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Abstract 

The fatigue crack growth in round bars initiated from internal defects leads to the formation of a circular crack pattern usually so-
called fish-eye. This failure mechanism is found in the current additive manufacturing techniques in which internal defects, such 
as pores or lack of fusion, are the main cause of fatigue crack initiation. Moreover, this fatigue mechanism becomes the predominant 
failure mode in the Very High Cycle Fatigue (VHCF) regime. With the aim of adequately studying these fatigue crack situations, 
this paper presents a set of solutions for the stress-intensity factor calculation for embedded elliptical cracks in a round bar subjected 
to tensile load. The stress-intensity factors (SIF) are presented in a tabulated form and were obtained from three-dimensional finite-
element analyses. The SIF solutions are provided as a function of three dimensionless parameters that include the crack size, the 
crack aspect ratio, and its relative position in the cross section. After that, a sequential methodology for fatigue crack growth 
simulation is presented, and a comparison with experimental results of fatigue crack propagation initiated from internal defects in 
round bars is also presented. Finally, by varying the initial crack position and the initial crack aspect ratio, several aspects related 
to the evolution of the fatigue crack shape in this geometry are analyzed. 
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1. Introduction 

Additive Manufacturing (AM) techniques are increasingly being used for high critical components in aerospace, 
biomedical and automotive sectors. However, the main problem of AM is presence of internal defects, lack of fusion 
or pores, which are the main cause of fatigue crack initiation in these components (Benedetti et al., 2018; Hu et al., 
2020). These internal defects grow due to fatigue until failure occurs, forming a circular crack pattern on the fracture 
surface, the so-called fish-eye (Figure 1). This fatigue mechanism also becomes the predominant failure mode in the 
Very High Cycle Fatigue (VHCF) regime (Günther et al., 2017).  

Some numerical studies of the fish-eye crack growth can be found in the literature (Marines-Garcia et al., 2008; 
Nguyen et al., 2015; Sun et al., 2016). However, the crack shape is assumed to be circular during the crack growth or, 
in a more complex analysis, the exact crack growth shape is estimated from a large number of SIFs along the crack 
front (Nguyen et al., 2015). The purpose of this work is firstly to obtain the SIF solutions for the vertices of elliptical 
embedded cracks in this geometry, and then to use these calculated SIFs to simulate the fish-eye assuming that an 
elliptical shape is maintained during all the propagation phase. In this way, by varying the initial crack position and 
the initial crack aspect ratio, several aspects related to the evolution of the fatigue crack shape in this geometry can be 
analyzed. 

 

    

Fig. 1 Fish-eye example in a round bar initiated by fatigue from an internal defect. Material: Ti6Al4V fabricated by SLM. 

2. Stress-intensity factor solutions for an embedded crack in a round bar subjected to tensile load 

2.1. Geometry definition and dimensionless parameters 

The geometry of the round bar and the main dimensions of a generic embedded elliptical crack are presented in 
Figure 2. The elliptical crack shape and its position in the round bar are defined by three parameters: the semi-axes of 
the ellipse (a and c) and the position of the center of the crack (a + h). The radius of the bar is R, and the tensile applied 
stress is (σ0). These geometric dimensions can be expressed by three new dimensionless parameters: ( ) /a h R+  that 
defines the relative position of the center of the elliptical crack to the radius of the circular cross section; / ( )a a h+  
that defines the ratio of the crack size to the distance from the center of the ellipse to the bar surface; and /a c  that 
defines the aspect ratio of the elliptical crack. 

2.2. Finite element model and SIF solutions 

In order to obtain the stress-intensity factors for this geometry, a specific 3D finite element model, using Abaqus 
software, has been created. Only one-fourth of the round bar is modelled because of its symmetry. The mesh was 
created using 20-node quadratic elements with reduced integration (C3D20R), and a typical spider-web mesh around 
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the crack tip, using quarter-point finite elements, was used. A mesh density of 8 elements for the semi-rosette of the 
crack tip was chosen, and the crack front was constructed with 100 elements.  

  

 

Fig. 2 Geometry definition of the embedded elliptical crack in a round bar. 

The SIF values were obtained from the calculation of the J-integral parameter. For a linear elastic analysis, the 
stress-intensity factor value, KI, is calculated from the elastic part of J-integral, Je, using the following relationship, 

'I eK EJ= ⋅    (1) 

where 'E E=  for plane stress and 2' / (1 )E E ν= −  for plane strain conditions, with E  being Young’s modulus 
and ν  Poisson’s ratio. For an embedded crack, plane strain conditions are assumed for all points along the crack front. 

Only the SIF at the vertices of the elliptical crack were calculated (see Figure 2), and are expressed as:   

1 1 0 2 2 0 0; ;a a a a c cK F a K F a K F aσ π σ π σ π= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅   (2) 

where 0σ  is the uniform axial stress, a  is the crack depth, and 1aF , 2aF  and cF  are the geometry correction factors, 
calculated as a function of the three dimensionless parameters: / ( )a a h+  ranging from 0.05 to 0.95, ( ) /a h R+  
ranging from 1 (centered cracks) to 0.05 (cracks close to the bar surface) and /a c  ranging from 0.2 (elongated cracks) 
to 1.0 (circular cracks). The values of the geometry correction factors obtained are collected on Tables 1 to 3 of 
Appendix A. A comparison and validation of the proposed SIF solutions with other proven solutions available in the 
literature can be found in previous works of the authors (Alegre et al., 2021).  

3. Fatigue crack growth methodology 

For the simulation of the fatigue crack growth a sequential methodology is used. During the fatigue process, the 
crack is continuously updated assuming an elliptical growth and taking for the calculation the value of the stress 
intensity factor at the vertices of the semi-axis of the elliptical crack.  

The process starts by assuming an initial crack size (a and c) and its initial position in the cross section defined by 
the ligament (h). The three dimensionless parameters are calculated ( /a c , ( ) /a h R+  and / ( )a a h+ ) allowing the 
geometry correction factors to be obtained using Tables 1 to 3. An interpolation procedure is necessary at this stage. 
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For a fatigue load defined by the stress range σ∆ , the stress-intensity factor ranges at the vertices of the elliptical 
crack are obtained as: 

1 1 2 2; ;a a a a c cK F a K F a K F aσ π σ π σ π∆ = ⋅∆ ⋅ ∆ = ⋅∆ ⋅ ∆ = ⋅∆ ⋅   (3) 

Using these SIF values, and assuming a Paris type fatigue crack growth, da/dN = C·(∆K)m  , the crack advance of 
the vertices of the ellipse can be obtained after a defined block of cycles as: 

( ) ( ) ( )1 1 2 2; ;m m m
a a ca N C K a N C K c N C K∆ = ∆ ⋅ ⋅ ∆ ∆ = ∆ ⋅ ⋅ ∆ ∆ = ∆ ⋅ ⋅ ∆   (4) 

where C and m are the Paris law coefficients, ∆N is the desired number of cycles per block (e.g., ∆N = 1000 cycles) 
defined by the user. Finally, the new crack size and crack position are updated by means of: 

( )1 2

1

2 2
2 2 2

new

new

new

a a a a
c c c

h h a

= + ∆ + ∆

= + ∆
= − ∆

   (5) 

The whole procedure is repeated, updating the crack shape for each block of cycles, until the failure condition is 
reached, or the desired number of cycles is completed. An example of the application of the sequential methodology, 
using the present SIF solutions, is presented Figure 3. 

 

Fig. 3 Experimental and predicted fish-eye fatigue crack growth initiated from an internal defect on a round bar subjected to uniaxial tensile load. 

4. Prediction of the fatigue crack shape  

An interesting fact observed for this geometry is the preferential trend of the crack to propagate toward a circular 
shape pattern, known as fish-eye, independently of the aspect ratio of the initial defect. This fact is also observed 
experimentally, as presented in Figure 4, where the irregular initial crack shape quickly develops to a circular crack.  

The analysis presented in this paragraph corresponds to a specimen of radius 3R mm= , subjected to a uniaxial 
stress load of 0 200 MPaσ = , and with an initial flaw in the position 0 0  (  2 / 3) 2a h R mm+ = = . The fatigue crack 
growth law is defined using a Paris equation with material parameters, C = 2.99 ·10-8 and m = 3 (units in mm/cycle and 
MPa·m1/2), typical for a Ti6Al4V alloy fabricated by Selective Laser Melting (Jiao et al., 2017).  

Figure 5 shows this preferred trend for various initial elliptical cracks with different aspect ratios, from a circular 
shape ( 0 0/ 1a c = ) to a very elongated shape ( 0 0/ 0.2a c = ) and assuming an initial crack size of 0 0.05a mm= . A 
quick trend to a circular crack shape is observed, regardless of the shape of the initial crack. This trend is faster the 
smaller the initial flaw and the more centered on the specimen. 
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Fig. 4 Propagation towards a circular crack from an initial irregular crack shape. Ti6Al4V fabricated by SLM. 
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Fig. 5 Simulation of the fish-eye crack growth for different initial crack aspect ratios. 

The effect of the initial crack shape on the fatigue life is analyzed in Figure 6. The reference value is an initial 
circular crack of dimensions 0 0.1a mm= , 0 0.1c mm= , with a crack area of 2

0 0 0 0.031416A a c mmπ= = . The initial 
position of the crack is maintained constant as 0 0 2a h mm+ = . 

Three curves are presented in this Figure 6. The first curve represents the obtained fatigue life vs. the initial crack 
aspect ratio, maintaining constant the crack dimension a0 = 0.1 mm. The second curve is similar, but in this case the 
crack dimension 0 0.1c mm=  is fixed. And finally, in the third curve the initial crack area 2

0 0 0 0.031416A a c mmπ= =  
is kept constant for the different crack aspect ratios. The results show that the same fatigue life is obtained when 
considering different initial crack shapes but maintaining constant the initial crack area. As a result, an equivalent 
initial crack size (e.g., with a circular shape) can be defined for any irregular initial defect with the same projected 
area. The equivalent circular initial crack size can be then obtained as: 

 0 0.5642eq
areaa area
π

= = ⋅   (6) 

where area represents the initial projected area of the irregular defect.  
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Fig 6. Effect of initial crack shape in the predicted fatigue life of the fish-eye crack growth simulation. 

 
These results agree with the model of Murakami (Murakami & Beretta, 1999), which postulates that the maximum 

stress intensity factor along the crack front of an embedded elliptical crack has a strong correlation with the square 
root of the initial defect projected crack area, area . They propose this parameter for use as the characteristic 
dimension for the evaluation of the effects of defects of various sizes and shapes on fatigue strength.  

5. Conclusions  

1. A good estimation of fish-eye crack growth can be carried out by using the proposed SIF solutions for elliptical 
cracks in a round bar subjected to tensile load.  
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Fig. 4 Propagation towards a circular crack from an initial irregular crack shape. Ti6Al4V fabricated by SLM. 
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Fig. 5 Simulation of the fish-eye crack growth for different initial crack aspect ratios. 

The effect of the initial crack shape on the fatigue life is analyzed in Figure 6. The reference value is an initial 
circular crack of dimensions 0 0.1a mm= , 0 0.1c mm= , with a crack area of 2

0 0 0 0.031416A a c mmπ= = . The initial 
position of the crack is maintained constant as 0 0 2a h mm+ = . 

Three curves are presented in this Figure 6. The first curve represents the obtained fatigue life vs. the initial crack 
aspect ratio, maintaining constant the crack dimension a0 = 0.1 mm. The second curve is similar, but in this case the 
crack dimension 0 0.1c mm=  is fixed. And finally, in the third curve the initial crack area 2

0 0 0 0.031416A a c mmπ= =  
is kept constant for the different crack aspect ratios. The results show that the same fatigue life is obtained when 
considering different initial crack shapes but maintaining constant the initial crack area. As a result, an equivalent 
initial crack size (e.g., with a circular shape) can be defined for any irregular initial defect with the same projected 
area. The equivalent circular initial crack size can be then obtained as: 

 0 0.5642eq
areaa area
π

= = ⋅   (6) 

where area represents the initial projected area of the irregular defect.  
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Fig 6. Effect of initial crack shape in the predicted fatigue life of the fish-eye crack growth simulation. 
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Appendix A. Geometry correction factors for an embedded elliptical crack in a round bar 

This appendix collects the geometry correction factors ( 1aF , 2aF  and cF ) necessary to obtain the stress intensity 
factor for an embedded elliptical crack in a round bar subjected to tensile load. These geometry correction factors are 
calculated as a function of the three dimensionless parameters: / ( )a a h+ , ( ) /a h R+ , and /a c . 

Table 1. Geometry Correction Factor, Fa1. 

/a c  
( )

a
a h+

  
0.05 

 
0.2 

( ) /a h R+  
0.4 

 
0.6 

 
0.8 

 
1.0 

0.2 0.05 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 
 0.2 0.9531 0.9543 0.9582 0.9636 0.9695 - 
 0.4 0.9834 0.9967 - - - - 
 0.6 1.0649 - - - - - 
 0.8 1.2756 - - - - - 
 0.95 1.9484 - - - - - 

0.4 0.05 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 
 0.2 0.8689 0.8694 0.8704 0.8722 0.8744 0.8784 
 0.4 0.8871 0.8918 0.9068 0.9285 0.9521 - 
 0.6 0.9422 0.9635 1.0347 - - - 
 0.8 1.0790 1.1586 - - - - 
 0.95 1.5754 - - - - - 

0.6 0.05 0.7812 0.7812 0.7812 0.7812 0.7812 0.7812 
 0.2 0.7823 0.7825 0.7828 0.7835 0.7844 0.7862 
 0.4 0.7942 0.7966 0.8029 0.8136 0.8250 0.841 
 0.6 0.8317 0.8421 0.8753 0.9262 0.9822 - 
 0.8 0.9405 0.9765 1.1007 1.3091 - - 
 0.95 1.2667 1.3855 1.8561 - - - 

0.8 0.05 0.7058 0.7058 0.7058 0.7058 0.7058 0.7058 
 0.2 0.7067 0.7068 0.7069 0.7072 0.7076 0.7082 
 0.4 0.7146 0.7159 0.7191 0.7246 0.731 0.7396 
 0.6 0.7413 0.7474 0.7645 0.7927 0.8216 0.8532 
 0.8 0.8216 0.8419 0.9063 1.0135 1.1406 - 
 0.95 1.0669 1.1293 1.3360 1.7603 - - 

1 0.05 0.6386 0.6386 0.6386 0.6386 0.6386 0.6386 
 0.2 0.6388 0.6388 0.6389 0.6391 0.6394 0.6398 
 0.4 0.6437 0.6446 0.6463 0.6492 0.6529 0.6582 
 0.6 0.6631 0.6671 0.6769 0.6936 0.7108 0.7274 
 0.8 0.7239 0.7368 0.7731 0.8347 0.8998 0.9525 
 0.95 0.9143 0.9520 1.0637 1.2671 1.5391 1.8441 
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Table 2. Geometry Correction Factor, Fa2. 

/a c  
( )

a
a h+

  
0.05 

 
0.2 

( ) /a h R+  
0.4 

 
0.6 

 
0.8 

 
1.0 

0.2 0.05 0.9481 0.9481 0.9481 0.9481 0.9481 0.9481 
 0.2 0.9521 0.9531 0.9564 0.9608 0.9663 - 
 0.4 0.9692 0.9796  - - - - 
 0.6 1.0025 -  -  - - - 
 0.8 1.0436  -  -  - - - 
 0.95 1.0870  -  -  - - - 

0.4 0.05 0.8663 0.8663 0.8663 0.8663 0.8663 0.8664 
 0.2 0.8679 0.8683 0.8692 0.8705 0.8726 0.8781 
 0.4 0.8775 0.8808 0.8917 0.9058 0.9256 -  
 0.6 0.8951 0.9101 0.9539  -  - -  
 0.8 0.9214 0.9615  -  -  - -  
 0.95 0.9662  -  -  -  - -  

0.6 0.05 0.7804 0.7804 0.7804 0.7804 0.7804 0.7804 
 0.2 0.7815 0.7813 0.7816 0.7823 0.7839 0.7866 
 0.4 0.7882 0.7897 0.7941 0.7995 0.8102 0.8414 
 0.6 0.8001 0.8059 0.8241 0.8499 0.8890  - 
 0.8 0.8191 0.8354 0.8915 0.9675  -  - 
 0.95 0.8357 0.8698 1.0040  -  -  - 

0.8 0.05 0.7067 0.7067 0.7067 0.7067 0.7067 0.7067 
 0.2 0.7071 0.7071 0.7072 0.7074 0.7078 0.7087 
 0.4 0.7104 0.7112 0.7131 0.7163 0.7217 0.7402 
 0.6 0.7182 0.7213 0.7306 0.7421 0.7637 0.8538 
 0.8 0.7304 0.7385 0.7657 0.8001 0.8611 -  
 0.95 0.7409 0.7568 0.8129 0.8929  - -  
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 0.8 0.6543 0.6589 0.6732 0.6913 0.7237 0.9525 
 0.95 0.6584 0.6669 0.6959 0.7296 0.7912 1.8441 
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Appendix A. Geometry correction factors for an embedded elliptical crack in a round bar 

This appendix collects the geometry correction factors ( 1aF , 2aF  and cF ) necessary to obtain the stress intensity 
factor for an embedded elliptical crack in a round bar subjected to tensile load. These geometry correction factors are 
calculated as a function of the three dimensionless parameters: / ( )a a h+ , ( ) /a h R+ , and /a c . 
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Table 2. Geometry Correction Factor, Fa2. 
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a
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Table 3. Geometry Correction Factor, Fc. 

/a c  
( )

a
a h+

  
0.05 

 
0.2 

( ) /a h R+  
0.4 

 
0.6 

 
0.8 

 
1.0 

0.2 0.05 0.4221 0.4221 0.4221 0.4221 0.4221 0.4221 
 0.2 0.4236 0.4242 0.4260 0.4291 0.4353 - 
 0.4 0.4284 0.4363 - - - - 
 0.6 0.4377 - - - - - 
 0.8 0.4545 - - - - - 
 0.95 0.4720 - - - - - 

0.4 0.05 0.5477 0.5476 0.5478 0.5478 0.5478 0.5479 
 0.2 0.5489 0.5492 0.5499 0.5510 0.5525 0.5559 
 0.4 0.5550 0.5578 0.5669 0.5816 0.6100 - 
 0.6 0.5666 0.5789 0.6281 - - - 
 0.8 0.5833 0.6221 - - - - 
 0.95 0.6009 -  - - - - 

0.6 0.05 0.6057 0.6055 0.6057 0.6057 0.6058 0.6058 
 0.2 0.6064 0.6065 0.6068 0.6072 0.6079 0.6098 
 0.4 0.6120 0.6135 0.6179 0.6252 0.6349 0.6582 
 0.6 0.6235 0.6299 0.6514 0.6870 0.7529 - 
 0.8 0.6429 0.6624 0.7376 0.9221 -  - 
 0.95 0.6567 0.7067 0.9238  - -  - 

0.8 0.05 0.6314 0.6314 0.6315 0.6315 0.6315 0.6315 
 0.2 0.6318 0.6319 0.6320 0.6322 0.6325 0.6333 
 0.4 0.6360 0.6370 0.6393 0.6434 0.6492 0.6623 
 0.6 0.6464 0.6504 0.6623 0.6820 0.7090 0.7793 
 0.8 0.6642 0.6756 0.7153 0.7835 0.9081  - 
 0.95 0.6798 0.7099 0.8018 1.0052 -   - 

1 0.05 0.6386 0.6386 0.6386 0.6386 0.6386 0.6386 
 0.2 0.6389 0.6389 0.6390 0.6392 0.6395 0.6398 
 0.4 0.6417 0.6423 0.6436 0.6459 0.6495 0.6582 
 0.6 0.6504 0.6531 0.6602 0.6725 0.6889 0.7274 
 0.8 0.6660 0.6736 0.6972 0.7367 0.7926 0.9525 
 0.95 0.6861 0.6965 0.7487 0.8423 1.0031 1.8441 

 
 
 


