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A B S T R A C T   

Artificial ground freezing is a widely used, reliable method for excavation in water-bearing ground. The ques
tions posed in the thermal design of ground freezing projects require solving moving boundary (Stefan) prob
lems. Approximate analytical solutions, such as the ones by Ständer1 and Sanger and Sayles,2 have been 
developed for thermal engineering design and are used by practitioners across the industry. For instance, Sanger 
& Sayles’ solution is widely used for the single-freeze-pipe problem, but it has proven to be of limited accuracy.3 

In the present paper, an adjustment to this formula is proposed based on the re-evaluation of their empirical 
assumption that the ratio between the temperature penetration depth and the phase-change radius equals a 
constant value of 3 regardless the conditions. A sensitivity study is performed using a verified numerical model as 
a benchmark to study several problems with different initial and boundary conditions (initial, phase change and 
freeze pipe temperatures) and thermal properties of the ground (water content, thermal conductivity and heat 
capacity). This is done for the freezing times of 10 and 365 days, in order to consider the potential change of the 
ratio with the freezing time. In this way, a calibrated formula is proposed to find appropriate values of this ratio 
and a suitable adjustment to Sanger & Sayles’ solution is determined. Adjusting Sanger & Sayles’ solution in this 
manner, a significantly higher and more consistent accuracy is achieved for different boundary and initial 
conditions. This accuracy improvement was checked for real conditions from an engineering project, which 
shows that the adjustment can be useful for thermal problems in engineering design of ground freezing.   

1. Introduction 

Artificial ground freezing (AGF) is a method used for ground stabi
lisation and water cut-off for excavations and underground construction 
in water-bearing ground. By turning the groundwater into ice, and 
consequently increasing the strength and watertightness of the ground, 
ground freezing makes it possible to excavate safely. Typical applica
tions include the construction of mine shafts to great depths of several 
hundreds of meters,1,2 tunnels,3,4 tunnel cross-passages,5,6,7,8 excava
tions in urban environment (e.g. start TBM shafts9 and galleries for 
metro stations10,11), emergency measures6,12 or even its use as a 
long-term solution to prevent groundwater inflow into a mine during its 
operation.13,14,15 Ground freezing is considered a groundwater man
agement technique with a lower risk than other alternatives, such as 
grouting.15,9 This makes it an adequate and reliable technique, even 
under difficult conditions.6 In view of all this experience, artificial 

ground freezing can be described as a mature technology, as reported in 
Hu.16 Furthermore, there are projects of especially difficult geotechnical 
and hydrogeological conditions in which ground freezing is the only 
viable option.6 Its application has become more frequent in the last 
20–30 years in the urban environment.17,18 

The basic idea behind the ground freezing method is to cool down the 
ground below the freeze point of its groundwater by means of a cooling 
fluid. This fluid is circulated to freeze pipes previously installed in 
boreholes, where it extracts heat from the ground. Boreholes are drilled 
into the ground prior to excavation following a pattern which is 
designed depending on the required excavation geometry. For instance, 
in the case of a shaft, the boreholes are drilled in a circular pattern with a 
larger radius than the shaft excavation one. Closed-end freeze pipes are 
installed in the boreholes. As the ground near the freeze pipes is cooled 
down, frozen-ground cylinders start developing. After a certain time, 
these cylinders grow and subsequently merge with each other, forming a 
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closed freeze wall (freeze wall closure). This process is illustrated in 
Fig. 1. 

The ground freezing measure needs to be designed to assess its 
feasibility, cost, timeline and the requirements on the freezing station 
and power, as well as to ensure the safety of the excavation during 
construction. This design is required independently of which ground 
freezing technique is used. 

The design has to be performed, in principle, by way of coupled 
calculations of the thermal, mechanical and hydraulic fields,20 see also 
Huang, Liu.21 In fact, the mechanical, thermal and hydraulic designs are 
interrelated. For instance, the groundwater flow may affect the shape 
and size of the freeze body, which is why coupled thermal-hydraulic 
calculations may be required, especially under conditions of high 
groundwater velocity, see, e.g., Sres22 and Baier.19 Likewise, geotech
nical (geomechanical) calculations provide information on the stability 
of the excavation assuming a certain freeze wall thickness, whereas the 
thermal calculations are needed to estimate when the freeze wall will 
close (relevant for the water cut-off effect) and the time when the freeze 
wall thickness required for stability reasons will be attained. They are 
also required to estimate the duration of the ground freezing measure, 
the power requirements on the freezing station and the energy con
sumption and to design the freeze pipe pattern. There is a long list of 
required input data for thermal calculations, including the thermal 
properties of the frozen and unfrozen ground (thermal conductivity, 
heat capacity, water content), the initial ground temperature, the freeze 
point of groundwater and the freeze pipe temperature. 

The thermal design of artificial ground freezing is the focus of this 
paper. Due to the high impact of the thermal design on the safety and 
economics of ground freezing projects, accurate and practical methods 
for thermal design are essential for their success. As the ground freezing 
method uses freeze pipes, the single freeze pipe problem can be 
considered as the basic problem to be solved. Therefore, the adjustment 
to Sanger & Sayles’ solution for the single freeze pipe geometry which is 
developed in this paper is a significant step forward, creating a solution 
with a significantly increased accuracy, while holding onto the ease-of- 
use of the original solution. In contrast to past solutions, this adjusted 
solution is developed based not only on empirical assumptions, but also 
on a verified numerical model. This is partly due to the limited nu
merical tools available at the time of creation of the solutions, most of 
which were developed over 40 years ago. 

An overview of the required calculations for ground freezing design 
including the focus of this paper is shown in Fig. 2. 

2. State of the art in transient phase-change problems in 
cylindrical geometry 

The thermal problems which appear in ground freezing design are 
typically transient problems with phase change. From a mathematical 
standpoint, they are classified as moving boundary problems, so-called 
Stefan problems. They are described by Partial Differential Equations 

(PDEs) and initial and boundary conditions, the solution being the time- 
dependent temperature field in the two phases, from which the time- 
dependent position of the moving boundary can be extracted. The ex
istence of two phases, the latent heat in the phase change process and the 
moving phase-change interface make these problems non-linear, a fact 
that significantly increases their complexity. Due to this intricacy, only a 
few exact solutions are available23,24 and they are only applicable for 
very specific cases. Another common issue of the mathematical analysis 
of Stefan problems is that even approximate techniques are often 
restricted to one-dimensional problems and/or yield complex mathe
matical solutions.25 In fact, there are no available solutions for Stefan 
problems in 2 or 3 dimensions.26 Crank,27 a reputed mathematical 
physicist and co-inventor of the renowned Crank-Nicholson finite dif
ference method, made following statement on this matter regarding 
moving boundary problems: 

“VERY few analytical solutions are available in closed form. They are 
mainly for the one-dimensional cases of an infinite or semi-infinite 
region with simple initial and boundary conditions and constant 
thermal properties. These exact solutions usually take the form of 
functions of the single variable x/t1/2 and are known as similarity 
solutions.” 

One notable solution to a Stefan problem, which is known since the 
19th century, is Neumann’s solution.28 It solves the problem of a 
semi-infinite material at an initially constant temperature above the 
freeze point which is cooled by a plane at a constant temperature below 
the freeze point. This problem is described by a system of two partial 
differential equations (PDEs) and initial and boundary conditions. The 

Fig. 1. Evolution and phases of the freezing process in a freeze circle, adapted from Baier.19  

Fig. 2. Overview of the required calculations for ground freezing design.  
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problem and its solution can be found in Lunardini23 (also reported in 
Sancho-Calderón, Ibanez29). 

Compendia of exact solutions for further Stefan problems can be 
found in Lunardini,23 Crank,27 Carslaw and Jaeger30 and Tarzia.31 

Modern solutions on problems with (very) specific conditions can be 
found, among others, in Cherniha and Kovalenko,32 Voller,33 Ramos,34 

Voller, Swenson,35 Gottlieb,36 Kumar and Singh37 and Salva.38 Carslaw 
and Jaeger.30 Under consideration of the specific problem of the single 
freeze pipe, which is the focus of the present paper, a literature review 
for solutions to Stefan problems in cylindrical coordinates has been 
performed. One of the widest known simple exact solutions to cylin
drical Stefan problems is Carslaw and Jaeger’s,29 which solves the 
problem of a linear source with a constant heat flux in an infinite me
dium. This solution is not directly applicable to the single freeze pipe 
problem in artificial ground freezing for two main reasons. The first and 
foremost is that the heat flux extracted by a freeze pipe is typically 
variable with time instead of constant. Second, the pipe is not a linear 
heat source but it has a finite radius, which affects the geometry of the 
problem. A solution for the analogue problem with gradual phase 
change (i.e. phase change over a finite temperature range), which could 
be of interest for soils, was found by Li39 considering a polymorphous 
material with stepwise phase change. Nevertheless, its applicability is 
restricted for similar reasons as described for Carslaw and Jaeger’s 
solution. 

Stefan problems in cylindrical (and spherical) geometry are also 
studied in other scientific and engineering areas, such as nanoparticles 
development. For instance, Wu40 studied the one-phase problem in the 
case of slow conduction, small time and large Stefan number. A 
two-phase Stefan problem was studied for the spherical geometry in 
McCue41 and may be expanded on this basis to the cylindrical geometry. 
A two-phase Stefan problem for spheres with consideration of the sur
face tension was solved in McCue42 for large Stefan numbers via a 
small-time expansion. In the same area, the study in Wu43 concluded 
that the interfacial tension accelerates the melting process and in
fluences the temperature distribution in the particle. A further analytical 
solution for the inward solidification of spheres was constructed in 
Gupta.44 

Iterative solutions based on several simplifications have been found 
for the similar problems of freezing a liquid initially at the phase-change 
temperature inside or outside a cylindrical container in Shih.45 To 
approximately solve the problem of a melting cylinder with a constant 
surface temperature and at an initial temperature different to the 
phase-change temperature, Kucera46 uses a boundary fixing series 
technique. A similar problem of an isolated cylinder is also approxi
mately solved by Khalid47 by means of separation of variables and the 
eigen function expansion method. Further problems of inward solidifi
cation of cylinders are treated and approximate solutions found in Hill48 

and Riley.49 In all these cases, however, the geometry evaluated differs 
from the geometry in the single-freeze-pipe problem, because it con
siders a finite domain which has a boundary at a certain radius, instead 
of being an infinite medium like the ground is in typical ground freezing 
applications. Thus, their applicability to the ground freezing problem is 
very limited. 

Another exact solution available in cylindrical geometry is Got
tlieb’s,36 who solved the Stefan problem of a cylinder, freezing from the 
outside towards the inside, and with specific heat and latent heat 
dependent on the inverse square of the radius. Also this solution is not 
directly applicable to the single freeze pipe problem in ground freezing 
engineering, as the freeze process happens outwards from the cylinder 
and the ground thermal properties are typically considered as 
homogeneous. 

Ramos34 used the apparent specific heat capacity method (enthalpy 
formulation) and dimensionless formulations to solve Stefan problems 
for an infinite slab, an infinite cylinder and a sphere. The solution is 
specific to boundary conditions of the third kind (Fourier’s conditions) 
and assumed that the material is at the phase-change temperature at the 

beginning of the process. This lack of generality makes it difficult to use 
for practical engineering projects. 

Other solutions have been sought for inverse Stefan problems in 
cylindrical coordinates, such as in Kharin.50 However, its applicability to 
practical problems is also constrained. For instance, Kharin’s solution 
considers the source with radius zero (instead of a finite freeze pipe 
radius) and assumes that the initial temperature is the phase-change 
temperature. 

Unfortunately, as discussed above, Neumann’s solution and the other 
exact (and even many of the approximate) solutions available are not 
directly applicable to the usual geometries which appear in engineering 
problems. In these problems, there are usually several sources (freeze 
pipes), making the problem not easy to solve. Even for a single freeze 
pipe, there are no exact solutions available in the literature. Lunardini51 

expresses the challenge as follows: “No exact, general, solution exists for 
phase change in a cylindrical geometry. In fact, even approximate solutions 
are rare and limited in applicability.” 

Due to these limitations, design engineers need to turn to approxi
mate analytical solutions and to numerical methods for thermal design 
of ground freezing projects. For instance, several solutions have been 
developed in the past decades, such as Leibenson,52 Khakimov,53 

Ständer,54 Sanger & Sayles,55 Lunardini51 and Cai.56 This paper aims to 
improve one of the most widely used approximate analytical solutions 
which have been developed for engineering design of ground freezing 
projects: Sanger & Sayles’s solution for the single freeze pipe problem. 

3. An adjustment of Sanger & Sayles’ solution for the single 
freeze pipe problem 

As shown in several papers, such as Hentrich and Franz1 and Sancho 
Calderón et al.,29 Sanger & Sayles’ solution for the single freeze pipe 
problem is very simple and practical to use, however, it does not 
generate consistently accurate results. Therefore, it would be useful to 
find a similarly easy-to-use solution which provides highly accurate 
results under different conditions. The approach followed here is to 
adjust Sanger & Sayles’ solution against the results of a previously 
verified numerical model, which is presented in section 3.1. To this 
extent, several problems covering different boundary conditions were 
defined. The solution was adjusted for the freezing time of 365 days and 
the effect of the freezing time was evaluated by studying the results for a 
time of 10 days. The solution was applied to data from a shaft sinking 
project in order to check its accuracy for an independent case. 

3.1. Validation of the Sanger & Sayles’ solution by means of a numerical 
model 

Approximate analytical (semi-empirical) solutions for thermal 
design have been the main tool for ground freezing thermal design 
during the 20th century.2 Still today, they are very useful for engi
neering design of ground freezing10 and are also used in research. These 
solutions are typically easy to use, requiring substantially less effort than 
numerical simulations, and therefore are frequently applied during the 
first stages of the design, e.g., in the concept or tender design phases. 
Additionally, they may also be used as an independent benchmark for 
numerical calculations, i.e., as a sort of order-of-magnitude check and 
are useful to find out how different parameters affect the solution to the 
problem. These solutions have been developed for common configura
tions of freeze pipes: single freeze pipe, freeze wall (a row of pipes, used 
e.g. for rectangular excavations) and freeze circle (a ring of pipes, 
typically applied in shaft and tunnel construction). The result they 
provide is the evolution of the position of the freeze radius (phase 
interface) with time and, in some cases, the required freezing power. 

From here on, the focus will be on the single-pipe problem, a basic 
problem which can also be used to roughly estimate the closure time of 
the freeze body in more complex geometries. An overview of this 
problem is presented in Fig. 3. 
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One of the solutions most commonly used by practitioners for the 
single freeze pipe problem is the formula by Sanger and Sayles.55 It has 
been used for instance in Sres22 and Baier19 for research purposes and in 
Hentrich and Franz,1 Colombo10 and Filippo Mira-Cattò58 for engi
neering projects. Sanger & Sayles’ solution55 and its assumptions and 
simplifications are presented below:  

1. “Isotherms move so slowly they resemble those for steady state 
conditions.”  

2. “The radius of the unfrozen soil affected by the temperature of the 
freeze-pipe can be expressed as a [constant] multiple [ar] of the 
frozen soil radius prevailing at the same time.” – Sanger & Sayles 
take this multiple as ar = 3 for the single freeze pipe.  

3. “The total latent and sensible heat can be expressed as a specific 
energy which when multiplied by the frozen volume gives the same 
total as the two elements computed separately.” 

Working on the basis of these assumptions, and after a mathematical 
development, they arrive at the following explicit (closed) formula, 
which has been widely used in engineering practice and research (c.f. 
previous section): 

tI =
R2LI

4 k1vs

(

2 ln
(

R
r0

)

− 1+
c1vs

LI

)

(1)  

where: 
tI: time after start of freeze pipe operation 
R: freeze radius (phase-change radius or radius of moving boundary). 

LI = Lvol +
(a2

r − 1)
2 ln ar

c2v0: equivalent latent heat 
ar: Ratio of the temperature penetration depth (i.e., radius of ground 

affected by the temperature drop produced by the freeze pipe) divided 
by the freeze radius R (see also Fig. 6). 

c1: heat capacity of phase 1 (frozen phase). 
c2: heat capacity of phase 2 (unfrozen phase). 
k1: thermal conductivity of phase 1 (frozen phase). 
Lvol = Lwater ω ρd: volumetric latent heat of groundwater 
Lwater: latent heat of water (79.7 cal/g). 
r0: freeze pipe radius 
vs = Tf − Ts: difference between the phase change (freeze) temper

ature Tf and the freeze pipe temperature Ts 

v0 = T0 − Tf : difference between the initial ground temperature T0 

and the freeze pipe temperature Ts 

ρd =
ρ

1+ω: dry density of the ground, being ρ: medium density 
(assumed identical for both phases). 

ω: water content (ratio of weight of water to the weight of solids in a 
given volume of ground, i.e. non-dimensional). 

The solution from Sanger and Sayles55 is approximate and yields 
markedly different results to other known semi-empirical solutions, such 
as Ständer,54 as shown in Hentrich and Franz1 and Sancho-Calderón, 
Ibanez.29 These differences speak for a further study of the matter. 
Moreover, it has not been sufficiently verified in terms of accuracy (as 
far as the authors are aware). Sanger & Sayles’ solution has often been 
applied to engineering projects, but it is extremely difficult to verify it 
against project data, due to the many uncertainties present in such 
projects (errors in temperature monitoring data, unknown and inho
mogeneous ground thermal characteristics, possible effects of ground
water flow, etc.). There are indeed some laboratory experiments which 
have been performed (see e.g. Sres22), but they too suffer from several 
shortcomings. First, they were of very short duration (a few hours), so no 
data was generated for longer periods of time which are of practical 
interest (in the order of weeks to months). Second, the small scale of the 
experiments makes measurement errors and boundary effects so marked 
that they may significantly affect the results. 

As the results of these approximate analytical solutions are essential 
for thermal engineering design of ground freezing projects, it is clearly 
necessary to verify these solutions. In principle, the verification can be 
done against controlled laboratory experiments, ideally of large scale 
and duration, or numerical models, such as in Yang, Wang59 for the 
mechanical aspect of a freeze wall. Here, a numerical model is used for 
this benchmarking purpose in the next sections. As the Sanger & Sayles 
solution may produce results of variable accuracy dependent on the 
initial and boundary conditions of the problem, such as freeze pipe 
temperature, ground temperature, ground thermal characteristics, 
freeze point of groundwater, etc., several problems with different con
ditions are studied. 

In order to verify the analytical solution from Sanger & Sayles pre
sented above and the further adjustment to it in the following sections, a 
numerical model was created to simulate the single freeze pipe problem. 
The numerical model has been created and calculated in the software 
FLAC3D 5.01, which is a commercial code widely used for ground me
chanics problems in civil and mining engineering. The enthalpy method 
for simulation of the phase change has been implemented by means of 
an additional custom code in the programme. To ensure that the nu
merical results are accurate, a thorough sensitivity analysis of meshing 
and time-stepping was previously performed, in which the numerical 
parameters and code used were verified against Neumann’s exact solu
tion. An illustration of one of the numerical models used is shown in 
Fig. 4, where the radial symmetry has been used to reduce the size of the 

Fig. 3. Schematic of the single freeze pipe, adapted from Müller.57  
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model, and consequently the required computing time. 
The freeze front or freeze radius advance predicted by the numerical 

model and by Sanger & Sayles’ solution for Problem A (defined in sec
tion 3.2 below) is presented in Fig. 5. This shows that there is a major 
difference between the results of the verified numerical model and the 
results of Sanger & Sayles’ solution, which reaffirms the necessity of 
improving it. 

3.2. Definition of the problems assessed 

The conditions of the base case (Problem A) are presented below. The 
deviations from these conditions in the other problems evaluated are 
explained in the column “short description” of Table 1. The conditions 
selected in those problems cover typical ground freezing conditions, 
along with several extreme cases.  

• heat capacity (unfrozen): 0.7019 cal/g/◦C  
• heat capacity (frozen): 0.5256 cal/g/◦C  

• thermal conductivity (unfrozen): 0.004545 cal/(s cm ◦C)  
• thermal conductivity (frozen): 0.007608 cal/(s cm ◦C)  
• density: 2.664 g/cm3  

• water content: 0.21 (nondimensional)  
• latent heat of water: 79.71 cal/g  
• phase change range: 0 to − 0.1 ◦C (range of 0.1 ◦C)  
• initial temperature: 20 ◦C  
• temperature of freeze pipe (source): − 35 ◦C  
• phase-change temperature: 0 ◦C  
• running thermal time: 365 days 

The variables studied in the sensitivity analysis were:  

• Initial and boundary conditions: v0 and vs. It can be observed from 
Fig. 6 that these two temperature differences can influence the form 
of the temperature distribution. Therefore, they are of interest for 
this study.  

• Ground thermal properties: 

Fig. 5. Comparison of the results of the numerical model and Sanger & Sayles’ solution for Problem A.  

Fig. 4. Numerical model of a quarter cylinder for the simulation of a single freeze pipe, Problem A (defined in section 3.2), freezing time of 10 days.  
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o cav: average of frozen and unfrozen heat capacities  
o kav: average of frozen and unfrozen thermal conductivities  
o L: latent heat per unit mass of ground  

• Geometry of the problem: r0, freeze pipe radius 

In this evaluation, only the average of frozen and unfrozen properties 
has been assessed, in order to simplify the sensitivity analysis. Also, the 
latent heat of water is considered as constant (although it is known to 
decrease with the temperature, for instance for supercooled water60), as 
the main focus of the solution is to simulate the critical instant when 
phase changes occurs. The same approach was followed in the solutions 
from Leibenson,52 Khakimov,53 Ständer,54 Sanger & Sayles,55 Lunar
dini51 and Cai.56 Furthermore, Sanger & Sayles’ formula (as well as all of 
the other solutions to this problem known to the authors listed at the end 
of section 2) assumes an abrupt phase change, i.e. it does not consider 
the gradual phase change typical of soils (which is especially marked in 
cohesive ones). In that case, the unfrozen water content function defines 
the water content during the phase change range, and the thermal 
properties transition from unfrozen to frozen accordingly. However, 
considering gradual phase change would further complicate the 
analytical solution. It is worth noticing that the effects of this simplifi
cation decrease with longer freezing times, as the amount of absorbed 
energy after the phase change is the same in both cases. 

3.3. Examination of Sanger & Sayles’ assumption on the ratio ar 

As shown in section 3.1, Sanger & Sayles’s solution is based, among 

others, on the following premise: 

“The radius of the unfrozen soil affected by the temperature of the 
freeze-pipe can be expressed as a [constant] multiple [ ar ] of the 
frozen soil radius prevailing at the same time.” 

From the several assumptions and simplifications made by Sanger & 
Sayles, this hypothesis is, in the opinion of the authors, the one which 
can be most clearly questioned. Indeed, already Ständer54 (referring to 
Khakimov making this hypothesis, see e.g. Khakimov53) criticized it for 
being empirical and unsupported by a theoretical demonstration. The 
hypothesis implicitly assumes that the ratio ar (i.e., the temperature 
penetration depth divided by the freeze radius) is constant and unaf
fected by the conditions of the problem, such as the duration of the 
ground freezing problem, the ground conditions (water content, thermal 
conductivity, specific heat capacity, etc.) or the freeze-pipe, pha
se-change and initial ground temperatures. Indeed, Ständer54 points out 
that the value of ar is dependent on the thermal properties of the un
frozen ground. 

The idea that ar is not constant but instead dependent on the con
ditions of the problem also makes sense if the problem is examined 
qualitatively. Let us examine Fig. 6: for instance, if we assume that the 
phase change temperature is lower than shown in the figure (i.e. nearer 
to the freeze pipe temperature), the freeze radius can be expected to 
decrease more markedly in contrast with a more moderate reduction in 
the temperature penetration depth, i.e., ar would increase. The other 
extreme case in this regard would be that the unfrozen ground is at the 
phase change temperature (or minimally above) at the start of the 

Fig. 6. Temperature distribution, single freeze pipe, graph after Sanger & Sayles 55 

* The temperature penetration depth, as discussed in the text, is not a finite value. It is displayed here as a finite value in order to be able to show it in the graph. 
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operation of the freeze pipe. This is what is commonly referred to as a 
one-phase Stefan problem. In this case, the temperature penetration 
depth and the freeze radius are the same, because as soon as the tem
perature of a point in the ground drops slightly, it changes its phase and 
becomes frozen. Therefore, in this case, the ratio ar will equal 1 during 
the whole duration of the process. These two example cases give rise to 
further reservations on Sanger & Sayles’s assumption that ar is a con
stant and equals 3 (although, naturally, there is no doubt that this was a 
sensible and useful assumption at the time of the publication of Sanger 
and Sayles55 and that the formula resulting from this has been extremely 
useful for ground freezing engineering design). 

There is still another theoretical argument which speaks against the 
hypothesis above from Sanger & Sayles: strictly, the value of ar is not any 
finite number but it is always infinite (except in the case that the initial 
temperature is the phase change temperature), because mathematically 
the temperature at any point in space will be affected by the freeze pipe, 
even if the temperature change may be extremely small at a far distance 
from the pipe. Of course, a possible workaround to this issue could be to 
consider the “radius of the unfrozen soil affected by the temperature of 
the freeze-pipe” (temperature penetration depth) as the radius in which 
the temperature of the ground has been affected only negligibly. How
ever, this introduces another problem in the definition of what is or is 
not negligible: which amount is “small enough” to be considered 
negligible? Shall an arbitrary value like 1 ◦C, 0.1 ◦C or 0.01 ◦C for the 
definition of the temperature penetration depth be considered? This 
arbitrariness makes the assumption from Sanger & Sayles difficult to 
verify. 

To illustrate this issue, the ratios between the radii at which the 
temperature has dropped 0.05 ◦C (ar0.05), 0.1 ◦C (ar0.1), 0.2 ◦C (ar0.2) and 
0.5 ◦C (ar0.5) and the freeze radius have been calculated based on the 
numerical model for the base case problem A (see Table 1) and are 
displayed in Fig. 7. Naturally, the ratios are different for the four tem
perature values selected. It is also apparent that the value of the ratio ar 
depends significantly on the time point considered (measured after 
initiation of the ground freezing process). In fact, ar increases with time, 
i.e., the radius of ground whose temperature has been affected increases 
faster than the freeze radius does. This follows a logarithmic curve, as 
can be observed for instance for ar0.5 in Fig. 7. 

Table 1 
Definition of the problems evaluated.  

Problem Short description v0 vs cav kav L r0 

Base problems 
E 2 ◦C initial T 2 35 0.61 0.0061 13.8 8 
K /3 k, x3 c 20 35 1.84 0.0020 13.8 8 
B extreme T 50 200 0.61 0.0061 13.8 8 
G water properties 20 35 0.75 0.0034 79.7 8 
A base case 20 35 0.61 0.0061 13.8 8 
L − 21 ◦C freeze point, 

point, − 46 ◦C freeze 
pipe 

41 25 0.61 0.0061 13.8 8 

F − 21 ◦C freeze point 41 14 0.61 0.0061 13.8 8 
Latent heat sensitivity 
D no latent heat 50 200 0.61 0.0061 0.1 8 
C extreme latent heat 50 200 0.61 0.0061 138.3 8 
Water content sensitivity 
J Water content = 0.42 20 35 0.61 0.0061 23.6 8 
H Water content = 1 

(water properties) 
20 35 0.61 0.0061 79.7 8 

Heat capacity and thermal conductivity sensitivity 
I x3 k,/3 c 20 35 0.20 0.0182 13.8 8 
M x2 k,/2 c 20 35 0.20 0.0122 13.8 8 
N x2k 20 35 0.61 0.0122 13.8 8 
O x3k 20 35 0.61 0.0182 13.8 8 
P x2c 20 35 1.23 0.0061 13.8 8 
Q x3c 20 35 1.84 0.0061 13.8 8 
R /2k 20 35 0.61 0.0030 13.8 8 
S /3k 20 35 0.61 0.0020 13.8 8 
T /2c 20 35 0.31 0.0061 13.8 8 
U /3c 20 35 0.20 0.0061 13.8 8 
Freeze pipe radius sensitivity 
V r0 = 4 cm 20 35 0.61 0.0061 13.8 4 
W r0 = 2 cm 20 35 0.61 0.0061 13.8 2 
X r0 = 16 cm 20 35 0.61 0.0061 13.8 16 

Table notes. 
cav: average of frozen and unfrozen heat capacities, in [cal/(cm3*◦C)]. 
kav: average of frozen and unfrozen thermal conductivities, in [cal/(s*cm*◦C)]. 

L =
Lwater ω ρd

ρ : latent heat per unit mass of ground, in [cal/g]. 

r0: radius of freeze pipe, in [cm].  

Fig. 7. Values of ar ratios for the base case problem (from numerical model), logarithmic trendline for ar,0.5  
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Fig. 8. Values of ar0.1 for problems with different conditions (from numerical model).  
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In order to find out whether ar varies with the boundary conditions 
(ground thermal properties, initial, freeze pipe and phase change tem
peratures, etc.), ar0.1 has been calculated and graphed in Fig. 8 for seven 
different problems based on the results of the numerical model. It can be 
observed from this figure that the values of ar0.1 vary widely under 
different boundary conditions. Furthermore, Sanger & Sayles’ assump
tion (ar = 3) matches only roughly the values of ar0.1 in some of the 
problems and just for short times of a few days. 

3.4. Adjustment of the ratio ar in the Sanger & Sayles’ solution 

As it has been shown that ar depends on the boundary and initial 
conditions of the problem, an attempt is made here to calibrate Sanger & 
Sayles’ solution by adjusting ar to these conditions, based on the results 
of numerical models. The aim is to generate an adjusted solution which 
can be used in engineering practice and is sufficiently accurate. The first 
step was to calculate the values of ar which make the result of the Sanger 
& Sayles’ formula (the position of the freeze radius at a time of 365 days) 
match the position of the phase-change interface obtained from the 
numerical model for the problems presented in Table 1. In a second step 
and in order to generate suitable adjusted values of ar for other problems 
than the ones in Table 1, a function p of the variables considered was 
created as the multiplication of the monomial functions of these vari
ables. The exponents of the monomials were adjusted to minimize the 
coefficient of determination, R2, of the linear correlation between ar and 
p, so that the error of the adjusted Sanger & Sayles’ formula is minimised 
for the problems evaluated: 

p = v0
a/vs

b/cav
c kav

d Le/r0
f (2)  

where: 
p: calibrated parameter 
vs = Tf − Ts: difference between the phase change (freeze) temper

ature Tf and the freeze pipe temperature Ts, in [◦C] 
v0 = T0 − Tf : difference between the initial ground temperature T0 

and the freeze pipe temperature Ts, in [◦C] 
cav: average of frozen and unfrozen heat capacities, in [cal/(cm3*◦C)] 
kav: average of frozen and unfrozen thermal conductivities, in [cal/ 

(s*cm*◦C)] 
L: latent heat (per unit mass of ground), in [cal/g] 
r0: radius of freeze pipe, in [cm] 
a = 1.0: calibrated exponent of v0 
b = 1.4: calibrated exponent of vs 
c = 0.4: calibrated exponent of cav 
d = 0.1: calibrated exponent of kav 
e = 0.0: calibrated exponent of L 
f = 0.2: calibrated exponent of r0 
The final step of the adjustment was to use the existing linear cor

relation between ar and p to calculate the adjusted ar for other problems. 
Fig. 9 shows the ratio ar (ar for the points was calculated so that Sanger 
& Sayles’ formula matches the numerical results for a time of 365 days) 
graphed against the calibrated parameter p for the problems defined in 
Table 1. The dotted line shows the best correlation between ar and p, 
which achieved a high correlation with a coefficient of determination R2 

of 0.9856. Thus, ar can be adjusted as follows: 

ar,adjusted = 54p + 2.0353 (3) 

It is worth noticing that the ar ratios which match the results of the 
Sanger & Sayles’ solution with the numerical results vary widely 

Fig. 9. Calculated ratio ar versus the calibrated parameter p, correlation for the adjustment of ar  
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between 2.47 and 28.5 for the different problems analysed. Only for a 
few cases is the ar ratio in the range of 3, the value which had been 
suggested by Sanger & Sayles. 

As the correlation seems to be quite accurate, it is reasonable to use 
Equations (2) and (3) to estimate ar for other problems before intro
ducing it into the Sanger & Sayles solution, which should increase the 
accuracy of the Sanger & Sayles results. This approach (i.e. the Adjusted 
Sanger & Sayles solution) is tested here with the already analysed 
problems, in order to determine the effect of the very high but unperfect 
correlation of ar and the function p. The results of the evaluation of the 
Sanger & Sayles solution with the adjusted ar value are displayed in 
Table 2 and compared to the original approach by Sanger & Sayles of 
ar = 3. The ratio ar estimated with Equation (3) has an average absolute 
error of approx. 0.4, much lower than the error which would be 
generated by using the original Sanger & Sayles assumption of ar = 3. It 
is also worth noticing that the relative error of the freeze radius is lower 
than in the estimation of ar. For the adjusted solution, it is typically 
under 10% and significantly lower than the error from the original 
Sanger & Sayles’ solution. 

A further assessment can be made by comparing the calculated 
values of ar to the values of ar0.1 derived from the numerical model. In 
this regard, Fig. 10 confirms that there is a very high correlation be
tween these two values, which further reinforces the physical meaning 
of ar. This implies that, even if ar originated from a purely empirical 
correlation, it is highly correlated with ar0.1, a parameter with the clear 
meaning of being the ratio between the temperature penetration depth 
(considering a temperature change of 0.1 ◦C) and the freeze radius, 

matching Sanger & Sayles’ definition of ar. 

3.5. Calculation of ar under consideration of the freezing time 

In the previous section, the ratio ar was correlated with a parameter p 
which takes into consideration the initial and boundary conditions of the 
problem, based on the results of a numerical model for a freezing time of 
365 days after the start of freezing. In this section, the influence of the 
time elapsed after the start of freezing on the ratio ar is analysed. To this 
end, the ratio ar was also determined for a time of 10 days based on the 
results of the numerical model. Interesting results have come out of this 
exercise. To start with, in general, the accuracy of the Sanger & Sayles’ 
solution with the ratio ar calculated for a time of 365 days is higher than 
with the calculation for 10 days. Indeed, Sanger & Sayles’ formula used 
with ar,365d produces reasonable accuracies also for times shorter than 
365 days. This can be observed e.g. in Fig. 11 for Problem A. An over
view of the errors for other problems evaluated is presented in Fig. 16. 
From it, it is clear that the average of the errors (for a time between 0 and 
365 days) is much lower using ar,365d than using ar,10d. It is important to 
highlight here that in this section the values ar for both time points used 
were the ones directly calculated from the numerical model (not the 
ones adjusted with the correlation of the parameter p). This approach 
was chosen in order to isolate the effects of the time point and avoid any 
additional inaccuracies arising from the correlation itself. 

As expected (see Fig. 8), the ratio ar grows with time, so 
ar,365d > ar,10d. The ratio between them, even under the very different 
conditions of the problems considered, appears to be relatively stable at 

Table 2 
Accuracy of the Adjusted Sanger & Sayles’ formula.  

Prob. Adjusted 
param. p 

Calc. ar, 
num. 
model 

Adjust. ar, adj. 

(from correl.) 
Rel. error of 
ar, adj. 

Rel. error of 
ar = 3 

Freeze 
radius, 
num. 

Freeze 
radius, ar, 

adj. 

Freeze radius, 
with ar = 3 

Rel. error of fr. 
radius, ar, adj. 

Rel. error of fr. 
radius, ar = 3 

E 0.007 2.42 2.39 − 1.1% − 25.1% 343 344.2 339.7 0.3% − 1.0% 
K 0.038 3.77 4.10 8.9% 29.3% 102.5 98.56 113.2 − 3.8% 10.5% 
B 0.014 2.87 2.82 − 1.9% − 6.4% 404 406 395.8 0.5% − 2.0% 
G 0.058 3.27 5.15 57.6% 65.8% 167 143.2 171.1 − 14.2% 2.5% 
A 0.066 5.6 5.62 0.3% 46.8% 195 194.7 250.3 − 0.2% 28.4% 
L 0.218 14.2 13.80 − 2.6% 76.2% 77.6 78.85 178.7 1.6% 130.3% 
F 0.491 28.5 28.53 0.1% 89.6% 41 40.97 140.8 − 0.1% 243.3%  

D 0.014 2.47 2.82 14.0% − 7.5% 484 452.2 437.7 − 6.6% − 9.6% 
C 0.014 4.55 2.82 − 38.1% − 4.0% 233 253.8 251.6 8.9% 8.0%  

J 0.066 5.91 5.62 − 4.9% 44.3% 179.2 183 224.8 2.1% 25.5% 
H 0.066 6.32 5.62 − 11.1% 41.4% 168.7 176.6 212.3 4.7% 25.8%  

I 0.115 8.47 8.24 − 2.7% 61.9% 363.2 367.7 502.8 1.2% 38.4% 
M 0.110 7.23 8.00 10.6% 69.1% 289.9 276.3 393.8 − 4.7% 35.8% 
N 0.071 5.96 5.88 − 1.4% 48.3% 254.2 255.9 337.7 0.7% 32.9% 
O 0.074 6.24 6.03 − 3.3% 48.6% 295.7 300.9 403.1 1.8% 36.3% 
P 0.050 4.67 4.75 1.7% 37.5% 168.1 166.7 204.9 − 0.9% 21.9% 
Q 0.043 4.27 4.34 1.7% 31.5% 151.8 150.6 179.1 − 0.8% 18.0% 
R 0.062 5.09 5.38 5.7% 46.7% 152.3 148.5 186.2 − 2.5% 22.3% 
S 0.059 4.9 5.25 7.1% 45.8% 130.9 127 157 − 3.0% 19.9% 
T 0.088 6.7 6.76 0.9% 56.2% 223 222.1 291.4 − 0.4% 30.7% 
U 0.103 7.64 7.60 − 0.6% 60.2% 236.6 237.1 311.2 0.2% 31.5%  

V 0.076 6.42 6.15 − 4.2% 49.1% 165 168.7 228.7 2.3% 38.6% 
W 0.088 7.44 6.76 − 9.1% 50.6% 139.8 147.4 211.6 5.4% 51.3% 
X 0.058 4.7 5.15 9.7% 45.8% 236.6 227.6 278.5 − 3.8% 17.7%  
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Fig. 10. Correlation between the calculated ar and ar0.1 calculated from the numerical model, problems A to G.  

Fig. 11. Freeze radius, Sanger & Sayles original and with ar calculated for t = 365d, t = 10d.  
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about 1.5 (see Table 3), except for the problem with a very low freeze 
point of − 21 ◦C (problem F). This may help the designer adjust the ratio 
for other problems. It is important to highlight that ar could be 
reasonably approximated by 3 for shorter times. Thus, a possible reason 
why Sanger & Sayles suggested ar = 3 according to their experience is 
that they were mostly aware of experiments or real cases with relatively 
short timeframes. 

For Problem A, ar was calculated for several time points based on the 
results of the numerical model (see Fig. 12). Interestingly, these results 
can be interpolated with a logarithmic curve with a high value of R2 =

0.959. This matches also the logarithmic shape of the curves directly 
generated from the numerical model in Fig. 8 for ar0.1. These results may 
also be useful as a basis to adjust ar for different timeframes for other 
problems. 

3.6. Application of the improved solution to an engineering project 

In order to prove that the model is useful outside the population of 
problems which have been the basis for the adjustment, it has been 
applied to an independent problem, namely the recalculation of the 
ground freezing process at the Ust Jaiwa freeze shafts. These two mine 
shafts were sunk to access a potash deposit in the Ural region in Russia. 

The project has been chosen due to the availability and completeness of 
the required data compiled in Hentrich and Franz,1 shown here in 
Table 4. 

An overview of the freeze pipe pattern in the project is shown in 
Fig. 13 for reference only, as this paper is focused on the study of the 
single freeze pipe problem. Incidentally, adjusting ar in Sanger & Sayles’ 
solution for the problem for multiple pipes in a similar manner as done 
in this paper for the single freeze pipe solution is a promising potential 
way to obtain an improved solution for the freeze circle geometry. The 
irregular geometry of the freeze pipe pattern in the figure is due to freeze 
pipe deviations resulting from the drilling technique. 

The results of applying Sanger & Sayles’ solution with the adjusted 
ratio ar = 19.85 (calculated with Equation (3) and from the parameter 
p = 0.330, calculated based on Table 4 and Equation (2)) are clearly 
much more accurate than the results of the original Sanger & Sayles’ 
solution with ar = 3. Especially when considering the 1-year timeframe, 
for which the calibration of ar was previously performed, the results 
present a very low error (see Fig. 14). 

The results obtained here are very different to those obtained in the 
simulations performed with TEMP/W in Hentrich and Franz1 due to the 
fact that in those simulations, several pipes were considered, whose 
effect on the advance of the freeze radius is very marked. 

Table 3 
Ratio ar calculated for 365 and 10 days.  

Problem ar for t = 365d ar for t = 10d ratio ar365/ar10 

A 5.60 3.77 1.49 
B 2.88 2.09 1.38 
C 4.55 3.38 1.35 
D 2.47 1.81 1.36 
E 3.00 2.12 1.42 
F 28.5 11.5 2.48 
G 3.27 2.79 1.17   

Average 1.52  
Standard deviation 0.43  

Fig. 12. Calculated ar for several time points, Problem A.  

Table 4 
Boundary conditions, Ust-Jaiwa project, Hentrich and Franz.1  

Technical parameters and characteristics of the 
rock 

Input Unit 

Radius of freeze pipe 6.985 cm 
Half distance between two freeze pipes 59.5 cm 
Required thickness of the freeze wall 330 cm 
Radius of freeze circle 850 cm 
Number of freeze pipes 45 pipes 
Temperature at freeze pipe wall − 35 ◦C 
Initial rock temperature 6 ◦C 
Thermal conductivity of the rock (frozen/ 

unfrozen) 
0.00585/ 
0.00380 

cal/ 
(s*cm*◦C) 

Heat capacity of the rock (frozen/unfrozen) 0.534/0.689 cal/(cm3*◦C)  
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4. Discussion of the results and limitations of the adjusted 
solution 

The results obtained in the previous sections are discussed here. An 
overview of the significant accuracy improvement of the adjusted so
lution compared to the original Sanger & Sayles’ solution is presented in 
graphical form in Fig. 15. It can be clearly observed that the adjusted 
solution provides a consistently better accuracy than the original 
assumption from Sanger and Sayles55 of ar = 3. For all problems except 
for the one with the properties of water (problem G), the relative error of 
the proposed approach is below 10%. 

With respect to the dependency of ar with the time point, Fig. 16 

shows the time-average of the absolute error for selected problems for 
times between 0 and 365 days, for the original Sanger & Sayles formula 
and the adjusted ones based on the calculation of ar from the results of 
the numerical model for times of 10 and 365 days (the correlation errors 
are not considered here, similarly to section 3.5). From this figure, it is 
apparent that the proposed adjustment, which is based on the calcula
tion of the ratio ar against a verified numerical model for a time of 365 
days, reliably produces an average accuracy for the time between the 
start and one year which is much higher than using the calculation of ar 
based on the results from t = 10 days. In this way, for all the problems 
studied, the average absolute error is below 10 cm. Its average relative 
error is below 5% for all the problems excepting the one with the very 

Fig. 13. Overview of freeze pipe pattern, Ust Jaiwa project, adapted from Franz61.  

Fig. 14. Freeze radius, Ust Jaiwa project, single freeze pipe.  
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low freeze point, problem F, (see Table 5). This solution typically un
derestimates the freeze radius advance till its calibrated time of 365 days 
of freezing (see also Fig. 11). 

When quantitatively considering the errors which have been pre
sented here, a word of caution is required. The errors in the estimation of 
the freeze radius (for a certain freezing time) have been studied here, 
whereas in practical engineering projects the errors in the estimation of 
the freezing time, corresponding to a certain freeze radius, which may be 
defined by the closure of the wall or stability requirements, are at least 
as important. In this case, the relative error will usually be higher than 
when considering the freeze radius, due to the “flat” shape of the freeze- 
radius-versus-time curves. 

As every model has limitations, it is important to realise that this 
adjustment of Sanger & Sayles’ solution still has some, even if it im
proves the accuracy of the results significantly and is likely to be useful 
to obtain more accurate analytical estimations for engineering design. 

For instance, this approach is based on an empirical correlation to nu
merical results, i.e. it is not based on a theoretical derivation based on 
physics. Nevertheless, the results still have physical significance and can 
be qualitatively explained (see also section 3.4). Then, the adjustment 
has been performed considering some variables with significant influ
ence (or combinations thereof). On the other side, there may be further 
variables that influence the ratio ar to a relevant amount. For instance, 
the effects of the unfrozen and frozen thermal properties could be 
considered separately in further studies, along with their dependency 
with temperature. Finally, it would be interesting to further check the 
model with additional problems independent from the ones used in the 
calibration (similarly to the check performed in section 3.6 with the Ust- 
Jaiwa project). Another potential application of the method used is to 
calibrate the approximate analytical solutions for other cases, such as 
Sanger & Sayles’ solutions for the freeze wall and freeze circle 
geometries. 

Fig. 15. Relative error of freeze radius at t = 365 days, all problems 
Note: Problems L and F present relative errors of 130% and 243% respectively (out of scale). 

Fig. 16. Time-average of the absolute error of the freeze radius, 0–365 days.  
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5. Conclusions 

Accurate and reliable thermal calculations of Stefan problems are 
required for engineering design of ground freezing projects in order to 
estimate the duration of the project, the energy consumption and the 
required capacity of the freezing station. As no exact solutions for the 
single-freeze-pipe problem exist, approximate analytical (semi-empir
ical) solutions have been developed in the past. One of the most widely 
used solutions is the one from Sanger and Sayles.55 This solution has 
been proved to generate results of very variable and at times low ac
curacy (see e.g. Hentrich and Franz1 and Sancho Calderón et al.29). The 
present publication has proposed an adjustment to the parameter ar of 
this solution, which provides a much higher and consistent accuracy, 
retaining the practicability for use in engineering practice of the original 
approach. Further research in this direction is required, e.g. by using the 
model in real projects or controlled long-term laboratory tests and 
comparing empirical results to the proposed solution. Another line of 
future investigation can be to adjust other existing solutions for different 
geometries (e.g. freeze wall and freeze circle) in order to improve them 
in a similar way to what has been done here for the single freeze pipe 
problem. Further investigations in this field have been performed in the 
PhD thesis from Diego Sancho Calderón.62 
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Table 5 
Time-average of the relative error of freeze radius, 0-365 days.  

Problem Rel. error of freeze 
radius 
Sanger&Sayles with 
ar = 3 

Rel. error of freeze 
radius Sanger&Sayles 
with calculated ar for 
t = 365d 

Rel. error of freeze 
radius Sanger&Sayles 
with calculated ar for 
t =10d 

Problem 
A 

− 20.9% 5.0% − 11.9% 

Problem 
B 

4.6% 2.8% − 8.9% 

Problem 
C 

− 5.9% 1.6% − 4.1% 

Problem 
D 

12.4% 3.5% − 11.2% 

Problem 
E 

1.5% 1.5% − 0.2% 

Problem 
F 

− 178.4% 12.3% − 43.6% 

Problem 
G 

− 0.4% 1.8% − 2.2%  
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