61	0.262	-0.153	-0.126	-0.017

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

Figure Captions.

Fig. 1 Electron density contour maps at selected surfaces of Li₄SO₄ and Li₃NaSO₄.

Fig. 2 Snapshots showing initial configurations for (a) $Li_4SiO_4 + CO_2$, and (b) $Li_3NaSiO_4 + CO_2$ systems used for DFT calculations. Structures considering different surfaces, as defined by the corresponding (*i j k*) Miller planes, and different positions for the adsorption of CO₂ molecules, defined by *Pi*. Color code: (red) CO₂, (pink) silicate ions, (yellow) Li⁺, (orange) Na⁺.

Fig. 3 Snapshots showing optimized configurations for (a) $Li_4SiO_4 + CO_2$, and (b) $Li_3NaSiO_4 + CO_2$ systems used for DFT calculations. Structures considering different surfaces, as defined by the corresponding (*i j k*) Miller planes, and different positions for the adsorption of CO₂ molecules, defined by *Pi*. Color code: (red) CO₂, (pink) silicate ions, (yellow) Li⁺, (orange) Na⁺.

Fig. 4 Reduced Density Gradient analysis in the region close to adsorbed CO_2 on (0 0 1) Li_4SiO_4 surface. Values are reported in the plane through CO_2 molecule.

Fig. 5 Density of states as a function of orbital energy, $E-E_f$, for (a) $Li_4SiO_4 + CO_2$ and (b) $Li_3NaSiO_4 + CO_2$ systems. Curves show values for isolated Li_4SiO_4 or Li_3NaSiO_4 , isolated CO_2 , and $Li_4SiO_4 / Li_3NaSiO_4 + CO_2$ systems.

Fig. 6 Site – site radial distribution functions, g(r), for the reported atomic pairs from AIMD simulations of 1 CO₂ molecule on (a) (0 1 0) surface of Li₄SiO₄ (P2 site, Figure 2) and (b) (0 1 0) surface of Li₄SiO₄ (P1 site, Figure 2).

Fig. 7 Number density, ρ , in the direction perpendicular to the surface for the reported atoms from AIMD simulations of 1 CO₂ molecule on (a) (0 1 0) surface of Li₄SiO₄ (P2 site, Figure 3) and (b) (0 1 0) surface of Li₄SiO₄ (P1 site, Figure 3). Dashed lines show the highest position of each type of atom for reference purposes.

Fig. 8 Time evolution of relevant CO₂ geometric parameters (C- O bod distance, *d*, and O-C-O angle, Φ) from AIMD simulations of 1 CO₂ molecule on (a,c) (0 1 0) surface of Li₄SiO₄ (P2 site, Figure 3) and (b,d) (0 1 0) surface of Li₄SiO₄ (P1 site, Figure 3).

Fig. 9 Time evolution of adsorption energy, E_{ads} , from AIMD simulations of 1 CO₂ molecule on (a) (0 1 0) surface of Li₄SiO₄ (P2 site, Figure 3) and (b) (0 1 0) surface of Li₄SiO₄ (P1 site, Figure 3). Dashed lines show E_{ads} from Table 2.

Fig. 10 Mean square displacement on xy plane (surface) for CO₂ center-of-mass, *msd*, from AIMD simulations of 1 CO₂ molecule on (0 1 0) surface of Li₄SiO₄ (P2 site, Figure 3) and (0 1 0) surface of Li₄SiO₄ (P1 site, Figure 3).

Fig. 11 Trajectory (red lines) on *xy* plane (surface) for CO_2 center-of-mass, from AIMD simulations of $1 CO_2$ molecule on (0 1 0) surface of Li_4SiO_4 (P2 site, Figure 3) and (0 1 0) surface of Li_4SiO_4 (P1 site, Figure 3). Blue spheres show the initial ubication of the molecule on each adsorption site.

Fig. 1

(b) Li₃NaSiO₄-CO₂

Physical Chemistry Chemical Physics Accepted Manuscript

Fig. 2

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM.

(b) Li₃NaSiO₄-CO₂

Fig. 3

Fig. 4

20

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

27

References

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM

- 1 Trends in Atmospheric Carbon Dioxide. <u>https://www.esrl.noaa.gov/gmd/ccgg/trends/monthly.html</u> (accessed January, 20, 2022).
- 2 C. Le Quéré, et al, Earth Syst. Sci. Data, 2018, 10, 2141-2194.
- 3 E. I. Koytsoumpa, C. Bergins, E. Kakaras, J. Supercrit. Fluids, 2018, 132, 3-16.
- 4 D. Bhattacharyya, D.C. Miller, Curr. Opin. Chem. Eng., 2017, 17, 78-92.
- 5 C. Zhang, J. Zhang, Z. Zhang, G.G.X. Wang, Comput. Theor. Chem. 2021, 1205, 113424.
- 6 N.Y. Dzade, N.H. DE Leeuw, Catalysts 2021, 11, 127.
- 7 R. Khaledialidusti, A. K. Mishra, A. Barnoush, ACS Omega, 2019, 4, 15935-15946.
- 8 J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, Z. Zhong, *Energy Environ. Sci.*, 2014, **7**, 3478-3518.
- 9 J. Ida, Y. Lin, Environ. Sci. Technol., 2003, 37, 1999-2004.
- 10 Y. Hu, W. Liu, J. Sun, M. Li, X. Yang, Y. Zhang, X. Liu, M. Xu, Fuel 2016, 167, 17-24.
- 11 J. Sun, W. Liu, Y. Hu, M. Li, X. Yang, Y. Zhang, M. Xu, Energy Fuel, 2015, 29, 6636-6644.
- 12 M. T. Izquierdo, V. Gasquet, E. Sansom, M. Ojeda, S. García, M. M. Maroto-Valer, Fuel, 2018, 230, 45-51.
- 13 X. Yang, W. Liu, J. Sun, Y. Hu, W. Wang, H. Chen, Y. Zhang, X. Li, M. Xu, *ChemSusChem*, 2016, **9**, 2480-2487.
- 14 S. Zhang, Z. Qi, H. Wang, Y. Ni, Z. Zhu, Int. J. Hydrogen Energy, 2014, **39**, 17913-17920.
- 15 J. Ida, Y. Lin, Environ. Sci. Technol., 2003, 37, 1999-2004.
- 16 M. Kato, K. Nakagawa, K. Essaki, Y. Maezawa, S. Takeda, R. Kogo, Y. Hagiwara, Int. J. Appl. Ceram. Technol., 2005, 2, 467-475.
- 17 Y. Hu, W. Liu, Y. Yang, X. Tong, Q. Chen, Z. Zhou, Ceram. Int., 2018, 44, 16668-16677.
- 18 K. Wang, Z. Zhou, P. Zhao, Z. Yin, Z. Su, J. Sun, Appl. Energy, 2017, **204**, 403-412.
- 19 S. Zhang, Q. Zhang, H. Wang, Y. Ni, Z. Zhu, Int. J. Hydrogen Energy, 2014, 39, 17913-17920.
- 20 M. Seggiani, M. Puccini, S. Vitolo, Int. J. Greenh. Gas Con., 2013, 17, 25-31.
- 21 J. Ortiz-Landeros, I. C. Romero-Ibarra, C. Gómez-Yáñez, E. Lima, H. Pfeiffer, J. Phys. Chem. C, 2013, 117, 6303-6311.
- 22 C. Gauer, W. Heschel, J. Mater. Sci., 2006, 41, 2405-2409.
- 23 M. Kato, S. Yoshikawa, K. Nakagawa, J. Mater. Sci. Lett., 2002, 21, 485-487.
- 24 K. Kanki, H. Maki, M. Mizuhata, Int. J. Hydrog. Energy, 2016, 41, 18893-18899.
- 25 S. Zhang, Q. Zhang, H. Wang, Y. Ni, Z. Zhu, Int. J. Hydrog. Energy, 2014, 39, 17913-17920.
- 26 Y. Duan, K. Parlinski, Phys. Rev. B: Condens. Matter., 2011, 84, 104113-1, 104113-10.
- 27 Y. Duan, H. Pfeiffer, B. Li, I. C. Romero-Ibarra, D. C. Sorescu, D. R. Luebke, J. W. Halley, *Phys. Chem. Chem. Phys.*, 2013, **15**, 13538-13558.
- 28 M. Kato, K. Nakagawa, K. Essaki, Y. Maezawa, S. Takeda, R. Kogo, Y. Hagiwara, Int. J. Appl. Ceram. Technol., 2005, 2, 467-475.
- 29 A. Sanna, I. Ramli, M.M. Maroto-Valer, Energy Procedia, 2014, 63, 739-744.
- 30 L.S. Gallo, T. De Marchi Mosca, B.H. Teider, I. Polyakova, A.C.M. Rodrigues, E.D. Zanotto, V.M. Fokin, J. Non-Cryst. Solids, 2015, 408, 102-114.
- 31 V.M. Fokin, E.D. Zanotto, N.S. Yuritsyn, J.W.P. Schmelzer, J. Non-Cryst. Solids, 2006, 352, 2681-2714.
- 32 M. D. Seo, C. B. Shi, J. W. Cho, S. H. Kim, *Metall. Mater. Trans. B*, 2014, **45**, 1874-1886.
- 33 H. Park, H. Kim, I. Sohn, Mater. Trans B, 2011, 42, 324-330.
- 34 B. Lu, K. Chen, W. Wang, B. Jiang, Metall. Mater. Trans B, 2014, 45, 1496-1509.
- 35 X. Yang, W. Liu, J. Sun, Y. Hu, W. Wang, H. Chen, Y. Zhang, X. Li, M. Xu, *ChemSusChem*, 2016, 9, 2480-2487.
- 36 Y. M. Kwon, S. C. Lee, H. J. Chae, M. S. Cho, Y. K. Park, H. M. Seo, J. C. Kim, *Renew. Energy*, 2019, 144, 180-187.
- 37 H. Cui, X. Li, H. Chen, X. Gu, Z. Cheng, Z. Zhou, Energy, 2019, 144, 180-187.
- 38 I. Yanase, K. Sato, Y. Midorikawa, H. Kobayashi, T. Doe, T. Naka, Mater. Lett., 2019, 238, 93-97.
- 39 H. Cui, X. Li, H. Chen, X. Gu, Z. Cheng, Z. Zhou, Chem. Eng. J., 2020, 382, 122807-1, 122807-10.
- 40 X. Kong, Y. Yu, s. Ma, T. Gao, C. Xiao, X. Chen., Chem. Phys. Lett. 2018, 691, 1-7.
- 41 J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter., 2002, 14, 2745-2779.
- 42 J. Perdew, K. Burke, M. Ernzerhof, Phys. Review Letters., 1966, 77, 3865-3868.

Published on 04 May 2022. Downloaded by Universidad de Burgos on 5/17/2022 1:53:08 PM.

- 43 N. Troullier, J. L. Martins, Phys. Rev. B, 1991, 43, 1993-2006.
- 44 L. Kleinman, D. M. Bylander, Phys. Rev. Lett., 1982, 48, 1425-1428.
- 45 H. J. Monkhorst, J. D. Pack, Phys. Rev. B: Solid State, 1976, 13, 5188-5192.
- 46 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 47 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 48 Y. Tang, P. Chen, W. Luo, D. Luo, Y. Wang, J. Nuclear Mat., 2012, 420, 31-38.
- 49 D. Tranqui, R.D. Shannon, H.-Y. Chen, Acta Cryst. B, 1979, 35, 2479-2487.
- 50 F. L. Hirshfeld, Theoret. Chim. Acta, 1977, 44, 129-138.
- 51 R. Carbo-Dorca, J. Matemat. Chem., 2004, 36, 231-239.
- 52 S. Claus, H. Kleykamp, W. Smykatz-Kloss, J. Nuclear Mat., 1986, 230, 8-11.
- 53 B. Konar, P. Hudon, I.H. Jung, J. Eur. Ceram. Society, 2018, 38, 2074-2089.
- 54 R.D. Eithiraj, G. Jaiganesh, G. Kalpana, *Physica B*, 2007, **396**, 124-131.
- 55 M. Fishman, H.L. Zhuang, K. Mathew, W. Dirschka, R.G. Hennig, Phys. Rev. B 2013, 87, 245402.