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Simple Summary: There is currently a growing interest in respiratory muscle training in athletes,
so we set out to systematically assess with meta-analyses the effects of IMT with PowerBretah®

(PwB), a threshold work device for IMT, on respiratory parameters and athletic performance in
healthy physically active adults. Eleven studies were included in the systematic review and nine
in the meta-analysis. IMT by PwB significantly increased maximal inspiratory pressure (MIP) and
substantial improvements in forced vital capacity (FVC) in the results of the meta-analysis, and
sports performance was significantly increased. In conclusion, the IMT with PwB would improve
respiratory, MIP, FVC, and sports performance.

Abstract: Sports performance in athletes can be limited by respiratory factors, so it is understandable
to propose that inspiratory muscle training (IMT) can improve respiratory function and exercise
performance. Power-Breathe® (PwB) is a sectorized respiratory muscle training tool that uses a
resistive load to train IMT. There is currently a growing interest in respiratory muscle training,
so we set out to systematically assess the effects of IMT with PwB on respiratory parameters and
athletic performance in physically active, healthy adults. Based on the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guideline, the Cochrane and PEDro scales to
assess methodological quality, effect size using the Rosenthal formula, and the Cochrane tool for
estimation of risk of bias, studies searchable in Medline, Web of Science, and Cochrane. In addition,
for the performance of the meta-analysis, the documentation and quantification of the heterogeneity
in each meta-analysis were directed through the Cochran’s Q test and the I2 statistic; in addition, a
publication bias analysis was performed using funnel plots. Of the total of 241 studies identified
in the search, 11 studies for the systematic review and nine for the meta-analysis met the exclusion
and/or inclusion criteria. IMT, with PwB, showed significant improvements in maximal inspiratory
pressure (MIP) and substantial improvements in forced vital capacity (FVC) in the meta-analysis
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results. Also, sports performance was significantly increased by IMT with PwB. In conclusion, the
use of PwB is an IMT tool that improves respiratory and sports performance.

Keywords: inspiratory muscle training; Powerbreath®; maximal inspiratory pressure; forced vital
capacity; sports performance; exercise; meta-analysis

1. Introduction

The inspiratory muscles are histologically and functionally human skeletal muscle
fibers and, therefore, are capable of being trained, like any muscle of the musculoskeletal
system [1]. Inspiratory muscle training (IMT) is a technique used to increase the strength
or endurance of the diaphragm and accessory muscles of inspiration [2]. IMT are non-
pharmacological interventions that are low cost, easy to apply, safe, and are considered
important adjuncts to the treatment of some lung diseases [3]. IMT has demonstrated
improvements in functional capacity, health-related quality of life (HRQoL), pulmonary
function, and dyspnea in patients with respiratory conditions [4].

Physical performance in athletes may be limited by respiratory factors such as respira-
tory muscle dysfunction, exercise-induced hypoxemia, or the initiation of the respiratory
metabolic reflex mechanism of the respiratory muscles [5]. It is therefore understandable to
propose that IMT can improve exercise performance. The adaptations brought about by a
correct training program can influence the energy metabolism of the respiratory muscles,
increasing their efficiency and leading to a lower oxygen demand with respect to skeletal
muscles [2]. Thus, IMT is a work-breathing procedure that has a possible ergogenic effect
on physical exercise in untrained [6] and trained [7] individuals.

IMT devices, which perform sectorized training of the respiratory muscles, can be
divided into three categories, such as: resistive charge, voluntary isocapnic hyperpnea, and
threshold devices. In this sense, Power-Breathe® (PwB) [PowerBreathe International Ltd.
Southam, Warwickshire; England UK] (IMT Technologies LTD) is a resistive loading IMT
instrument. Thus, the IMT effect is generated by the adaptation of the inspiratory muscles
to overcome the resistance generated by the PwB during inspiration [8]. A recent meta-
analysis reported significant improvements in maximal oxygen consumption (VO2max) and
non-significant improvements in plasma lactate concentration, but imputed a publication
bias with respect to these two parameters [3]. In addition, Fernández-Lázaro et al. [3]
demonstrated only an increase in respiratory pressures in athletes after IMT with PwB but
not in other parameters of pulmonary function.

Thus, and due to the growing interest in the IMT, we set out to critically assess
the effects of the IMT with PWB on respiratory pressures, the mechanics of respiratory
system biomarkers, and athletic performance in physically active, healthy adults. The
research question was defined using the PICO model according to the standard methods
proposed by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Guidelines (PRISMA) [9] as follows: Population: physically active healthy adults (without
any respiratory condition); Intervention: inspiratory muscle training through the PwB
device; Comparison: placebo/control group or pre/post comparison data group; Outcomes:
respiratory pressures (maximal inspiratory pressure [MIP]), spirometry biomarkers (forced
vital capacity [FVC], maximal voluntary ventilation [MVV], peak inspiratory flow [PIF],
peak expiratory flow [PEF]) and sports performance (mean values of repeated-sprint ability
[RSAmea], exercise time [ET], multistage fitness test repetitive [MSFT], time trail [TT],
sprints performance [RSP], mean values of power in time trial [WTTmean], number of
repetitions, maximal power [Max Power]). These parameters were included as outcomes
as they are commonly investigated in studies of IMT.
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2. Methods
2.1. Search Strategy

We developed a structured search using Medline (PubMed), Web of Science (WOS),
and Scopus for articles published from the database’s inception to 31 August 2022, restricted
to the English and Spanish languages. The search strategy contained terms related to
TT and the different outcome biomarkers as well as a combination of these with the
Medical Subject Headings (MeSH) index and Boolean operators:: (“Powerbreath”) AND
(“muscle” OR “inspiratory muscle training” OR “inspiratory muscle strength”) AND
(“performance” OR “athletic performance”) AND (“exercise” OR “physical activity” OR
“aerobic capacity” OR “resistance”) (“pulmonary function” OR respiratory parameters”)
AND random* (inspiratory muscle training AND atere* AND random*). Two reviewers
(D.F.-L. and J.S.-C.) independently screened titles and abstracts, and full texts were sourced
for relevant articles. Inclusion criteria were independently assessed, and disagreements
were resolved by a third reviewer (L.C.). Additional records were obtained through
reference lists that included relevant articles.

2.2. Selection Criteria

The selection of records was based on the following criteria: (a) physically active,
healthy adults with moderate levels of physical activity or sports practice (recreational,
amateur, or professional) without any respiratory condition (including individuals with
moderate levels of physical activity and excluding animals); (b) studies that assessed
the effects of IMT with PwB as the only method of respiratory training; (c) clinical trials,
randomized and not randomized trials, and pre-test/post-test design studies (excluding
records, editorials, reviews, notes, and any other non-original study); (d) studies that
evaluated as outcomes (primary or secondary) any respiratory pressure (MIP), spirometry
biomarkers (FVC, MVV, PEF, PIF), and sports performance; (e) studies with clear informa-
tion on the intervention protocol of IMT with PwB. Records that did not meet the criteria
were excluded from this systematic review.

2.3. Quality Assessment

We used the critical review form for quantitative studies developed by updated
method guidelines for systematic reviews in the Cochrane Collaboration back review
group [10] and the PEDro scale for rating the quality of randomized controlled trials [11].

2.4. Quantitative Assessment

A statistical analysis was performed to obtain the main descriptive statistics of central
tendency (mean) and dispersion (standard deviation) of the methodological variables of
the treatment and of the subjects recruited in the articles analyzed. We calculated the effect
size of the results obtained with respect to the different study variables using Rosenthal’s
formula [12].

2.5. Risk of Bias Assessment

The Cochrane risk bias assessment tool [13] was used to evaluate the quality of the
literature by two reviewers (D.F.-L., J.S.-C.). It is a specific tool to assess the risk of bias in
clinical trials. For this, it includes a description and assessment for each item in the risk
of bias, which offers us a final evaluation that determines the quality of the article [13].
The eight major sources of bias (sequence generation; sssignment concealment; personal
blinding; evaluator blinding; incomplete tracking; data reporting; publication bias; observer
bias) were classified into three grades: “Yes” indicates a low risk of bias, “No” indicates a
high risk of bias, and “Unclear” indicates a lack of information or uncertainty about the
potential for bias, which were assessed using the Cochrane risk of bias assessment tool.
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2.6. Meta-Analysis Data Analysis

To carry out the meta-analysis, the methodology used in the study by Fernández-
Lázaro et al. [3] was followed. In this way, the heterogeneity calculation was quantified
with Cochrane’s I2 statistic. Without heterogeneity, a fixed effect meta-analysis model was
used. However, with heterogeneity, a random effect meta-analysis model was used for
evaluating tau squared (τ2) by the DerSimonian-Laird method [14]. Regarding the analysis
of publication bias, it was performed using funnel plots, whose asymmetry was quantified
through Egger’s regression [15]. The process of performing meta-analysis was used with
the metaphor package (version 2.1-0) in R (The R Foundation for Statistical Computing,
Vienna, Austria).

2.7. Data Extraction

Two reviewers (D.F.-L. and J.S.-C.) reviewed and synthesized the data from all selected
studies into a comprehensive table using standardized data extraction. Disagreements
were resolved by a third reviewer (D.G.G.). Information extracted from the selected studies
included: the name of the first author, year of publication, the country in which the study
was conducted, sample size, age, height, and sport activity (Table 1). Also, interventions,
instruments, outcomes, and results (Table 2) were included in the review.



Biology 2023, 12, 56 5 of 19

Table 1. Characteristics of participants in the selected studies.

First Author and Year of Publication n (IG) n (CG) Age (Years) Height (cm) Sport Activity Weekly Training Volume of Athletes

Archiza et al., 2017 [16] Npre = 10
Npost = 10

Npre = 8
Npost = 8

IG: 22.0 (3.9)
CG: 20.1 (2.0)

160.0 (0.1)
160.0 (0.0) Soccer (p) 20 h × wk−1; 60% physical and 40%

technical and tactical training

Edwards et al., 2008 [17] Npre = 8
Npost = 8

Npre = 8
Npost = 8 NA 180.1 (4.5)

181.3 (5.0) Running (r) NA

Guy et al., 2014 [18] Npre = 24
Npost = 21

Npre = 12
Npost = 10

IG1: 26.6 (8.2)
IG2: 23.9 (6.7)
CG: 21.3 (4.9)

182.0 (0.1)
175.0 (0.1)
175.0 (0.1)

Soccer (r) Twice-weekly sessions for
pre-season training

Hart et al., 2001 [19] Npre = 6
Npost = 6

Npre = 6
Npost = 6 32.0 (4.8) NA NA NA

Kilding et al., 2016 [20] Npre = 8
Npost = 8

Npre = 8
Npost = 8

IG: 19.1 (2.6)
CG: 19.0 (2.1)

176.5 (4.0)
180.5 (6.5) Swimming (p) NA

Romer et al., 2001 [21] Npre = 12
Npost = 12

Npre = 12
Npost = 12

IG: 21.3 (1.1)
CG: 20.2 (0.7)

174.0 (0.1)
177.0 (0.1)

Soccer, rugby, field hockey,
and basketball (p and/or a) NA

Salazar-Martínez et al., 2017 [22] Npre = 8
Npost = 8

Npre = 8
Npost = 8

IG: 23.4 (2.7)
CG: 25.4 (3.2)

180.2 (3.5)
168.8 (5.1) Cycling (a) NA

Tong et al., 2008 [23] Npre = 20
Npost = 20

Npre = 10
Npost = 10

IG1: 21.3 (0.9)
IG2: 21.5 (2.1)
CG: 22.0 (2.9)

175.0 (5.4)
174.7 (6.8)
175.0 (5.4)

Soccer & rugby (a) NA

Tong et al., 2010 [24] Npre = 9
Npost = 9

Npre = 9
Npost = 9

IG: 21.1 (1.1)
CG: 22.3 (1.0)

172.9 (3.8)
175.6 (4.0) Soccer & rugby (a) 2–3 h × day−1 for 4–5 days × wk−1

Tranchita et al., 2018 [25] Npre = 15
Npost = 15

Npre = 14
Npost = 14

IG: 21.06 (2.5)
CG: 19.0 (2.1)

181.4 (9.9)
181.1 (9.6) Basketball (a) 8 h × wk−1

Vasconcelos et al., 2017 [26] Npre = 12
Npost = 11

Npre = 11
Npost = 10

IG: 22.0 (5.0)
CG: 18.5 (5.8) NA Basketball (p) NA

Abbreviations: n: sample size; IG: intervention group; CG: control group; Npre: sample size at the baseline; Npost: sample size at the end of the study; IG1: intervention group 1;
IG2: intervention group 1; NA: data not available; (p): professional level; (a): amateur level; (r): recreational level; h: hour; wk: week.
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Table 2. Studies included in the systematic review of the effect of PowerBreath® in physically active, healthy adults.

Study T Interventions Instrument Outcomes (Units)
Results

IG: Changes from Baseline IG vs. CG

Archiza et al., 2017 [16] 6 IMT (2 × 30)
With PwB device

Mouth pressure meter,
spirometer

Respiratory pressures MIP (cmH2O)
Pulmonary function FVC (L)

Sports performance RSAmean (s)

↑* MIP
↓ FVC

↑* RSAmean
ND

Edwards et al., 2008 [17] 4
IMT (1 × 30) + Cardiovascular training (CV1:

5 × 1000 m; CV2: 3 × 1600 m; SP: 20 min)
With PwB device

Mouth pressure meter,
portable ergospirometer

Respiratory pressures MIP (cmH2O)
Pulmonary function FVC (L)

Sports performance ET (s) 1000 m

↑* MIP
↔ FVC
↑ ET

↑* MIP
↔ FVC
↑* ET

Guy et al., 2014 [18] 6
IMT (2 × 30) + pre-season soccer training

(2 days per week)
With PwB device

Spirometer, chronometer,
heart rate monitor, lactate

analyzer

Respiratory pressures MIP (cmH2O)
Pulmonary function-FVC (L)

Sports performance-MSFT (m)

↑* MIP
↓FVC
↑* MSFT

ND

Hart et al., 2001 [19] 6 IMT (2 × 30)
With PwB device

Mouth pressure meter,
spirometer, chronometer

Respiratory pressures MIP (cmH2O)
Pulmonary function MVV (L/min)

Sports performance ET (s)

↑MIP
↑MVV
↑ ET

↑MIP
↑MVV
↑ ET

Kilding et al., 2016 [20] 6 IMT (2 × 30)
With PwB device

Mouth pressure meter,
spirometer, lactate analyzer

Respiratory pressures MIP (cmH2O)
Pulmonary function FVC (L)
Sports performance TT 200 m

(strokes/min)

↑* MIP
↑ FVC
↑* TT

↑* MIP
↑ FVC
↑ TT

Romer et al., 2001 [21] 6 IMT (2 × 30)
With PwB device

Pneumotachograph
spirometer, hand-held
mouth pressure meter,

lactate analyzer.

Respiratory pressures MIP (cmH2O)
Pulmonary function FVC (L)
Sports performance RSP (s)

↑* MIP
↑ FVC
↑* RSP

ND

Salazar-Martínez et al., 2017 [22] 6 IMT (2 × 30)
With PwB device

Spirometer, cycloergometer,
portable gas analyzer

Respiratory pressures MIP (cmH2O)
Pulmonary function FVC (L)

Sport performance WTTmean (W)

↑* MIP
↑ FVC
↑WTT

ND

Tong et al., 2008 [23] 6 Warm-up + IMT (2 × 30)
With PwB device

Bidirectional gas flow meter,
RPE and RPB scales

Respiratory pressures MIP (cmH2O)
Sports performance

(number of repetitions)

↑* MIP
↑* number of repetitions

↑MIP
↑ number of
repetitions

Tong et al., 2010 [24] 6 Warm-up + IMT (2 × 30) + Interval training
With PwB device

Differential pressure
transducer, portable

ergospirometer

Respiratory pressures MIP (cmH2O)
Sports performance

(number of repetitions)

↑* MIP
↑* number of repetitions

↑MIP
↑ number of
repetitions
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Table 2. Cont.

Study T Interventions Instrument Outcomes (Units)
Results

IG: Changes from Baseline IG vs. CG

Tranchita et al., 2018 [25] 4 IMT (2 × 30)
With PwB device

Spirometer,
Astrand-Rhyming Cycle

Ergometer Test

Respiratory pressures MIP (cmH2O)
Pulmonary function PIF (L/min)

Pulmonary function MVV (L/min)
Sports performance Max Power (W)

↑* MIP
↑* PIF
↑*MVV

↑Max Power

ND

Vasconcelos et al., 2017 [26] 4 IMT (1 × 30)
With PwB device Spirometer Pulmonary function FVC (L)

Pulmonary function PEF (L/s)
↑* FVC
↑*PEF ND

Abbreviations: T: temporality (weeks); IG: intervention group; CG: control group; IMT: inspiratory muscle training; (n × 30): 30 dynamic inspiratory efforts twice daily; (1 × 30):
30 dynamic inspiratory efforts once a day; PwB: powerbreathe; CV1: cardiovascular test 1; CV2: cardiovascular test 2; SP: self-paced running; RPE: rate of perceived exertion; RPB: rate of
perceived breathlessness; MIP: maximal inspiratory pressure; FVC: forced vital capacity; L: litres; cmH2O: centieater of water; RSP: repetitive sprints performance; MVV: maximal
voluntary ventilation; min: minutes; ET: exercise time; s: seconds; m: meters; MSFT: multistage fitness test; RSAmean: mean values of repeated-sprint ability WTTmean: mean values of
power in time trials; W: watt; PIF: peak inspiratory flow; PEF: peak expiratory flow; ND: not described; ↑ = no significant increase; ↓ = no significant decrease;↔ = no significant change.
↑* = significant increase; ↓* = significant decrease.
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3. Results
3.1. Study Selection

Figure 1 details the process of study selection. The literature search resulted in 240 stud-
ies, of which 234 studies were included in the WOS, SCOPUS, and PubMed databases and
the remaining six studies were from other sources, such as ResearchGate and reference
lists of relevant studies. Thirty-nine duplicates were eliminated, and 195 identified arti-
cles were evaluated. Thirty-one manuscripts were included as prospective studies after
analysis by title/abstract. After this process, the full text was revised to include a total of
11 records [16–26] in the systematic review.
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ing to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

3.2. Characteristics of Participants

Table 1 shows the main characteristics of the participants included in the selected stud-
ies and the athletes’ weekly training. The age of the subjects ranged between 18–32 years,
and the height range of the participants was 160–182 cm. Five studies included in the
review included soccer players [16,18,21,23,24], three studies rugby and basketball play-
ers [21,25,26], one study for each sport: field hockey [21], swimming [20], running [17], and
cycling [22].

3.3. Outcome Evaluation

Table 2 summarizes the contents of the studies contained in this systematic review.

3.3.1. Intervention

The intervention carried out in the selected studies is IMT. Ten of included studies
indicate as IMT two sets of 30 breaths (2 × 30) daily [16,18–26], only Edwards et al. [17]
used 1 × 30 breaths daily. Three studies [17,23,24] included other interventions such as a
warm-up [23,24], cardiovascular physical activity [17], and interval training [24] plus IMT.
Additionally, 2 studies included IMT with soccer [18] and basketball [25] training.
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3.3.2. Respiratory Pressures

Ten studies included in the systematic review evaluated MIP [16–25]. In 9 of the
studies, significant increases (p < 0.05) in MIP were obtained in the PwB intervention group
with respect to baseline [16–18,20–25]. In two studies, significant (p < 0.05) improvements
were described in the intervention group (IG) with respect to the control group (CG). In
addition, substantial improvements in MIP were reported in the IG compared to the CG.

3.3.3. Pulmonary Function

Seven studies included in the review evaluated pulmonary function by FVC [16–18,20–22,26].
In IG compared to baseline, two studies [16,19] showed non-significant decreases, and Vasconce-
los et al. [26] showed significant increases (p < 0.05). Significant increases (p < 0.05) were found in
MVV [25], PIF [25] and PEF [26] in the IG compared to baseline.

3.3.4. Sports Performance

All studies [16–26] included in this systematic review evaluated sports performance.
Significant [16,18,20,21,23,24,26] (p < 0.05) and non-significant [17,19,22,25] (p > 0.05) in-
creases in performance have been reported in IG from baseline to study completion. In
addition, significant improvements in sports performance in IG compared to CG have been
described in the study conducted by Edwards et al. [17] in athletes.

3.4. Risk of Bias Assessment

Table 3 shows the analysis of the methodological biases of the studies analyzed in this
systematic review by the Cochrane risk bias assessment tool [13]. Two registers presented
five biases [17,24], mainly related to allocation concealment, blinding of the personnel,
and blinding of the evaluator. Also, three studies presented with four biases [18,19,25]
and three studies [20,22,23] presented three biases. Finally, three records showed only two
biases [16,21].

Table 3. Cochrane’s assessment of risk of bias [13].

Items
Archiza

et al.,
2017 [16]

Edwards
et al.,

2008 [17]

Guy
et al.,

2014 [18]

Hart
et al.,

2001 [19]

Kilding
et al.,

2016 [20]

Romer
et al.,

2001 [21]

Salazar-
Martínez

et al.,
2017 [22]

Tong
et al.,

2008 [23]

Tong
et al.,

2010 [24]

Tranchita
et al.,

2018 [25]

Vascocelos
et al.,

2017 [26]

1 NO NO NO NO NO NO NO NO NO NO YES
2 YES NO NO NO NO NO NO NO NO NO YES
3 NO NO YES NO YES YES YES YES NO NO NO
4 YES NO NO NO NO YES NO NO NO NO NO
5 YES YES YES YES YES YES YES YES YES YES YES
6 YES NO NO YES YES YES YES YES NO YES YES
7 YES YES YES YES YES YES YES YES YES YES YES
8 YES YES YES YES YES YES YES YES YES YES YES

Total 2 5 4 4 3 2 3 3 5 4 2

Abbreviations = 1: sequence generation; 2: assignment concealment; 3: personal blinding; 4: evaluator blinding;
5: incomplete tracking; 6: data reporting; 7: publication bias; 8: observer bias; the rating for each item includes
the response to a question“, where “Yes” indicates a low risk “f ” bias, “No” indicates a high risk of bias, and
“Unclear” indicates a lack of information or uncertainty about the potential for bias; the higher the score, the
higher the risk of bias.

3.5. Quality Assessment
3.5.1. PEDro Scale

Three studies were considered “good quality” [16,20,23], seven [18,19,21,22,24–26] as
“regular quality and one [17] as “poor quality” (Table 4). Items six (therapist blinding) and
seven (assessor blinding) are the ones in which studies have shown the most deficiencies.
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Table 4. Results of the methodological quality assessment of included studies—PEDro Scale [11].

Items
Archiza

et al.,
2017 [16]

Edwards
et al.,

2008 [17]

Guy
et al.,

2014 [18]

Hart
et al.,

2001 [19]

Kilding
et al.,

2016 [20]

Romer
et al.,

2001 [21]

Salazar-
Martínez

et al.,
2017 [22]

Tong
et al.,

2008 [23]

Tong
et al.,

2010 [24]

Tranchita
et al.,

2018 [25]

Vascocelos
et al.,

2017 [26]

1 1 0 0 0 0 0 1 0 0 0 1

2 1 1 1 1 1 1 1 1 1 1 1

3 1 0 0 0 0 0 0 0 0 0 1

4 1 1 1 1 1 1 1 1 1 1 1

5 1 0 1 0 1 1 1 1 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0 0 0 0

8 1 - 1 1 1 0 0 1 0 0 1

9 1 - 0 1 0 0 0 1 1 0 0

10 1 1 1 1 1 1 1 1 1 1 1

11 1 0 0 0 1 0 1 0 0 1 0

Total 8 3 5 5 6 5 5 6 4 4 5

Quality G P R R G R R G R R R

Abbreviations = 1: eligibility criteria specified; 2: random allocation; 3: concealed allocation; 4: groups similar at
baseline; 5: subject blinding; 6: therapist blinding; 7: sssessor blinding; 8: less than 15% dropouts; 9: intention-to-
treat analysis; 10: between-group statistical comparisons; 11: paint measures and variability data; -: not evaluable;
1: YES; 2: NO; Quality score = total YES score; 9–11: eIllent (E); 6–8: good (G); 4–5: regular (R); <4: poor (P).

3.5.2. Cochrane’s Assessment of Quality

Five studies were considered such as “good quality” [16,18,19,23,26], 2 [20,21] as
“regular quality and 4 [17,22,24,25] as “poor quality” (Table 5). Items 5 (Was the care
provider blinded to the intervention?) and 6 (Was the outcome assessor blinded to the
intervention?) are the ones in which studies have shown the most deficiencies.

3.6. Methodological Variables Assessment

The evaluation of the quantitative analysis of the selected studies can be seen in
Table 6. Regarding the sample size, experimental deaths in both the experimental and
control groups in the different evaluations (pre-treatment and post-treatment) indicate a
low number of dropouts during the interventions. As for the experimental mortality data,
all the articles provide data after the treatment period, presenting a mean percentage of
2.05% (SD: 4.71) of dropouts due to different causes. However, none of the studies included
a follow-up evaluation.

3.7. Effect Size Assessment

Table 7 shows the results of the calculation of the effect size of the selected studies.
The effect size offered disparate results depending on the study analyzed. According to
this statistical analysis, the treatment had a large effect size (d > 0.8) and thus a greater
magnitude of effect. In relation to the improvement of sports performance, Romer et al. [21]
(d = 1.81), Tong et al. [24] (d = 0.89), Tong et al. [23] (d = 1.03), and Archiza et al. [16]
(d = 1.19) showed a large effect size in their interventions.
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Table 5. Cochrane’s assessment of quality [10].

Items
Archiza

et al.,
2017 [16]

Edwards
et al.,

2008 [17]

Guy
et al.,

2014 [18]

Hart
et al.,

2001 19]

Kilding
et al.,

2016 [20]

Romer
et al.,

2001 [21]

Salazar-
Martínez

et al.,
2017 [22]

Tong
et al.,

2008 [23]

Tong
et al.,

2010 [24]

Tranchita
et al.,

2018 [25]

Vascocelos
et al.,

2017 [26]

1 NO NO NO NO NO NO NO NO NO NO YES

2 YES NO NO NO NO NO NO NO NO NO YES

3 YES YES YES YES YES YES YES YES YES YES YES

4 YES NO YES NO YES YES YES YES NO NO NO

5 NO NO NO NO NO NO NO NO NO NO NO

6 NO NO NO NO NO YES NO NO NO NO NO

7 YES YES YES YES YES YES YES YES YES YES YES

8 YES - YES YES YES - - YES - - YES

9 YES - YES YES NO - - YES - - YES

10 YES YES YES YES YES YES YES YES YES YES YES

11 YES - NO YES NO - - YES - - NO

Total 8 3 6 6 5 5 4 7 3 3 7

Quality G P G G R R R G P P G

Abbreviations = 1: Was the method of randomization adequate?; 2: Was the treatment allocation concealed?;
3: Were the groups similar at baseline?; 4: Was the patient blinded to the intervention?; 5: Was the care provider
blinded to the intervention?; 6: Was the outcome assessor blinded to the intervention?; 7: Were co-interventions
avoided or similar?; 8: Was the compliance acceptable in all groups?; 9: Was the drop-out rate described
and acceptable?; 10: Was the timing of the outcome assessment similar in all groups similar?; 11: Did the
analysis include an intention-to-treat analysis?; -: Not evaluable; 1: YES; 2: NO; Quality score = total YES score;
9–11 excellent (E); 6–8: good (G); 4–5: regular (R); <4: poor (P).

Table 6. Characteristics of the sample and the intervention of selected articles and their quantita-
tive analysis.

Moderators’ Variables k Min. Max. Mean SD

Intervention variables
Duration (weeks) 11 4 6 5.45 0.93
Intensity (hours/week) 0 NA NA NA NA
Magnitude (hours/intervention) 0 NA NA NA NA

Subjects’ variables
Age (years) 10 19.05 32 22.47 3.73

Methodology’s variables
SS of the experimental group, at pretreatment 11 6 24 12 5.6
SS of the experimental group, at post-treatment 11 6 21 11.63 5
SS of the experimental group, at follow-up 0 - - - -
SS of the control group, at pretreatment 11 6 15 9.72 2.57
SS of the control group, at post-treatment 11 6 15 9.45 2.42
SS of the control group, at follow-up 0 - - - -
Mortality at post-treatment evaluation (%) 11 0 13.88 2.05 4.71
Mortality at follow-up evaluation (%) 0 - - - -

Abbreviations = SS: simple size; %: percentage; k: number of articles; Min.: minimum range; Max.: maximum
range; SD: standard deviation; NA: data not available; -: not calculable.
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Table 7. Calculation of effect si’e by Rosenthal’s formula.

Study Outcomes (Units) M (DT) pre M (DT) Post p-Value ES

Archiza et al., 2017 [16]
Respiratory pressures MIP (cmH2O) 137 (15.3) 166.5 (17.1) <0.05 1.51

Pulmonary function FVC (L) 4.4 (1.0) 4.2 (0.9) >0.05 0.27
Sports performance RSAmean (s) 7.9 (0.2) 7.6 (0.2) <0.05 1.19

Edwards et al.,
2008 [17]

Respiratory pressures MIP (cmH2O) 148.1 (13.7) 169.5 (9.1) <0.01 1.56
Pulmonary function FVC (L) 5.5 (0.4) 5.5 (0.6) >0.05 0.00

Sports performance-ET (s) 1000 m 210 (52.2) 205 (53.8) 0.09 0.09

Guy et al., 2014 [18]
Respiratory pressures MIP (cmH2O) 134 (24.0) 152 (21.0) 0.002 0.75

Pulmonary function FVC (L) 5.25 (0.99) 5.19 (0.9) >0.05 0.06
Sports performance MSFT (m) 1491 (410) 1666 (460) 0.02 0.42

Hart et al., 2001 [19]
Respiratory pressures MIP (cmH2O) 127.8(ND) 143.4 (NA) 0.02

-Pulmonary function MVV (L/min) 174 (ND) 186 (NA) 0.65
Sports performance ET (s) 848 (ND) 887 (NA) 0.22

Kilding et al., 2016 [20]

Respiratory pressures MIP (cmH2O) 115 (26.0)
NA

<0.01 0.41
Pulmonary function FVC (L) 5.2 (0.7) 0.60 −0.07
Sports performance TT 200 m

(strokes/min) 43.7 (5.1) 0.02 −0.25

Romer et al., 2001 [21]
Respiratory pressures MIP (cmH2O) 130.3 (3.7) 173.8 (6.0) <0.01 1.29

Pulmonary function FVC (L) 5.63 (0.09) 5.72 (0.09) >0.05 1.00
Sports performance RSP (s) 243.9 (9.2) 227.2 (9.0) <0.01 1.81

Salazar-Martínez et al.,
2017 [22]

Respiratory pressures MIP (cmH2O) 119.6 (37.36) 166.91 (42.65) <0.05 1.26
Pulmonary function FVC (L) 5.44 (1.14) 4.67 (1.38) >0.05 0.67

Sport performance WTTmean (W) 217.25 (49.07) 241.87 (56.01) 0.02 0.50

Tong et al., 2008 [23]
Respiratory pressures MIP (cmH2O) 145.1 (19.6) 191.3 (22.2) <0.05 1.35

Sports performance
(number of repetitions) 37.6 (5.9) 43.7 (6.6) <0.05 1.03

Tong et al., 2010 [24]
Respiratory pressures MIP (cmH2O) 163 (29.8) 195.9 (23.5) <0.01 1.10

Sports performance
(number of repetitions) 40.3 (5.0) 52.7 (6.4) <0.05 0.89

Tranchita et al.,
2018 [25]

Respiratory pressures MIP (cmH2O) 97.75 (23.85) 127.25 (22.12) <0.001 0.95
Pulmonary function PIF (L/min) 66.67(23.60) 87.58 (29.88) 0.005 0.77

Pulmonary function MVV (L/min) 125.50(20.37) 133.83 (25.0) 0.013 0.42
Sports performance Max Power (W) 158 (34.48) 161 (34.50) >0.05 0.08

Vasconcelos et al.,
2017 [26]

Pulmonary function FVC (L) 4.03 (0.45) 4.34 (0.51) <0.05 0.68

Pulmonary function PEF (L/s) 6.73 (1.51) 7.17 (1.58) <0.05 0.52

Abbreviations = M (SD) pre: mean (standard deviation) at pretreatment; M (SD) post: mean (standard deviation) at
post-treatment evaluation; ES: effect size; MIP: Maximum Inspiratory Pressure; FVC: Forced Vital Capacity; MVV:
maximal voluntary ventilation; RSAmean: mean performance time; ET: exercise time; MSFT: multistage fitness
test; TT: time trail; WTTmean: average watts; PIF: peak inspiratory flow; PEF: peak expiratory flow; NA: data not
available. -: not calculable.

For MIP, seven studies showed improvements with a large effect size [16,17,21–25],
with an effect size between 1.56 d and 0.95 d. Regarding lung function (FVC), only the study
conducted by Romer et al. [21] showed a high effect size (d = 1.29). Vascocelos et al. [26],
Salazar-Martínez et al. [22] and Tranchita et al. [25], who obtained significant improvements
in FVC, reported results of moderate magnitude (d > 0.5).
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3.8. Evaluation of the Results of the Studies Included in the Synthesis and Meta-Analysis (n = 9
Included Studies)
3.8.1. Maximal Inspiratory Pressure (n = 8 Included Studies)

Figure 2 shows the effect of using the PwB on MIP, a statistically significant increase
effect is produced (p < 0.05): ROM 1.24; 95% CI, 1.17 to 1.32; Z = 6.94; p = 4 × 10−12 for the
studies [16–18,21–25] analyzed in the meta-analysis. The publication bias analysis (Figure 3)
for the MIP presented a relatively symmetric funnel plot, without any imputed studies,
which could indicate that there is no publication bias, although this asymmetry was not
statistically significant ’value of Egger’s p = 0.238). Through the “Trim and fill” method,
there was no imputation of studies at levels higher than ES and under standard error.

3.8.2. Forced Vital Capacity (n = 6 Included Studies)

Figure 4 shows the effect of using the PwB on FVC, a statistically non-significant
increase effect is produced (p > 0.05): ROM 1.02; 95% CI, 1.00 to 1.03; Z = 2.47; p = 0.013 for
the studies [16–18,21,22,26] analyzed in the meta-analysis. The publication bias analysis
(Figure 5) for the MIP presented a relatively symmetric funnel plot, without 2 imputed
studies, which could indicate that there is publication bias, and this asymmetry was not
statistically significant ’value of Egger’s p = 0.369). Through the “Trim and fill” method,
there was imputation of 2 studies at levels higher than ES and under standard error, which
could indicate a possible lack of studies at this level.
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4. Discussion

The aim of this systematic review was to critically evaluate the effects of IMT with
PWB on respiratory pressures, mechanics of the respiratory system, biomarkers, and sports
performance in physically active, healthy adults. Eleven studies met the pre-specified
inclusion/exclusion criteria. Overall, subjects who performed IMT with PwB showed sig-
nificant improvements in MIP and substantial improvements in FVC in the meta-analysis
results. In addition, this systematic review found significant improvements in sports per-
formance [16,18,20,21,23,24,26] and other spirometry biomarkers such as peak inspiratory
flow [25] and peak expiratory flow [26]. The energetic commitment of the respiratory
muscles (RMs) with respect to the skeletal muscles that develop active physical activity and
the fatigue of the RMs are the two main factors that restrict the respiratory function, causing
a decrease in respiratory performance [27]. RMs demand a high percentage of cardiac
output (15–20%) in situations of vigorous physical activity, which requires a reduction in
the availability of oxygen (O2) for the skeletal muscle involved in the exercise and therefore
produces a notable decrease in performance in these athletes [28,29]. Thus, the high O2
needs of RMs during intense exercise conditions generate a competitive demand with
respect to active skeletal muscles, which see a significant decrease in the supply of oxygen
to their cells, and this causes a decrease in sports performance [30].

During intense and/or prolonged exercise, the appearance of RMs fatigue is possible,
following the depletion of its energy substrates [31] and the response of the sympathetic
nervous system that activates the respiratory metabolic reflex [3]. The respiratory metabolic
reflex involves vasoconstriction that triggers a decrease in blood flow and an increase
in the severity of skeletal muscle fatigue, induced by flow and redistributed to preserve
respiratory function without compromising RM energy demand [32]. Furthermore, sig-
nificant decreases in MIP and maximum expiratory pressure (PEM) have been described
after long-term and/or intense aerobic physical exercise [33]. However, training the respi-
ratory musculature, particularly IMT, which completes the athlete’s training, attenuates
the competition for blood flow, improves tolerance to respiratory fatigue, and increases the
efficiency of RMs, all of which have a positive influence on athletic performance [3,34,35].
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Our findings indicating benefits in MIP, FVC, and sport performance could be a
consequence of adaptations induced by proper IMT program implementation. Especially
important could be the improvements in the MIP determined in the meta-analysis, which
are also consistent with those reported in other studies [7,36–39] and in a recent meta-
analysis of IMT that found that administering a resistive load of 15% of the MIP achieved
significant improvements although they did not reach the pre-established threshold of
statistical significance [3]. The substantial improvements in FVC reported in our meta-
analysis in athletes are relatively surprising because, in athletes prior to IMT, lung function
is close to supraphysiological limits, that is, the values of the main pulmonary ventilation
parameters are ≥100% of physiological level [40]. IMT usually induces improvements
in FVC in adults with limited lung function [41,42], due to the state of weakness of their
respiratory muscles and decreased lung volumes [43,44]. In this sense, IMT in patients
with heart failure reduces the magnitude of the respiratory metabolic reflex, which could
prevent functional deterioration and MR atrophy and therefore significantly improve lung
function [45].

These adaptations to IMT try to modulate homeostatic processes [46] that lead to
changes in the oxidative energy metabolism of RMs, gaining in efficiency and causing a
lower oxygen demand with respect to skeletal muscles [28,29], tissue remodeling of RMs
(hypertrophy of the diaphragm, increase of type II fibers) that increases their strength
and functionality [34], and the delay of the respiratory metabolic reflex [3]. Also, PIM´s
improvements could also indicate optimization of the neuro-motor control of the respi-
ratory musculature, maintaining the generation of pressure with a lower motor impulse
and greater economy of the respiratory musculature [23]. The achievement of these bi-
ological adaptations, which involve totally different mechanisms, would be responsible
for improvements in sports performance [47,48]. Significant improvements in IG from
baseline and compared to CG athletes [17] have been found in the studies included in the
systematic review of different sports modalities as soccer [16,18,21,23,24], swimming [20],
rugby [21,23,24], basketball [21], and field hockey [21].

In addition to serving as adjuvant therapy in pathological states [41,42,45,49], IMT
could be used in populations that perform jobs with high physical demands, such as the
military, emergency services, or high mountain rescuers, who usually carry backpacks and
heavy loads [50]. In addition, these populations usually use masks or respiratory devices,
thus increasing respiratory work, which would induce early muscle fatigue and a reduction
in work tolerance [51].

Evidence presented in this systematic review and meta-analysis suggests that IMT by
PwB device is safe and provides significant improvements in MIP and substantial improve-
ments in FVC and sports performance. The mechanisms of improvement of respiratory
biomarkers by IMT could have a multifactorial etiology, mainly the attenuation of the
respiratory metabolic reflex and the modulation of respiratory muscle fatigue. However,
these results on IMT with PwB in physically active, healthy adults without chronic diseases
need to be confirmed.
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