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Identification of individual animals has many important applications in 

ecology. 

5 videos with 9 to 27 individuals (fish, pigeons, pigs) with several in 

each frame.  

25 classification methods: linear, non-linear, ensembles and deep 

learning. 

5 Feature representations: colour, shape, texture and two from deep 

learning. 

Simpler models (linear classifiers) with the colour features give the 

best accuracy. 

Highlights
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Abstract

In the face of the global concern about climate change and endangered ecosystems, mon-

itoring individual animals is of paramount importance. Computer vision methods for

animal recognition and re-identification from video or image collections are a modern

alternative to more traditional but intrusive methods such as tagging or branding. While

there are many studies reporting results on various animal re-identification databases,

there is a notable lack of comparative studies between different classification methods. In

this paper we offer a comparison of 25 classification methods including linear, non-linear

and ensemble models, as well as deep learning networks. Since the animal databases

are vastly different in characteristics and difficulty, we propose an experimental protocol

that can be applied to a chosen data collections. We use a publicly available database

of five video clips, each containing multiple identities (9 to 27), where the animals are

typically present as a group in each video frame. Our experiment involves five data rep-

resentations: colour, shape, texture, and two feature spaces extracted by deep learning.

In our experiments, simpler models (linear classifiers) and just colour feature space gave

the best classification accuracy, demonstrating the importance of running a comparative

study before resorting to complex, time-consuming, and potentially less robust methods.

Key words: Animal re-identification, Computer vision, Classification, Convolutional

networks, Comparative study

1. Introduction

According to predictions, climate change, global pollution, and uncontrollable growth

of plastic waste are among the factors heralding an ecological catastrophe. Multidis-
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ciplinary effort in monitoring and managing of animal populations and ecosystems can

reduce the risk of losing animal species and destroying natural habitats [1], [2] [3], [4].

Scientists have monitored animals for a long time using a variety of methods. In-

dividual animal recognition has been in place for a long time, but the methods have

been predominantly intrusive, and often invasive, including branding, tattooing, notch-

ing, and tagging. Ethical issues aside, this may affect the behaviour of the animal and

also compromise the demographic study [2, 5–7]. Geared predominantly towards human

re-identification [8], computer vision is currently also making large strides towards aiding

or replacing the outdated physical identification methods in animal re-identification [9].

Distinctive individual patterns allow for re-identification of animals in many species such

as zebras, giraffes [10], whale shark [7], African penguins [11], ringed seals [12, 13], com-

mon dolphins [14], giraffes [15], giant panda [16], honey bees [17], yaks [18], and many

more. To succeed in this quest, large databases of animals need to be collected, anno-

tated, and made available to researchers. Additionally, interdisciplinary teams should be

involved, bringing together the state-of-the-art in animal studies and machine learning.

Animal re-identification is the task of recognizing the animal’s identity from an image

or a collection of images. In a video, an animal may be present in different frames; it may

come in and out of camera view multiple times. Re-identification means that the animal’s

identity is recognised correctly each time it is in camera view. Sometimes, (human)

re-identification is understood as identifying the same individual from different camera

views, at the same time moment. Practically, this is the same task, only differently

phrased. In this context, we will stipulate that animal re-identification is a standard

classification task. While there is a large body of literature on animal re-identification,

the classification part rarely explores more than one designated classifier or different

feature representations.

The prospective real-life scenario, which our experiments are targeted at, is as follows.

A long video footage is available containing nearly the same individuals (a few may

join in or drop off). A small part of the video is annotated with bounding boxes and

class labels (identities). Classifiers are trained and tested on the labelled part, and the

most successful classifier is identified. The unlabelled part is subsequently processed by

detecting bounding boxes and labelling each one by the chosen classifier.

In this study, we consider only the first part of this scenario, where we train and test
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classifier models across different feature representations. We view a two-fold contribution

of this study. Our methodological contribution is an experimental protocol that can

be applied when choosing animal re-identification method for a given, partly annotated

dataset. Second, we offer insights and general recommendations for the type of data

similar to that used in the experiment. Our results could be used as a benchmark for

further re-identification experiments for the chosen dataset.

2. Related work

Camera trap, bespoke fixed camera setting, and unconstrained video footage are use-

ful sources of imaging data for tracking, species identification, and individual animal

recognition [3]. Fixed camera setting has been used primarily in managing livestock, for

example, Holstein cows [19–22] and pigs [23], [24], where the animals are kept into an

enclosure or herded through a gate. Drone videos (unconstrained) have been used for

re-identification of livestock as well [25]. Camera traps are mostly suitable for moni-

toring the type of species in a given location [26, 27]. They are rarely used for animal

re-identification. On the other hand, unconstrained video footage is the common source

of data for tracking and recognising animals in the wild [10, 11, 28, 29]. However, this

makes the task of bounding box identification and subsequent classification a lot more

challenging.

A notable work on animal re-identification from video are the idTracker models [30,

31], reporting excellent identification accuracy on a group of simultaneously moving an-

imals. Their experiments, as well as several related studies [32, 33], include ants, mice,

fruit fly, and zebra fish, none of which presents clear biometric markers. The videos are

taken in a non-cluttered lab environment and the individual recognition is solely based

on the trajectories. While acknowledging the strong information potential of the ani-

mals’ movement, our study is focused on the appearance alone. By ignoring the frame

continuity, we gauge the potential of the classification methods chosen here to work for

image collections obtained through different means, such as crowd-sourcing and time-

lapse video footage. Schneider et al. [3] recommend using video as the richest source

of images for animal re-identification and encourage researchers to publish curated and

annotated animal image datasets. The database we chose for this study is available at:

https://github.com/LucyKuncheva/Animal-Identification-from-Video [34].
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Schneider et al. [3] present a timeline of the development of the area of animal re-

identification, highlighting the paradigm shift from what they call ‘feature engineering’

towards ‘machine learning’. The feature engineering era was rooted in standard image

descriptors of colour, texture, and shape of the objects to be recognised. Similarity-type

features such as SIFT were also included there. Bespoke image processing approaches

were adapted to suit the task of animal re-identification. An example comes from the

realisation that primate faces bear resemblance to human faces, hence the well-developed

human face recognition can lend a hand [29, 35, 36]. In fact, face recognition has been

attempted for cows [37, 38], goats [39] and dogs [40] as well. The shortcoming of the

feature engineering approach was lack of generality. The methods were also deemed

impractical because, in addition to domain knowledge about the species being studied,

these methods required computing expertise [3].

The machine learning stage defined by Schneider et al. [3] is exclusively associated

with deep learning [3, 41]. The earliest deep learning methods were based on convolu-

tional neural networks (CNN). Older studies applied standard or adapted classification

methods, the most intuitive of which is the nearest neighbour. Moskvyak et al. [42]

proposed a system architecture to re-identify manta rays by generating an embedding

of a target image using a CNN and subsequently applying a K-nearest neighbour classi-

fier. Miele et al. [43] propose two CNN-based methods for animal re-identification which

include deep metric learning and a pipeline where the CNN is followed by matching

through SIFT features. The standard CNN networks are progressively being replaced by

similarity-based networks such as Siamese networks [44], [45], [46], [47], [48]. This was

dictated by the observation that the training data would often be insufficient for learning

a multitude of classes compared to learning the two-class problem of ‘same/different’.

In essence, similarity-based networks are trained to extract a metric (features most rel-

evant to pairwise comparison). This is followed by a nearest neighbour (1-nn) or k-nn

classification in order to return the animal identity.

Deep learning models can seamlessly integrate the three stages of the re-identification

process: detection of the bounding box with the animal in the image, feature extraction,

and finally classification. For example, reinforcement learning networks such as Faster

RCNN [49] have proven useful as part of the pipeline responsible for bounding box detec-

tion. Once bounding boxes were identified, a CNN version is used for feature extraction.
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Ravoor et al. [41] consider a final stage of the pipeline called Identity association. At

this stage, either the trained CNN predictions are taken forward through softmax (the

feature extraction and classification task are fused and performed entirely by the CNN)

or another classifier is used on the features extracted by the CNN. The typical classifiers,

as reported by Ravoor et al., are the support vector machine (SVM) classifier, k-nn, Eu-

clidean distance, and cosine similarity. A two-step process decoupling feature extrcation

and classification is also considered by Bodesheim et al. [50], with SVM and Gaussian

processes used at the classification step. In our study, we are interested in testing a large

collection of different classifier models at the Identity association stage. To the best of

our knowledge, very little experimental research has been done to explore the success of

the plethora of state-of-the-art classifier models with either engineered features or deep

learning features. Following the previous research, in this study, we decouple the two

stages of animal recognition into feature extraction and classification. The novelty of our

study can be summarised as follows:

(1). Most previous studies focus on feature extraction, typically using a deep neural

network model. We suggest that, for complicated tasks with relatively small number of

instances per class, simpler, more basic feature extraction methods may be useful. Our

experiment demonstrates this argument.

(2). While most previous studies apply a basic classifier model at the classification

stage, here we test a variety of state-of-the-art classifiers.

(3). We propose a generic method and a testing protocol for animal re-identification

from video or an image collection, where part of the data is annotated with bounding

boxes and class labels.

3. The proposed experimental protocol

We start with a labelled data set of images (instances), each containing one animal.

We assume that these images are obtained by applying object detection or tracking in the

video, and extracting bounding boxes with one animal in each. The images are therefore

of different sizes. An example of the type of images (resized to identical squares), taken

from our case study, is shown in Figure 1.

For the experiment here, we do not need to keep the location of the bounding box

within the frame, but these locations are available in the database.
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Dwayne

Humphrey

Siobhan

Figure 1: An example of the type of images in our case study. These are three of the nine classes in the

Koi fish video.

The proposed protocol consists of two steps: feature extraction and classification, as

illustrated in the diagram in Figure 2. The feature extraction is carried out over the whole

collection of images, ignoring the class label. A two-fold cross-validation classification is

applied to test various state-of-the-art classification models, where the video is split into

halves. The reason for keeping the video halves intact is to avoid near-identical instances

coming from time-adjacent frames to be split between training and testing. Randomised

cross-validation will not guard against such splits, which will lead to deceptively high

accuracy rates. Bypassing the feature extraction branch in the diagram, deep learning

models can be applied directly to the original image data. This is the currently preferred

method for animal recognition and re-identification. We argue here (and demonstrate

through our case study) that deep learning is not necessarily the best approach.

4. Experimental study

Following the proposed protocol, in this section we detail our data and design choices.
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Feature extraction

Labelled images 
(bounding 
boxes) with one 
animal in each

Extract Deep Learning 
features through 
Autoencoder, CNN, etc.

Extract basic feature 
representations (colour, 
texture, shape)

Test classifier models 
by two-fold cross-
validation (split the 
video into time-
contingent halves)

Test Deep Learning models 
by two-fold cross-validation 
(split the video into time-
contingent halves)

Pick the best 
classification model

Figure 2: Diagram of the proposed experimental protocol for animal re-identification.

4.1. Data

The dataset chosen for our case study consists of five video clips sourced from Pix-

abay https://pixabay.com/ under the Pixabay license. The unconstrained videos

capture the movement of groups of animals within 9-24 seconds. The animals in each

video are of the same species: Koi fish1, pigeons (square)2, pigeons (pavement)3, pigeons

(curb)4, and pigs5, available from www.pixabay.com. Each video has been manually

annotated by creating bounding boxes (BB) with one animal in each BB. The BBs have

been labelled with the respective animal identities. Examples of annotated frames are

shown in Figure 3.

(a) Koi (b) Pigeons (c) Pigeons (d) Pigeons (e) Pigs

(square) (pavement) (curb)

Figure 3: Examples of annotated frames from the animal re-identification database used as our case-

study.

The full database is available at https://doi.org/10.5281/zenodo.7322820 [51].

It contains the annotations, individual images and datasets with different feature repre-

1www.pixabay.com/videos/koi-carp-fishes-ornamental-fish-5652/
2www.pixabay.com/videos/birds-street-pigeon-29033/
3www.pixabay.com/videos/pigeons-doves-and-pigeons-bird-city-4927/
4www.pixabay.com/videos/pigeons-eating-nature-birds-food-8234/
5www.pixabay.com/videos/pigs-farm-animals-livestock-49651/
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sentations. The characteristics of the five videos are summarised in Table 1. We also

display an imbalance metric for each video, which is calculated as the size of the largest

class divided by the size of the smallest class.

Table 1: Characteristics of the videos

Video k l N c Min p/f Max p/f Avr p/f Imbalance

Koi fish 536 22 1635 9 1 6 3.1 2.8

Pigs 500 16 6184 26 4 20 12.4 10.5

Pigeons (square) 300 9 4892 27 1 23 16.3 24.8

Pigeons (pavement) 600 24 3079 17 3 8 5.1 19.3

Pigeons (curb) 443 17 4700 14 8 13 10.6 3.1

Table notes: k is the number of frames; l is the video length in seconds; N is the number

of objects (individual animal images); c is the number of classes (animal identities); Min

p/f is the minimum number of animals per frame (image); Max p/f and Avr p/f are

respectively the maximum and the average numbers.

In order to visualise the complexity of our problem, we used the feature reduction

algorithm UMAP [52] to reduce the dimensionality to two. We applied UMAP to the

colour feature representation (RGB, detailed in the next section) of the Koi fish video.

Figure 4 (a) shows the overall scatterplot of the nine classes plotted with different markers

and colours. Instances in consecutive frames are joined by lines. Figure 4 (b) is a close-up

of the three classes illustrated in Figure 1. The instances in the second half of the video

are additionally marked with circles.

The figure demonstrates that the classes are heavily intertwined. More importantly,

Figure 4 (b) shows that there could be large differences in the representations of the animal

identities in the two halves of the video. This implies that classification models which

may learn very well in the training data, e.g., deep neural networks, may be inadequate

for the testing half of the video.

4.2. Feature extraction

• Colour-related (RGB). RGB moments: The image with the animal was divided into
8
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(a) Overall scatterplot (9 classes) (b) Close-up of three classes

Figure 4: Two-dimensional representation of the RGB dataset from the Koi fish video after applying

UMAP

3-by-3 blocks. For each block, we calculate and store the mean and the standard

deviations of the red, the green, and the blue panel, which results in a total of 54

RGB features. A MATLAB function get_rgb_features is provided in the Github

repository https://github.com/admirable-ubu/animal-recognition/. We

store all the code there.

• Shape-related (HOG). We resized all individual images to a square with side a

(we used a = 40) and extracted a Histogram of Oriented Gradients (HOG) from

the colour image. MATLAB function extractHOGfeatures was used with default

parameters, resulting in 576 HOG features.

• Texture-related (LBP). Local Binary Patterns (LBP) features were extracted using

from the grey-scale, resized image using MATLAB function extractLBPfeatures.

We used the default parameters, apart from setting ‘Upright’ to false, in order to

allow for rotation-invariant features. The function returned 10 LBP features.

• Autoencoder (AE).Autoencoders are deep learning neural networks which are trained

to reconstruct the input. There is a “code” layer, which contains the so called latent

representation of the input. The outputs of the code layer are the features extracted

by the AE network. MATLAB function trainAutoencoder was used with default
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Convolutional, 32 filters, 3-by-3 (with bias), stride 1

Maxpool, pool size 2 in both dimensions

R
e

LU

Convolutional, 64 filters, 3-by-3 (with bias), stride 1

R
e

LU
Dropout, rate 0.25

Flatten

IN
P
U
T

O
U
T
P
U
T

Dropout, rate 0. 5

Dense, softmax
activation

Figure 5: The CNN configuration

parameters. The latent representation is of size 10, which gives 10 AE features.

The network was trained on the whole dataset while ignoring any class labels.

• MobileNetV2 (MN2. We used the Keras MobileNetV2 model pre-trained on Ima-

genet. The last layer was cut off, and replaced with a GlobalAveragePooling layer,

which yielded 1280 features. Python code for this part of the experiment is provided

using function extractMobilNetfeatures from functions.py.

4.3. Classifiers

We included 23 classifiers from the Python library lazypredict [53], based on scikit-

learn [54]. These were all the classifiers in this library that could be applied to our data.

We grouped the classifiers into: baseline, linear, non-linear, and ensembles, as shown in

Table 2. Details of these methods can be found in the scikit-learn documentation and

the books by Géron [55] and Raschka et al. [56]. These classifiers were applied to the five

data representations detailed in Section 4.2. The Largest Prior classifier (Classifier 1 in

the Table; also known as Majority or ZeroR classifier) was chosen as a baseline.

We also trained a bespoke Convolutional Neural Network (CNN) using a standard

structure as detailed in Figure 5.

The CNN was trained using the Adam optimiser and binary cross-entropy loss.

To explore further the potential of deep learning, we used the Keras MobileNetV2

model pre-trained on Imagenet. The last layer was cut off, and replaced with: GlobalAv-
10
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Table 2: Classifiers used in this study. The colour boxes correspond to the colours in the figures, with

results 7 – 11. In the electronic version of the document, classifier names include a hyperlink to the

classifier implementation documentation.

Baseline

1. Largest Prior classifier (ZeroR/ Majority)

Linear

2. Bernoulli (Näıve Bayes)

3. Calibrated CV

4. Gaussian Näıve Bayes

5. Linear Discriminant Analysis

6. Linear SVM

7. Logistic Regression

8. Nearest Centroid

9. Passive Aggressive Classifier

10. Perceptron

11. Ridge Regression

12. Ridge Regression CV

13. SGD

Non-Linear

14. DecisionTree (C45)

15. Extra Tree

16. K-nn

17. Quadratic Discriminant Analysis

18. SVM

Ensembles

19. AdaBoost

20. Bagging

21. Extra Tree Ensemble

22. LGBM

23. Random Forest

Deep Learning

24. Convolutional Neural Network (CNN)

25. Transfer learning using MobileNetV2 (MNV2)
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eragePooling layer, followed by a Dropout layer with rate 0.2. Finally, we added a Dense

layer with sotmax activation. The network was trained with the same training options

as the bespoke CNN network.

For both deep learning models, we used data augmentation. During training, we mod-

ified each image according to a random augmentation selected among: random rotation

at up to 30 degrees, zoom with a range of 0.2, random horizontal shift up 0.1 of the image

width, random vertical shift up 0.1 of the image height, and horizontal flip.

Python code is available at https://github.com/admirable-ubu/animal-recog

nition/. All experiments were carried out on Rocky Linux 8.5 with two Intel Xeon

Platinum 8358 CPU @ 2.60GHz and Nvidia RTX A6000 with 48 GiB of VRAM.

5. Results

5.1. Ranking of the classifier models

According to the proposed protocol, two-fold cross-validation was carried out where

the videos were split into halves so that the frame continuity is preserved. Each half

has been used once for training and once for testing. The classification accuracies were

averaged across the two folds. These experiments were run separately for each of the five

feature representations described in Section 4.2.

The obtained classification accuracies for all classifiers and all feature representations

can be found in Tables 6 – 5 in the Appendix.

The first set of results we show are average ranking box plots. As the classification

accuracies are not commensurable from one video to another, we used ranks. Each video

together with a feature representation are considered a separate data set, so the total

number of datasets is 25. For each dataset, the classifiers are assigned a rank between 1

and 25, as there are also 25 classifiers. The most accurate classifier receives rank 1 and

the least accurate classifier, rank 25. Tied ranks are shared so that the sum of ranks is

preserved. Thus, each classifier receives 25 rank values. Figure 6 shows a boxplot of the

classifier ranks. The classifiers are arranged from the best (leftmost, the lowest rank),

to the worst, which, as expected, is the Largest Prior classifier (the baseline). The best

classifier in our experiment was the LDA.

Admittedly, while some classification models are quite robust (e.g., LDA), others

depend substantially on how they are tuned for the application task. In this experiment
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Figure 6: Box plot of the 25 classifier ranks across the 25 datasets. The classifiers are arranged from

best (left) to worst (right) according to the mean (red dot).

we used the default parameters of all classification methods and their training options,

apart from the CNN, which was designed ad hoc. We ran a small additional study to

check whether tuning of some of the more susceptible models will lead to a great difference

in the classification accuracy.

5.2. Feature representation results

Next, we look at the feature representations. Figures 7 – 11 show glyph plots of

the classification accuracies. Each video has a separate figure. The five plots in each

figure correspond to feature representations. The classification accuracies are represented

by the spoke sizes. The subplots in each figure are scaled so that the largest spoke

corresponds to the maximum accuracy across all feature representations for the respective

13

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



video. This spoke is shown in red. The numbers in parentheses within the subplot titles

are the average classification accuracy for the respective feature representation across

the 25 classifiers. The classifier groups detailed in Table 2 are shown with different

shading. It can be seen that sometimes the best accuracy does not come from the feature

representation with the best overall accuracy.

Figure 7: Classification accuracy of the 25 classifiers for the five feature representations for the Koi Fish

video. Best accuracy of 34.13% was achieved with RGB feature representation and the LDA classifier.

Figure 8: Classification accuracy of the 25 classifiers for the five feature representations for the Pigeons

(square) video. Best accuracy of 49.13% was achieved with RGB feature representation and the LDA

classifier.

Figure 9: Classification accuracy of the 25 classifiers for the five feature representations for the Pigeons

(pavement) video. Best accuracy of 18.41% was achieved with RGB feature representation and the QDA

classifier.

Figure 12 shows the ranks for the feature representations, considering each pair of

classifier and video as an item. Hence, for each feature representation there are 23× 5 =

115 ranks. The figure shows that the RGB representation markedly outperforms the rest.
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Figure 10: Classification accuracy of the 25 classifiers for the five feature representations for the Pigeons

(curb) video. Best accuracy of 38.53% was achieved with RGB feature representation and the Calibrated

CV classifier.

As we are interested in the combination of feature representation and classifier, the

best accuracies are shown in Table 3.

5.3. Tuning parameters

The previous results were obtained with default parameter values. Results can usually

be improved tuning parameters, but with a higher computational cost. In order to get a

first idea of the effect of this tuning, we conducted an affordable experiment with a subset

of the classifiers (i.e., Linear Discriminant Analysis, Quadratic Discriminant Analysis,

SVM, Extra Tree Ensemble and Random Forest) and the RGB representation. They

were selected because they were the best classifiers and representation in the previous

experiment.

Parameter tuning was performed using an AutoML (automated machine learning)

[57] tool, auto-sklearn [58]. The parameters to tune and their possible values were those

predefined in auto-sklearn.

Table 4 shows the best accuracies for each video from the classifiers with tuning.

Comparing with the results without tuning in Table 3, the results with tuning are only

better for the Pigs video and worse for the others. The reason could be that parameter

Figure 11: Classification accuracy of the 25 classifiers for the five feature representations for the Pigs

video. Best accuracy of 34.51% was achieved with RGB feature representation and the LDA classifier.
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Figure 12: Box plot of the ranking of the 5 feature representations arranged from best (left) to worst

(right) according to the mean (red dot).

tuning in these data sets increases over-fitting.

The CNN parameters were also tuned in another experiment, using keras-tuner [59].

For each fold, the size of the validation data was 25%. The search space is defined by the

following parameters and values. Number of filters for the first convolutional layer: 16,

32 and 64. Number of filters for the second convolutional layer: 32, 64 and 128. Dropout

rate for both dropout layers: between 0 and 0.5 in steps of 0.1. Dimensions of the output

space in the intermediate dense layer: 64, 128 and 256. Learning rates: 0.01, 0.001 and

0.0001. Epochs: between 3 and 200.

The results of this experiment are shown in Table 5. The results with tuning are close

Table 3: Accuracy for the best combination of classifier and feature representation for each video.

Koi Pigeons (square) Pigeons (pavement) Pigeons (curb) Pigs

Classifier LDA LDA QDA Calibrated CV LDA

Features set RGB RGB RGB RGB RGB

Accuracy 34.13 49.13 18.41 38.53 34.57
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to the results without tuning and they are worse for two of the five videos.

5.4. Discussion

The overwhelming opinion, backed by numerous studies, is that the use of deep learn-

ing methods for animal re-identification improves accuracy [3, 41]. In contrast, our results

show that, for our data, LDA is the best classifier. It stands at the top of the overall av-

erage ranking, obtaining the best accuracy on three of the five datasets. The overall and

individual best performance for all datasets is obtained using the colour feature represen-

tation, surpassing the texture and shape representations, which resonates with findings

by other authors [28]. Neither the ensemble methods nor the deep learning models, both

of which were expected to work well, produced reasonable accuracy. Moreover, parameter

tuning also does not produce more promising results, for the classifiers considered. We

have already discussed the possible reasons in Section 4.1.

In real-life scenarios, the data will likely be fairly different from one part of the video

to the next. Classifiers which are capable of capturing intricate classification structures

will suffer more heavily when distribution changes, compared to simpler classifiers which

rely on the most generic representation of the data. This is why LDA, and the linear

models in general, outperformed their competitors in our case study, using the RGB

features. If, however, the distributions are likely to be relatively static along the video

(e.g., if a fixed camera is used), more complex models may dominate. This reinforces the

importance on carrying out an experimental study to compare different classifier models,

keeping the cross-validation folds contingent.

We observe that, compared to similar studies on animal re-identification, our clas-

sification accuracy is low. There are different reasons for this result. First, in many

studies, a typical measure of accuracy is based on whether the correct identity is among

Table 4: Accuracy for the best classifiers with tunning for each video. The complete set of results for

these classifiers are in Table 11.

Koi Pigeons (square) Pigeons (pavement) Pigeons (curb) Pigs

Classifier LDA LDA LDA QDA LDA

Accuracy 29.30 45.86 15.73 32.01 35.10

17

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Table 5: Cross-validation classification accuracy [in %] for the deep learning models using raw images

and data augmentation.

Koi Pigeons (square) Pigeons (pavement) Pigeons (curb) Pigs

MNV2 7.53 6.44 5.93 11.15 11.21

CNN 24.74 13.64 10.63 16.95 20.68

CNN with tuning 26.20 13.32 12.51 17.52 17.47

the top five results retrieved from the database (top-5 accuracy) [12, 45, 50]. This metric

assumes that the classifier approach is a version of the nearest-neighbour classifier. We

experimented with standard classifier models which return only one class label. Variants

of the standard classification models can be devised, especially for the most successful

methods, which return a ranked list of similar instances from a chosen reference database.

One issue that we faced, even in these short video clips, which accounts for the low

accuracy, is the so-called open set recognition problem [50]. This refers to the introduction

of new classes (identities) in the testing part of the video. As the classifier has not seen

these classes in the training, it will mistakenly label the instances as belonging to some

of the existing classes. This will inevitably introduce extra classification error compared

to the closed-set case. One possible approach to address this problem is to use classifiers

which are confidence-conscious. Such classifiers will refuse to assign a label if the certainty

of the classification decision is low. They can be tuned to achieve acceptable accuracy at

the expense of declining to label a proportion of instances from known classes.

Finally, in addition to the concept change between training and testing data, the

low accuracy can be attributed to the large intra-class variability illustrated in Figure 4.

Besides, some of the classes were too small for the classification algorithm to learn the

pattern properly.

While we do not offer answers to all the questions raised here, the proposed protocol

is meant to give general guidelines to the practitioners in the field.
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6. Conclusion

In this paper we argue that classification experiments to determine the best model for

animal re-identification for a given dataset are paramount. We propose a general protocol

and carry out a case study on a difficult animal re-identification database. We examined

25 classification models and five data representations. Two of the classification models

and two of the data representations were based on the currently acclaimed deep learning.

Our results favoured simple linear models (LDA) and basic feature representation (colour

through RGB moments). We attribute this result to the complexity of the data distri-

bution, multitude of overlapping classes, and the difference of the distributions between

the cross-validation folds. Our findings highlight a somewhat overlooked message that

deep learning is not the answer to all tasks, and many times simple classifier models work

better for animal re-identification, e.g., [12].

There are several limitations to our study.

First, the data set for each animal group is only one video. The appearance of the

animals in a video taken at a different time or under different illumination conditions

may not match the current model. If multiple videos are available, annotation should be

carried out on a small portion of each video. The annotated data can be pooled together

and the protocol can be applied thereafter.

At the start, we decided to ignore time contingency of the video frames in order to

be able to apply the protocol to a collection of images that does not come necessarily

from video. However, if the source is video footage, we can use consecutive frames to

establish links between the objects that are being classified. Also, the instances coming

from the same frame must have different identities. Thus, we can impose Must Link

(ML) constraints and Cannot Link (CL) constraints on the testing data, without the

need of any further supervision or annotation. Our next study is on incorporating this

information in the classification process. Future research may also explore combinations

of feature representations, as well as various methods for dimensionality reduction.

The use of deep learning can be explored further. As advocated by recent studies,

similarity networks may learn an informative feature representation from small numbers

of instance per class.

The future in animal re-identification is likely to involve active learning (a human

in the loop) due to the changing environments, concept drift, and inevitable problem
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variability [50]. Classes will will appear, disappear, or reappear; the class description

may change, i.e., the appearance of the same individual may vary with time. Involving

a human in the loop will ensure that the open-set classification process is steered in the

correct vein. Adaptive, semi-supervised classification methods are likely to be the most

suitable choice, contributing to end-to-end automation for tasks such as tracking.
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Appendix

Tables 6–11 show the complete set of results.

Table 6: Classification accuracy of the classifiers for the feature representations for the Koi fish video.

Classifier AE HOG LBP MN2 RGB Average

1 Largest prior (baseline) 8.19 8.19 8.19 8.19 8.19 8.19

2 Bernoulli (Näıve Bayes) 13.22 14.41 22.04 22.37 20.12 18.43

3 Calibrated CV 15.14 11.57 26.63 15.38 26.77 19.10

4 Gaussian Näıve Bayes 22.77 15.46 21.84 16.14 20.57 19.36

5 Linear Discriminant Analysis 22.93 13.56 23.63 17.23 34.13 22.30

6 Linear SVM 16.51 12.09 25.59 16.82 19.96 18.19

7 Logistic Regression 14.85 11.96 23.46 20.41 22.88 18.71

8 Nearest Centroid 16.68 12.46 20.41 21.80 25.68 19.41

9 Passive Aggressive Classifier 11.17 11.71 21.65 16.94 17.70 15.83

10 Perceptron 11.47 12.72 23.89 16.77 16.13 16.20

11 Ridge Regression 22.23 13.72 25.15 15.58 17.20 18.78

12 Ridge Regression CV 22.18 12.50 25.15 15.58 16.98 18.48

13 SGD 17.72 13.27 20.08 15.82 30.60 19.50

14 DecisionTree (C45) 20.47 13.28 17.57 18.52 24.50 18.87

15 Extra Tree 20.99 10.56 18.62 14.13 26.70 18.20

16 K-nn 20.29 14.10 21.43 18.81 28.10 20.55

17 Quadratic Discriminant Analysis 25.67 11.31 23.41 9.86 15.53 17.16

18 SVM 18.27 12.52 24.54 22.10 27.07 20.90

19 AdaBoost 13.73 12.57 16.17 13.13 10.87 13.29

20 Bagging 23.95 11.95 21.09 20.35 27.51 20.97

21 Extra Tree Ensemble 25.91 13.07 23.27 19.52 29.39 22.23

22 LGBM 25.69 13.02 21.54 23.79 27.00 22.21

23 Random Forest 27.66 12.56 21.54 20.64 31.05 22.69

Average 19.03 12.55 21.60 17.39 22.81 18.68
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Table 7: Classification accuracy of the classifiers for the feature representations for the Pigeons (square)

video.

Classifier AE HOG LBP MN2 RGB Average

1 Largest prior (baseline) 6.18 6.18 6.18 6.18 6.18 6.18

2 Bernoulli (Näıve Bayes) 14.02 29.41 14.34 14.11 32.03 20.78

3 Calibrated CV 16.51 37.26 20.67 35.66 39.83 29.99

4 Gaussian Näıve Bayes 17.84 28.51 17.93 12.33 30.70 21.46

5 Linear Discriminant Analysis 14.92 34.05 19.04 35.99 49.13 30.62

6 Linear SVM 15.42 36.59 20.60 33.77 38.23 28.92

7 Logistic Regression 16.72 37.37 19.41 33.67 37.19 28.87

8 Nearest Centroid 16.35 29.81 17.55 14.94 34.13 22.55

9 Passive Aggressive Classifier 13.24 37.68 9.48 33.18 39.08 26.53

10 Perceptron 10.81 34.01 16.01 26.97 36.15 24.79

11 Ridge Regression 11.47 35.16 18.28 36.12 42.54 28.71

12 Ridge Regression CV 11.45 35.93 18.28 35.98 42.62 28.85

13 SGD 12.61 30.41 15.97 24.69 27.59 22.26

14 DecisionTree (C45) 20.10 17.61 14.42 18.07 24.52 18.94

15 Extra Tree 19.67 15.02 14.47 13.08 21.12 16.67

16 K-nn 24.17 38.91 16.69 23.08 40.80 28.73

17 Quadratic Discriminant Analysis 18.97 5.92 20.40 7.82 31.88 17.00

18 SVM 15.19 37.84 20.07 27.10 41.36 28.31

19 AdaBoost 8.91 10.77 14.54 7.08 9.33 10.13

20 Bagging 24.21 25.25 17.59 22.86 31.38 24.26

21 Extra Tree Ensemble 27.41 35.58 19.04 25.88 43.16 30.22

22 LGBM 27.46 32.09 19.25 27.31 36.36 28.50

23 Random Forest 27.46 35.95 19.00 25.88 41.73 30.00

Average 17.00 29.01 16.92 23.55 33.78 24.06
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Table 8: Classification accuracy of the classifiers for the feature representations for the Pigeons (pave-

ment) video.

Classifier AE HOG LBP MN2 RGB Average

1 Largest prior (baseline) 6.26 6.26 6.26 6.26 6.26 6.26

2 Bernoulli (Näıve Bayes) 12.77 11.68 12.66 6.39 8.11 10.32

3 Calibrated CV 14.09 14.63 13.60 11.25 17.18 14.15

4 Gaussian Näıve Bayes 14.12 12.78 15.27 3.30 9.96 11.08

5 Linear Discriminant Analysis 13.63 14.76 13.59 12.29 16.50 14.15

6 Linear SVM 13.77 14.31 14.23 11.04 17.29 14.13

7 Logistic Regression 12.51 15.27 15.35 10.31 15.35 13.76

8 Nearest Centroid 15.45 11.09 14.93 6.72 8.47 11.33

9 Passive Aggressive Classifier 14.31 14.03 13.27 11.51 16.28 13.88

10 Perceptron 14.44 12.80 13.14 10.85 14.58 13.16

11 Ridge Regression 13.97 13.98 11.81 12.03 15.66 13.49

12 Ridge Regression CV 13.94 14.21 11.81 10.96 15.60 13.30

13 SGD 11.22 15.44 16.36 11.78 11.35 13.23

14 DecisionTree (C45) 11.81 10.46 11.68 8.64 11.10 10.74

15 Extra Tree 12.68 9.27 11.05 6.78 10.27 10.01

16 K-nn 14.54 13.67 13.97 7.59 11.22 12.20

17 Quadratic Discriminant Analysis 13.93 5.70 13.96 7.02 18.41 11.81

18 SVM 14.17 16.44 14.65 8.62 12.39 13.26

19 AdaBoost 9.81 3.82 10.04 8.16 7.34 7.83

20 Bagging 13.11 11.71 13.50 7.86 10.26 11.29

21 Extra Tree Ensemble 15.95 14.50 14.99 8.14 12.15 13.14

22 LGBM 15.34 14.60 13.93 9.68 11.82 13.08

23 Random Forest 16.26 15.30 14.09 8.00 12.18 13.17

Average 13.40 12.47 13.22 8.92 12.60 12.12

27

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Table 9: Classification accuracy of the classifiers for the feature representations for the Pigeons (curb)

video.

Classifier AE HOG LBP MN2 RGB Average

1 Largest prior (baseline) 7.59 7.59 7.59 7.59 7.59 7.59

2 Bernoulli (Näıve Bayes) 22.94 16.49 12.60 11.97 25.55 17.91

3 Calibrated CV 26.31 23.11 18.92 23.70 38.53 26.12

4 Gaussian Näıve Bayes 24.93 17.34 12.98 11.89 28.04 19.03

5 Linear Discriminant Analysis 27.76 21.57 19.83 25.22 32.54 25.39

6 Linear SVM 25.98 21.75 19.46 23.67 37.06 25.59

7 Logistic Regression 26.34 22.27 19.18 21.93 37.23 25.39

8 Nearest Centroid 24.64 15.45 14.21 15.29 26.94 19.30

9 Passive Aggressive Classifier 22.22 22.66 13.82 20.25 36.65 23.12

10 Perceptron 24.12 20.54 13.36 19.18 30.79 21.60

11 Ridge Regression 26.98 21.01 19.57 24.28 32.67 24.90

12 Ridge Regression CV 27.03 21.38 19.69 24.41 31.34 24.77

13 SGD 24.74 21.27 16.25 20.14 30.96 22.67

14 DecisionTree (C45) 23.23 13.66 12.58 13.81 21.59 16.97

15 Extra Tree 22.64 13.28 12.48 14.47 20.80 16.73

16 K-nn 28.64 21.94 14.42 19.34 30.04 22.88

17 Quadratic Discriminant Analysis 27.34 7.57 18.60 8.36 29.48 18.27

18 SVM 29.41 21.06 16.86 23.73 31.47 24.51

19 AdaBoost 15.55 7.48 11.37 12.20 12.72 11.86

20 Bagging 26.00 18.36 14.76 17.83 26.89 20.77

21 Extra Tree Ensemble 31.30 19.72 15.69 21.43 31.97 24.02

22 LGBM 30.32 20.67 15.84 21.81 30.57 23.84

23 Random Forest 30.12 22.03 16.23 21.56 30.30 24.05

Average 25.05 18.18 15.49 18.44 28.77 21.19
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Table 10: Classification accuracy of the classifiers for the feature representations for the Pigs video.

Classifier AE HOG LBP MN2 RGB Average

1 Largest prior (baseline) 6.65 6.65 6.65 6.65 6.65 6.65

2 Bernoulli (Näıve Bayes) 17.15 23.66 15.90 11.07 20.48 17.65

3 Calibrated CV 20.03 25.31 16.44 26.51 31.13 23.88

4 Gaussian Näıve Bayes 20.98 25.18 16.60 7.26 25.17 19.04

5 Linear Discriminant Analysis 18.90 25.02 17.73 24.99 34.51 24.23

6 Linear SVM 20.06 24.13 16.93 24.67 30.89 23.33

7 Logistic Regression 20.51 27.71 18.01 24.38 30.41 24.20

8 Nearest Centroid 16.19 23.19 15.70 11.60 21.67 17.67

9 Passive Aggressive Classifier 13.69 25.13 9.79 24.46 27.99 20.21

10 Perceptron 13.47 22.74 10.78 24.69 25.98 19.53

11 Ridge Regression 15.02 24.30 15.05 26.60 30.67 22.33

12 Ridge Regression CV 15.04 24.34 15.05 26.72 31.46 22.52

13 SGD 16.17 25.50 13.90 19.04 27.11 20.34

14 DecisionTree (C45) 18.86 14.97 11.78 13.55 19.96 15.82

15 Extra Tree 15.33 12.09 10.98 13.30 16.09 13.56

16 K-nn 18.70 29.92 14.01 17.96 27.17 21.55

17 Quadratic Discriminant Analysis 23.08 4.65 15.87 7.12 22.73 14.69

18 SVM 20.47 27.72 17.36 21.24 27.51 22.86

19 AdaBoost 12.36 6.90 9.08 9.54 9.84 9.55

20 Bagging 19.99 20.09 14.00 17.22 25.03 19.27

21 Extra Tree Ensemble 22.45 29.08 16.75 19.56 30.36 23.64

22 LGBM 23.01 26.51 16.48 19.69 29.32 23.00

23 Random Forest 22.78 29.15 16.32 19.52 29.30 23.42

Average 17.86 21.91 14.40 18.15 25.28 19.52
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Table 11: Classification accuracy of the tuned classifiers with the RGB representation.

Koi Pigeons Pigeons Pigeons Pigs

fish (square) (pavement) (curb)

Linear Discriminant Analysis 29.30 45.86 15.73 31.65 35.10

Quadratic Discriminant Analysis 19.39 35.46 15.65 32.01 25.72

SVM 28.32 39.65 11.98 28.88 27.28

Extra Tree Ensemble 27.71 43.91 12.74 31.80 30.16

Random Forest 27.84 42.75 11.34 30.63 29.65
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