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A B S T R A C T   

Project control is a crucial phase within project management aimed at ensuring —in an integrated manner— that 
the project objectives are met according to plan. Earned Value Management —along with its various 
refinements— is the most popular and widespread method for top-down project control. For project control 
under uncertainty, Monte Carlo simulation and statistical/machine learning models extend the earned value 
framework by allowing the analysis of deviations, expected times and costs during project progress. Recent 
advances in explainable machine learning, in particular attribution methods based on Shapley values, can be 
used to link project control to activity properties, facilitating the interpretation of interrelations between activity 
characteristics and control objectives. This work proposes a new methodology that adds an explainability layer 
based on SHAP —Shapley Additive exPlanations— to different machine learning models fitted to Monte Carlo 
simulations of the project network during tracking control points. Specifically, our method allows for both 
prospective and retrospective analyses, which have different utilities: forward analysis helps to identify key 
relationships between the different tasks and the desired outcomes, thus being useful to make execution/ 
replanning decisions; and backward analysis serves to identify the causes of project status during project 
progress. Furthermore, this method is general, model-agnostic and provides quantifiable and easily interpretable 
information, hence constituting a valuable tool for project control in uncertain environments.   

1. Introduction 

Project control consists of monitoring project progress and perfor-
mance, controlling the expected output(s), and taking the necessary 
corrective actions when deviations from the original plan occur. This 
role is the cornerstone of any project manager and is key to project 
success (Pellerin & Perrier, 2019). 

Project control management methods typically aim to quantify 
project progress and predict the final outcome if no corrective actions 
are taken. This prediction should be made as soon as possible so that the 
range of corrective measures available is as wide as possible. Integrated 
project management and control systems generally consist of three el-
ements: a baseline schedule, periodic progress data, and a set of analysis 
techniques capable of identifying potential problems —and perhaps 
opportunities— in the project (Vanhoucke, 2019). Based on this infor-
mation, if the control system indicates any possible difficulty to meet the 

project objectives, the project manager, depending on the context and 
available options, should try to put the project back on the right track. 

The best-known and most popular project control method is probably 
the Earned Value Management (EVM) (Anbari, 2003; Fleming & Kop-
pelman, 2010; Vanhoucke, 2010). This method, together with its 
extension, the Earned Schedule (Lipke, 2003, 2004), allows for inte-
grated cost and schedule management during project progress. Impor-
tantly, its popularity has promoted different refinements and 
adaptations that enrich the methodology (Song et al., 2022; Vanhoucke, 
2019; Willems & Vanhoucke, 2015). 

Although in the standard version of the EVM, the duration and costs 
of activities are considered deterministic, one of the key aspects of 
project management is precisely the management of uncertainty. 
Notably, there is still no complete consensus in the literature on the 
definition of project uncertainty or project risk. Within the scope of this 
contribution, under project uncertainty, we will consider stochastic 
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variability of task durations, named aleatoric uncertainty in previous 
works (Acebes et al., 2021; Elms, 2004; Frank, 1999; Shafer, 1976). In 
this sense, our conceptualisation of risk would align with Hillson’s 
(2009) “uncertainty that matters”, i.e., that affects project objectives. 

Project duration/cost uncertainty arises from the intrinsic variability 
of task durations and the complex and non-linear interactions between 
tasks. To assess these complexities, the triad method (Acebes et al., 
2014b, 2015) extends the EVM to stochastic contexts using two tools: (i) 
Monte Carlo simulation, which provides a practical resource to generate 
a universe of virtual possible project realisations that faithfully represent 
project variability; and (ii) machine learning models that take as input 
the data obtained from Monte Carlo simulations (specifically the time, 
cost and EV of each realisation) to estimate the expected project 
outcome conditional on its progress at the time of control. 

In this paper, we present a novel method for project control with a 
threefold objective: (i) to estimate the project consequences when no 
corrective actions are taken; (ii) to pinpoint the most relevant tasks on 
which to take corrective actions conditional on the current project sit-
uation; and (iii) to attribute and understand the causes of the current 
project status. As in the triad method, our proposal uses Monte Carlo 
simulation and machine learning models, but, in our case, to map task 
features to the expected outcome. Notably, in machine learning, if we 
use sufficiently flexible algorithms —which act as universal approx-
imators— the fitted model can be approximated as closely as desired to 
the expected stochastic plan by simply increasing the number of simu-
lations. Notwithstanding, one of the main problems of machine learning 
models —especially in non-linear contexts such as project networks— is 
that they are subject to a trade-off between interpretability and accu-
racy. Typically, the type of models that adequately capture project re-
lationships between tasks and outcome are black-box models, which are 
highly accurate but hardly interpretable. In the context of this paper, we 
consider interpretability as the degree to which a human can understand 
the cause of a decision (Miller, 2019). From a management perspective, 
interpretability is a crucial element. Understanding the relationship 
between performance elements and outputs is fundamental for correct 
decision-making. 

In recent years, advances in explainable artificial intelligence (XAI) 
(Samek et al., 2019) —also known as informed machine learning (von 
Rueden et al., 2021), interpretable machine learning (Molnar, 2022; 
Molnar et al., 2020) or intelligible intelligence (Weld & Bansal, 2019), 
among other terms— have set as one of their main goals to provide in-
sights and understanding of how models make their decisions for a 
human target audience (Murdoch et al., 2019; Roscher et al., 2020). 

In this paper, we specifically use some of the most fundamental ad-
vances in interpretable machine learning to illustrate how they can assist 
project managers in making informed decisions on project progress and 
control. In particular, our approach revolves around the Shapley value 
decomposition of a model. This choice is motivated by several factors. 
First, it is a model-agnostic method —i.e., it can be applied to any type of 
machine learning model— conceived to identify the decision mecha-
nisms that underlie the model. This feature ensures both the generality 
of the approach and an easy future adaptation to new developments in 
the fertile field of automatic regression and classification. Second, it is 
theoretically well-founded, as it is rooted in the concept of Shapley 
values from cooperative game theory (Shapley, 1953), which is char-
acterised by its fairness and several desirable properties (efficiency, 
symmetry, null player, additivity). Third, within the framework of 
project management and, more specifically, in Program Evaluation Re-
view Technique (PERT) networks, Shapley’s rule has been shown to 
exhibit consistency with respect to the cost distribution of potential 
delays (Bergantiños et al., 2018). Interestingly, the adaptation of the 
Shapley framework to machine learning models —SHAP (SHapley Ad-
ditive exPlanations)— allows a fair calculation of the marginal contri-
bution of each feature value to each prediction, both in aggregate and 
case-level analyses (Fryer et al., 2021; Lundberg & Lee, 2017). On the 
one hand, case-level analyses explain each individual prediction by 

computing the individual contribution of each feature value to the 
prediction. On the other hand, aggregate analyses give insights into the 
global influence of each variable on the model as a whole. A disadvan-
tage and barrier to the adoption of the SHAP method was that it is 
computationally expensive. Nevertheless, it has recently included new 
developments for tree-based and deep-learning models that significantly 
reduce computation times (Lundberg & Lee, 2017; Molnar, 2022). 

The methodology proposed in this article allows project managers to 
understand the causes and consequences of deviations during project 
execution and provides a tool to help make corrective re-scheduling 
decisions. To illustrate the method, the article is organised as follows: 
The next section provides a literature review of recent developments 
related to top-down project control and XAI applications in project 
management. It concludes by framing the contribution of this work and 
its relation to previous research. The following background section ex-
plains the rationale and the context in which the methodology is rooted; 
to that end, a succinct introduction to the EVM, the triad method and 
Shapley values is presented. Then, the problem formulation in the 
context of project control is provided, explaining the type of analysis at 
which the method is aimed. Subsequently, a simple case study is pre-
sented to illustrate the application of the method and its advantages; 
notably, the selected case study allows exploring different scenarios and, 
hence, contrasting different interpretations. Finally, in the discussion 
section, we reflect on both the methodological and managerial impli-
cations of our approach, and, to conclude, the main conclusions of the 
work are outlined. 

2. Literature review 

2.1. Related literature 

This section provides an overview of the scientific literature related 
to the latest developments and extensions of the Earned Value Method 
(EVM), a project monitoring technique widely used in both academia 
and industry (Aramali et al., 2021, 2022; Fleming & Koppelman, 2010; 
Nizam & Elshannaway, 2019). Additionally, this review covers recent 
applications of explainable machine learning in project management. 
Finally, we present and position our contribution to the scientific field 
within the framework of this literature review. 

EVM involves several tasks, such as periodically measuring project 
progress, comparing the project status with the project plan, taking 
corrective actions if deviations exceed certain acceptable tolerance 
limits, and forecasting project time and cost based on current project 
performance information. Due to its usefulness and interest, the meth-
odology has undergone significant developments, refinements and ex-
tensions that have adapted its use to different circumstances and 
improved its performance from various perspectives (Pellerin & Perrier, 
2019; Willems & Vanhoucke, 2015). 

To facilitate the review and comparison of the articles in the scien-
tific literature, we have defined the eight characteristics shown in 
Table 1. The first characteristic identifies whether the work is a refine-
ment, study, or analysis directly related to the EVM methodology. In this 
regard, note that we have also included some relevant articles on the 
earned duration management (EDM) methodology (Khamooshi & 
Golafshani, 2014), a time-based approach to project control based on the 
concept of earned duration rather than earned schedule (Lipke, 2003). 
Notwithstanding, in these cases, we have explicitly specified when an 
article is related to EDM rather than EVM. The second relevant aspect of 
the analysis is the functionalities offered by the contribution according 
to three categories: (i) whether the methodology includes tools that 
make project time/cost forecasting more sophisticated beyond the 
simple projection techniques of the original method; (ii) whether the 
authors present methodologies capable of establishing appropriate 
thresholds or control limits that act as warning signals to the project 
manager to put corrective measures in place and get the project back on 
track; and (iii) whether the method establishes the relationship, 
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Table 1 
Literature review.  

Authors Control XAI Monte 
Carlo 

Uncertainty Key approach/methodology Forecasting Task attribution/sensitivity 
activity index 

Tolerance limits/ 
action 

(Noori et al., 2008) EVM   x Fuzzy theory   x 
(Pewdum et al., 2009)     ML (Artificial neural networks) x   
(Bagherpour et al., 2010) EVM   x Fuzzy theory    
(Naeni et al., 2011) EVM   x Fuzzy theory x   
(Moslemi Naeni & 

Salehipour, 2011) 
EVM   x Fuzzy theory x   

(Ponz-Tienda et al., 2012) EVM   x Fuzzy theory x   
(Acebes et al., 2013) EVM  x x Risk buffer management   x 
(Mortaji et al., 2013) EVM   x Fuzzy theory (LR numbers) x   
(Aliverdi et al., 2013) EVM   x Statistical quality control charts   x 
(Colin & Vanhoucke, 2014) EVM  x x Quantile tolerance limits   x 
(Acebes et al., 2014b) EVM  x x Quantile tolerance limits   x 
(Czemplik, 2014) EVM    Schedule forecast indicator x   
(Wauters & Vanhoucke, 

2014) 
EVM  x x ML (Support vector regression) x   

(Moslemi Naeni et al., 
2014) 

EVM   x Fuzzy theory x   

(Salari et al., 2014) EVM   x Z-numbers x   
(Colin et al., 2015) EVM  x x Multivariate/PCA   x 
(Colin & Vanhoucke, 2015) EVM  x x Critical chain/buffer 

management   
x 

(Acebes et al., 2015) EVM  x x ML (model selection) x  x 
(Willems & Vanhoucke, 

2015) 
EVM   x Comparative analysis/review    

(Batselier & Vanhoucke, 
2015b) 

EVM  x  Comparative analysis/review x   

(Batselier & Vanhoucke, 
2015a) 

EVM    Comparative analysis/review x   

(Hu et al., 2016) EVM   x Critical chain/buffer 
management  

x x 

(Wauters & Vanhoucke, 
2016) 

EVM  x x ML (model selection) x  x 

(Vanhoucke & Colin, 2016) EVM   x Multivariate regression   x 
(Wauters & Vanhoucke, 

2017) 
EVM  x x ML (Nearest Neighbour) x   

(Moradi et al., 2017) EVM   x Risk factors with interval-valued 
fuzzy set 

x   

(Martens & Vanhoucke, 
2017b) 

EVM  x x Critical chain/buffer 
management   

x 

(Martens & Vanhoucke, 
2017a) 

EVM  x x Scarce resources   x 

(Batselier & Vanhoucke, 
2017) 

EVM    Exponential smoothing x   

(Khamooshi & Abdi, 2017) EDM    Exponential smoothing x   
(Wajdi Hammad et al., 

2018) 
EVM   x Critical chain/buffer 

management   
x 

(Nadafi et al., 2019) EVM   x Grey Theory x   
(Abdel Azeem et al., 2014) EVM   x Kalman Filter x   
(Zohoori et al., 2019) EVM   x Gain Scheduling Fuzzy Control x   
(Hadian & Rahimifard, 

2019) 
EVM   x Multivariate T2 charts   x 

(Cheng et al., 2019)     ML (Artificial neural networks) x   
(Ballesteros-Pérez et al., 

2019) 
EVM    Comparative analysis/review x x x 

(Vanhoucke, 2019) EVM    Comparative analysis/review   x 
(Eshghi et al., 2019) EVM   x Fuzzy theory (IT2FSs) x   
(Hendiani et al., 2020) EVM   x Z-numbers x   
(Votto et al., 2020) EVM  x x Multivariate T2 charts   x 
(Z. Chen et al., 2020) EVM  x x Bayesian analysis   x 
(Martens & Vanhoucke, 

2020) 
EVM    Exponential smoothing x   

(Sackey et al., 2020) EVM    Regression analysis and 
smoothing (DEAC model) 

x   

(Radhakrishnan & Jaurez, 
2021)  

x x x ML (model selection) x   

(Mahmoudi, Bagherpour, 
et al., 2021) 

EVM   x Grey Theory x   

(Mahmoudi, Javed, et al., 
2021) 

EDM   x Grey Theory x  x 

(Mortaji et al., 2021) EVM   x Fuzzy theory (DEVM) x  x 
(Acebes et al., 2022) EDM  x x ML (model selection) x  x 
(Kuchta & Zabor, 2022) EVM   x Z-numbers x   

(continued on next page) 
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dependence, or influence between project tasks and performance pro-
jections, integrated into the control system. 

The original EVM assumes deterministic task durations and costs 
during the planning phase, which is often unrealistic in real-world 
projects. Therefore, many studies aim to improve the method by 
including uncertainty and stochasticity in project planning. In our re-
view, we evaluate whether the methodology addresses the uncertainty 
problem and whether it uses Monte Carlo simulation, which is a com-
mon approach to modelling uncertainty. It is worth noting that Monte 
Carlo experiments can be used not only to analyse uncertainty but also 
as a tool to simulate the performance of deterministic methods. Addi-
tionally, we considered the methodology on which the extension or 
refinement is based and whether it includes an explainability layer (XAI) 
since the inclusion of XAI is one of the novel elements of our 
contribution. 

The written detail of our literature review is provided below. For a 
general overview, please refer to Table 1. 

In terms of deterministic forecasting, pioneering work on the use of 
machine learning methods to predict the final budget and duration of a 
project was carried out by Pewdum et al. (2009). They used an artificial 
neural network fed with data from other similar projects and compared 
it with the results of EVM projections. More recently, Cheng et al. (2019) 
used a neural network-long short-term memory to estimate the schedule 
to completion, achieving better results than the basic EVM and EDM 
methods. Batselier and Vanhoucke (2015a) used native EVM data to 
make predictions in deterministic contexts, comparing the accuracy of 
three different projection techniques and proposing a mutually com-
bined approach. The predictive capability of several of these method-
ologies was empirically tested by Batselier and Vanhoucke (2015b) 
using a real-life project database supported by Monte Carlo simulation. 
Their study shows promising results of EVM not only for cost but also for 
time forecasting, especially in serialised projects. Forecasting indexes, 
such as the schedule forecast indicator (Czemplik, 2014), have also been 
proposed as complementary methods to evaluate the progress of critical 
activities during project execution. 

In a later study, Batselier and Vanhoucke (2017) integrated the EVM 
methodology with the exponential smoothing forecasting approach, 
resulting in significantly more accurate predictions than the methodol-
ogies they compared with. Khamooshi and Abdi (2017) also included the 
exponential smoothing forecasting technique in EDM, also achieving 
improvements in predictive capacity. Subsequently, Martens and Van-
houcke (2020) refined the methodology by including corrective actions 
in the forecasting process. In the same year, Sackey et al. (2020) pre-
sented the DEAC (Duration Estimate At Completion)-model, which is 
based on progress in time units rather than cost; in particular, they 
proposed a method for estimating project completion time using time 
series and exponential smoothing. Recently, several studies have con-
ducted comprehensive analyses and comparative reviews of different 
deterministic methods of project duration forecasting in EVM (Balles-
teros-Pérez et al., 2019; Barrientos-Orellana et al., 2021). Notably, the 
work proposed by Ballesteros-Pérez et al. (2019) includes activity-level 
metrics in deterministic contexts that are useful for predictions and have 
the potential for activity prioritisation and resource allocation. 

To explicitly address uncertainty in forecasting processes, there are 
two main branches in the literature. One is based on the incorporation of 
multi-valued logic in the EVM framework, while the other uses 

probability theory, typically through Monte Carlo simulation and sta-
tistical and machine learning techniques. Some of the early advances in 
the first branch were made by incorporating time-related uncertainty 
through fuzzy logic and fuzzy control charts, but, curiously, using EVM 
in the context of production control instead of in project management 
(Bagherpour et al., 2010). Subsequently, Moslemi Naeni et al. (Moslemi 
Naeni et al., 2014; Moslemi Naeni & Salehipour, 2011; Naeni et al., 
2011) pioneered a complete fuzzy approach to EVM, allowing fuzzy 
indices and estimates to be obtained. Ponz-Tienda et al. (2012) incor-
porated all feasible schedules and the accuracy of estimated values into 
previous contributions, while Mortaji et al. (2013) formalised EVM in a 
vagueness environment using L-R fuzzy numbers. Moradi et al. (2017) 
proposed a new evaluation model that combines EVM with risk analysis 
to improve the forecasting of future project performance using linguistic 
variables represented by interval-valued triangular fuzzy numbers. 
Meanwhile, Zohoori et al. (2019) integrated EVM with gain scheduling 
fuzzy control to design an adaptive monitoring system to support real- 
time and production time control. Eshghi et al. (2019) proposed a new 
forecasting approach (IT2F-EVM) for project cost and schedule estima-
tion in megaprojects based on the integration of interval type 2 fuzzy 
sets (IT2FSs) with EVM, considering several factors affecting project 
success, including quality, stakeholder satisfaction, safety, and risk. To 
reduce computational complexity and increase the ability to express 
project-specific dynamics, Mortaji et al. (2021) introduced Directed 
Earned Value Management (DEVM), which uses ordered fuzzy numbers 
to address uncertainties and captures consistent and interpretable in-
formation on the trend of project progress. 

In recent years, several studies (Mahmoudi, Bagherpour, et al., 2021; 
Nadafi et al., 2019) have proposed integrating EVM with the grey system 
theory, resulting in the development of Grey Earned Value Management 
(EVM-G). Furthermore, this approach has also been adapted for inte-
gration with EDM (Mahmoudi, Javed, et al., 2021). According to the 
case studies analysed by the original authors, EVM-G has advantages 
over fuzzy-EVM in terms of information needs and performance. 

In 2014, Salari et al. (2014) proposed integrating Z-numbers with 
EVM as a way to express uncertainty and incorporate reliability in fuzzy 
reasoning. This idea has recently been implemented to establish the Z- 
Earned Value Management (ZEVM) framework, which uses Z-numbers 
to improve the accuracy of cost-duration tracking in project manage-
ment (Hendiani et al., 2020). In addition, Kuchta and Zabor (2022) have 
proposed the ZG-EVM model, which also integrates Z-numbers into 
EVM. However, their version is only used to model the cost that will still 
be incurred. 

The other branch that deals with project uncertainty is focused on 
probability theory and involves explicitly modelling the probability 
distributions of task durations and costs within a project. Although 
probabilistic methodologies such as the Kalman filter have been pro-
posed (Abdel Azeem et al., 2014; Kim et al., 2010), the most common 
approach involves the use of Monte Carlo simulations to sample possible 
realisations of the project within the range of its stochastic definition. 
The resulting data can be analysed in various ways to extract relevant 
project information, with machine learning models being the most 
commonly used tools due to their ability to capture complex interactions 
and nonlinear behaviours. In the context of EVM, Wauters and Van-
houcke (2014) proposed one of the earliest contributions in this line. 
They used Support Vector Regression models trained on intermediate 

Table 1 (continued ) 

Authors Control XAI Monte 
Carlo 

Uncertainty Key approach/methodology Forecasting Task attribution/sensitivity 
activity index 

Tolerance limits/ 
action 

(Song et al., 2022) EVM  x x Resource-constrained project 
control   

x 

(Barrientos-Orellana et al., 
2021) 

EVM    Comparative analysis/review x   

(Wang et al., 2022)  x   ML (Deep neural networks) x   
(Ghorbany et al., 2022)  x   ML (CBN/XGBoost)     
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earned value metrics obtained through Monte Carlo simulation to 
forecast project progress. In a subsequent study, the authors extended 
their analysis by incorporating pre-processing through Principal 
Component Analysis (PCA) and comparing the performance of five well- 
known machine learning techniques, which again yielded promising 
forecasting results (Wauters & Vanhoucke, 2016). 

In 2015, Acebes et al. (2015) introduced the triad method, which 
integrates Monte Carlo simulation with the EVM. The resulting simu-
lation data were used to build classification and regression models (su-
pervised learning methods) to predict the achievement of time and cost 
targets. The study also included unsupervised anomaly detection 
methods to establish tolerance limits. To implement this approach, the 
authors proposed training various machine-learning models and using 
nested cross-validation for model selection. Remarkably, the triad 
method has been recently adapted for integration into the EDM frame-
work (Acebes et al., 2022). 

Wauters and Vanhoucke (2017) further explored the application of 
the Nearest Neighbour algorithm in EVM for two purposes: first, to 
evaluate its predictive capability, and second, to investigate its potential 
as a tool for hybridising with other machine learning techniques by 
reducing the number of training instances. Additionally, although not 
directly related to project control, Radhakrishnan and Jaurez (2021) 
proposed using Monte Carlo simulations for machine learning model 
selection and evaluating feature importance through impurity metrics or 
permutation tests in the context of estimating completion times in 
project management. 

As noted at the beginning of this literature review, EVM and its 
various extensions are concerned with making predictions of time and 
cost to completion, but also with setting tolerance limits or warning 
signals that can alert project managers to potential problems and prompt 
corrective actions. The most basic methods for establishing these limits 
are the so-called rules-of-thumb, which rely on static and somewhat 
arbitrary values that, when exceeded, indicate potential problems in 
project execution. However, in the probabilistic framework of project 
definition, significant advances have been made in establishing statis-
tical tolerance limits that indicate whether a project is progressing 
within the planned parameters. 

Within this statistical approach, two types of statistical process 
control methods have emerged (Colin & Vanhoucke, 2014; Vanhoucke, 
2019). The first, statistical process control for projects (SPC-PC), in-
volves the establishment of limits as the project progresses. In the second 
approach, statistical project control using statistical tolerance limits 
(SPC-STL), Monte Carlo simulation is used to establish a priori accept-
able variation parameters, i.e., confidence intervals, before any progress 
has been made on the project. These established limits are then moni-
tored during the execution phase to ensure that progress occurs within 
the previously set limits. 

From the SPC-PC perspective, one of the most recent contributions is 
that of Aliverdi et al. (2013). They propose individual quality control 
charts as a monitoring tool for EVM indices. However, in recent years, 
SPC-STL has received more attention. Acebes et al. (2013) presented a 
graphical method that integrates Monte Carlo simulation of expected 
project variability and the risk baseline evolution indices proposed by 
Pajares and López-Paredes (2011). Subsequently, Acebes et al. (2014b) 
proposed a method that establishes time and cost limits separately based 
on percentiles obtained through simulation, adjusted to the project 
control point. Similarly, Colin and Vanhoucke (2014) proposed statis-
tical tolerance limits and their analysis through X and R charts. How-
ever, individual cost and time analyses can generate wrong alarm 
signals, including false positives and negatives. Colin et al. (2015) pro-
posed two multivariate project schedule control metrics (Hotelling’s T2 

and squared prediction error) combined with PCA to address this issue. 
For the same problem, Acebes et al. (2015) proposed using anomaly 
detection techniques on simulation data. 

Inspired by the critical chain/buffer management method, Colin and 
Vanhoucke (2015) proposed two methods integrating EVM with 

multiple control points (EVM-FPB and EVM-SNB). Vanhoucke and Colin 
(2016) further extended the multivariate approach by using matrix 
decomposition, kernel variant, and partial least-squares regression. 
Hadian and Rahimifard (2019) also focused on the possible correlations 
between EVM control indicators to establish the control system by 
multivariate Hotelling’s T2 control chart. Their study proposed several 
multivariate process indices to describe the capability of project per-
formance. Votto et al. (2020) proposed a similar approach to generalise 
the methodology not only to EVM indicators but also to those provided 
by EDM. Chen et al. (2020) proposed an algorithm from a Bayesian 
perspective to optimise tolerance limits from conditional distributions of 
inputs. 

In addition to static and statistical project control methods, there is a 
third approach to establishing tolerance limits for EVM extensions, 
which involves analytical tolerance limits (Vanhoucke, 2019). This 
method aims to set appropriate control thresholds, rather than relying 
on arbitrary values, based solely on the project baseline schedule and 
basic EVM performance indexes to maintain computational simplicity. 
Within this framework, Hu et al. (2016) proposed buffer management as 
a useful control tool to monitor schedule deviations during project 
execution. Notably, they used an integrated schedule monitoring system 
that includes an activity cruciality index and a strategic expediting 
procedure to support more accurate decision-making. Martens and 
Vanhoucke (2017b) subsequently proposed a control method that as-
signs a predefined buffer to different project phases based on EVM 
metrics. The allowable consumption of the buffer in each phase is used 
as a threshold to indicate possible overruns in the project duration. 
Building on their work, Martens and Vanhoucke (2017a) incorporated 
resource information in defining tolerance limits by using the avail-
ability and needs of scarce resources to create tighter limits on project 
phases that are more likely to experience resource conflicts and delays. 
Wajdi Hammad et al. (2018) proposed a straightforward method for 
schedule contingency management using the theory of constraints and 
EVM, which includes two new metrics: the buffer performance index 
and buffer variance. These metrics measure the expected and actual 
remaining buffer and set limits that generate warning signals and 
initiate corrective activities. Finally, Song et al. (2022) propose an 
extension of resource-constrained project control approaches that allow 
for the analysis of project progress and the establishment of tolerance 
limits based on resource constraints. 

Although, to our knowledge, there is still no work that includes 
explainable machine learning in the framework of integrated project 
control, recently, applications of XAI in project management (from a 
more general perspective) have emerged. For example, in addition to the 
work of Radhakrishnan and Jaurez (2021) discussed earlier, Wang et al. 
(2022) analysed the economic factors that influence the estimation of 
project construction cost using deep neural networks. They then used an 
explainability layer to interpret their impact. Similarly, Ghorbany et al. 
(2022) used literature reviews, expert judgment, and questionnaires to 
extract key performance indicators (KPI) for public–private partnership 
projects. They then used copula Bayesian networks and explainable 
machine learning methods to optimise the network and determine the 
causal structure of KPIs. 

2.2. Research objective and contribution 

Our work extends the EVM to account for uncertainty under the 
hypothesis of explicitly modelling the probability distributions of task 
durations and costs. While previous research has explored the use of 
surrogate machine learning models to predict project outcomes from 
Monte Carlo data, our proposal offers several novel aspects that advance 
and complement these methodologies. Specifically, we incorporate an 
explainability layer into the fitted models, which provides information 
that no other approach addresses under the EVM framework. 

Our approach provides prediction-level local explanations at control 
tracking points. These explanations attribute project outcomes to the 
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specific activities comprising the project, which is highly insightful in-
formation for understanding the project’s current situation and its future 
expectations. Additionally, our method employs model-level global ex-
planations to obtain task-level sensitivity metrics, which are integrated 
into the control method itself. These metrics offer information on the 
size and direction of the task marginal contributions and the interaction 
between different tasks. These explanations have desirable axiomatic 
properties in all cases, including null sets, additivity, symmetry, and 
efficiency. Notably, our proposal represents one of the first attempts to 
integrate XAI into a top-down integrated project control management 
method. 

3. Background. 

3.1. EVM and triad method 

Earned value management (EVM) is one of the most widespread 
methods in project management for controlling and evaluating project 
progress. In essence, the EVM method is based on three variables: i) the 
budgeted cost for work scheduled (BCWS) or planned value (PV); ii) the 
actual cost for work performed (ACWP) or actual cost (AC); and iii) the 
budgeted cost for work performed (BCWP) or earned value (EV), which 
gives its name to the method. The planned value curve is assumed to be 
known from the beginning of the project and its endpoint determines: 
(1) the expected project completion time on the x-axis; and (2) the 
Budget at Completion (BAC) —i.e., the planned cost of the project— on 
the y-axis. The Actual Cost and Earned Value curves are obtained 
throughout the project execution and are assumed to be known until the 
time of control. 

From these three primary measures —PV[BCWS], AC[ACWP] and EV 
[BCWP]— and given an Actual Time (AT) —the time at which project 
control is performed, defined as the time elapsed since the beginning of 
the project— it is possible to obtain the indicators that quantify the 
project progress in terms of time and cost. In the traditional EVM method, 
the Cost Variance (CV = EV[BCWP] − AC[ACWP]) estimates whether the 
project is under budget (positive CV) or over budget (negative CV), and 
the Schedule Variance (SV = EV[BCWP] − PV[BCWS]), similarly, in-
dicates whether the project is ahead (positive SV) or behind schedule 
(negative SV). 

In the example of Fig. 1, the EV at the actual time is lower than the PV 
and AC, representing a project that would be delayed and cost overrun. 
Variance values are measured in cost and are absolute differences. To 
obtain relative measures, Performance Indexes are defined: Cost Per-
formance Index (CPI = EV/AC) and Schedule Performance Index 
(SPI = EV/PV). In this case, to assess the state of the project, instead of 
considering the sign, we analyse whether the index is greater than 1, in 
which case the project is performing satisfactorily, or less than 1, a sit-
uation that would indicate a potential problem in cost and/or schedule, 
depending on the index in which it occurs. 

Notwithstanding the above, the EVM method presents some in-
consistencies and interpretation problems in schedule management. 
Consequently, Lipke (2003, 2004) introduced a new measure for its 
evaluation that refines and complements the EVM control system: the 
Earned Schedule (ES). The ES is calculated by projecting the EV on the 
Planned Value curve. From this new measure, the Schedule Variance can 
be redefined as the difference SV(t) = ES − AT, which gives the project 
advance or delay in time units instead of cost units as in the original 
definition. An equivalent ratio can also be defined as performance index 
SPI(t) = ES/AT. 

It is important to note that traditional EVM assumes certainty about 
the duration and costs of project activities. This assumption is usually 
extremely strong since project management is characterised precisely by 
its non-repetitive nature and by the management of uncertainty, which 
is difficult to eliminate given the uniqueness and context-dependence of 
each project. 

A common way to incorporate project uncertainty is to model the 
variability of task cost and task duration as probability distributions 
(Colin & Vanhoucke, 2016; Pérez et al., 2016; Vanhoucke & Batselier, 
2019). Then, the usual approach is to analyse projects from stochastic 
networks in which precedence relationships between tasks are included. 

Based on these two ideas —EVM and stochastic networks— Acebes 
et al. (2014b, 2015) defined the triad method to account for uncertainty 
in project management. Briefly, this approach uses Monte Carlo simu-
lation to obtain a representative sample of the universe of possible 
project realisations according to its stochastic definition. For each of the 
simulations, the value of time t and cost c at which the simulation 
reached the value EV is registered, constituting the triad (EV, t,c). From 
this information, the method uses advanced statistical learning methods 
to obtain relevant information on the progress of the project. On the one 
hand, it uses unsupervised learning algorithms for anomaly detection to 
determine whether the project is within the range of what could be 
expected from its stochastic definition or not. On the other hand, 
through supervised learning techniques and using the final time or cost 
of the simulation as target, the method answers two different questions: 
(i) the probability of project completion in time and/or in cost (classi-
fication problem); and (ii) the estimation of the expected cost and/or 
time at completion conditional on the current state of the project 
(regression problem). Recently, the triad method has been adapted 
(Acebes et al., 2022) to the Earned duration management (EDM) method 
(Khamooshi & Golafshani, 2014), an alternative to EVM in which the 
value of activities is expressed as work periods. Remarkably, the method 
presented in our paper is defined so that project progress is measured 
through EVM; notwithstanding, it could be used similarly with project 
progress measured through EDM. 

Notably, the method proposed in this contribution extends the 
functionality of the triad method in two relevant ways. First, it allows to 
analyse the individual influence of each project task t in terms of both 
risk and uncertainty in a comprehensive and intuitive manner. And 
second, it enables the fair attribution to the project activities of the 
causes that led to the current state of the project. 

3.2. Shapley values 

As pointed out in the introduction, the machine learning community 
has become increasingly interested in explainability and attribution in 
recent years. In particular, the most recurrent question in terms of 
attribution is the following: given a machine learning model that has 
already been fit to the data, if we use it to predict a new instance, how 
does each feature contribute to the prediction? 

The answer to this question is straightforward for linear regression 
models, where the contribution of each feature value to the response is 
determined by its coefficient in the fitted model. However, for more 
complex and sophisticated models, obtaining the contribution of each 
explanatory variable to the response requires alternative and more 
complex approximations. Remarkably, the Shapley value approach is 

C
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Time
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CV

SV(t)Earned Schedule (ES)

BCWS (Planned Value)
ACWP (Actual Cost)

BCWP (Earned Value)

BAC

AT (Actual Time)

Fig. 1. Outline and main variables of Earned Value and Earned Schedule 
Management methods. 
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one of the most used. This approximation came from the field of coop-
erative game theory and was originally devised in the context of a game 
in which players cooperate in a coalition to obtain a certain profit from 
their cooperation. Specifically, it was developed to determine how to 
distribute fairly the surplus among the different players according to 
their contribution to its attainment. 

Formally, a coalitional game can be defined as a finite set N of n 
players (N = {1,2,⋯, n} ) who can decide whether to cooperate or not. 
Cooperation among these players is formalised through coalitions, 
where a coalition S is a subset of N, i.e., an element of 2N —the set of all 
possible subsets of N 

(
S ∈ 2N). Let us denote as N the set of non-empty 

coalitions of N, and refer to N as the grand coalition. Additionally, let us 
consider a value function val that maps the different possible coalitions 

of players to their corresponding payoff 
(

val : 2|N|→R, with val(∅) = 0
)

. 

In this scenario, the Shapley value of a player is defined as her contri-
bution to the payoff, weighted and summed over all possible coalitions 
of players. 

ϕj(val) =
∑

S∈N :j∈S

(|S| − 1 )!(|N| − |S| )!
|N|!

(val(S) − val(S\{j} ) ) (1) 

Expression (1) can be interpreted as follows. Let us assume that the 
coalition is composed of all players, i.e., S ≡ N, and is formed sequen-
tially according to an input order. Each time a player j ∈ N joins the 
already formed coalition S\{j}, she is assigned a payoff equal to her 
marginal contribution to the payoff, i.e., she receives val(S) − val(S\{j} ). 
Notably, there are (|S| − 1 )! possible entry orders (permutations) for 
players in subset S\{j}. Once j joins the coalition S\{j}, the rest of the 
players belonging to N\S continue to enter the coalition. There are 
(|N| − |S| )! possible entry orders for them. Thus, there are 
(|S| − 1 )!(|N| − |S| )! possible entry orders for players in N\{j} to join the 
coalition and, hence, player j has (|S| − 1 )!(|N| − |S| )! possibilities to 
receive the payoff val(S) − val(S\{j} ). 

If we repeat this calculation on all the possible coalitions of N that 
contain j, and then divide by the total number of possible entry orders of 
the players (namely |N|!), we obtain the average of the marginal 
contribution of player j to the coalitions of N. 

Alternatively, the Shapley value equation can be expressed as fol-
lows: 

ϕj(val) =
∑

S⊆{1,⋯,n}\{j}

|S|!(n − |S| − 1 )!
n!

(val(S ∪ {j} ) − val(S) ) (2) 

Importantly, the Shapley value is the only attribution technique that 
has proved to satisfy the axioms (desirable properties) of efficiency, 
symmetry, dummy and additivity, which together constitute the defi-
nition of a fair payoff (Shapley, 1953). 

The Efficiency axiom refers to the fact that the sum of the Shapley 
values of all players equals the payoff of the grand coalition, i.e., the 
payoff when everybody cooperates. Formally: 
∑

j∈N
ϕj(val) = val(N) (3) 

Regarding the Symmetry axiom, it states that if two players j and k 
contribute equally to all possible coalitions, then their contributions 
(Shapley values) should be the same. That is: 

If val(S ∪ {j} ) = val(S ∪ {k} )∀S ⊆ N
→ϕj(val) = ϕk(val)

(4) 

The Dummy/Null player axiom implies that if a player j does not 
change the payoff regardless of the coalition of players in which it is 
included, then it must have a Shapley value of 0. 

If val(S ∪ {j} ) = val(S)∀S ⊆ N\{j}
→ϕj(val) = 0

(5) 

Lastly, the Additivity/Linearity axiom says that if two coalitional 

games with gain functions v and w are combined, then the fair distri-
bution of payoffs should correspond to the sum of the payoffs derived 
from both games separately: 

ϕj(v + w) = ϕj(v) + ϕj(w) ∀j ∈ N (6) 

Also, for any real number a: 

ϕj(av) = aϕj(v) ∀j ∈ N (7)  

At this point, it is important to note that Shapley’s original characteri-
sation did not explicitly incorporate the marginalist criterion as an a 
priori desirable property of Shapley values. Nevertheless, it was subse-
quently introduced into the axiomatics by other researchers (Ghintran, 
2011), as it seemed straightforward because marginalism was already 
present in the definition of the Shapley value itself, which states that to 
ensure fairness in the distribution of the payoff among the cooperating 
players, each of them must be assigned the average of her marginal 
contributions to all possible coalitions. 

In view that back in the 50s, the Shapley value was shown to be the 
only fair way to distribute payoff among players (as it is the only attri-
bution method that satisfies the above four properties of efficiency, 
symmetry, null player, and additivity), when the machine learning 
community began to deal with interpretability and attribution, they 
quickly turned to Shapley’s work and adapted it to the problems 
addressed by machine learning. In overall terms, the translation from 
game theory to interpretable machine learning was enacted as follows:  

• A game is the issuance of a prediction for a single instance.  
• The gain is the difference between the prediction for the considered 

instance and the average prediction for all instances.  
• The players are the values of the explanatory variables, that can be 

viewed as cooperating to issue the prediction.  
• The Shapley value is the average marginal contribution of a feature 

value to the prediction across all possible combinations of the other 
feature values.  

• The sum of the Shapley values of all features yields the difference 
between the actual prediction (for the instance) and the average 
prediction (for the dataset). 

It follows from the foregoing that in the framework of machine 
learning, the Shapley value is used to explain the difference between a 
particular prediction and the average prediction. Importantly, the 
Shapley value should not be confused with the difference in the pre-
dicted value that would result from eliminating that explanatory vari-
able from the model. 

More formally, and coming back to Eq. (2), its translation to machine 
learning would read as follows: 

ϕj(val) =
∑

S⊆{1,⋯,n}\{j}

|S|!(n − |S| − 1 )!
n!

(val(S ∪ {j} ) − val(S) ) (2) 

There is a finite set N of n feature values (N = {1,2,⋯, n} ) that can 
be used together (or not) to predict a given output. The different groups 
of feature values (subsets of N) that can be used for prediction are 
denoted by S (remember that S ∈ 2N, the total number of possible sub-
sets). In this context, the value function val maps the different combi-
nations of feature values to the prediction obtained using them. In this 
regard, please note that the val function can be a machine learning 
model of any type, rendering the Shapley value method a model- 
agnostic tool. With all that in mind, the estimated Shapley value of a 
feature value is its contribution to the difference between the actual 
prediction and the average prediction for the data set, weighted and 
summed over all possible feature value combinations. 

In other words, let X be the data matrix with dimensions m× n, i.e., m 
rows (instances) and n columns (features). For instance i and feature j, 

the Shapley value 
(

ϕij

)
for feature value xij is interpreted as follows: for 
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instance i the value of the jth explanatory variable 
(
xij
)

contributed (on 
average) ϕij to the prediction of the response yi compared to the average 
prediction for the dataset. 

In terms of computation, to calculate the exact Shapley value of a 
given feature value xij, all possible combinations of feature values have 
to be evaluated with and without the jth feature. Given that for N feature 
values the total number of possible feature combinations is 2N, the 
computation time to obtain the exact Shapley values increases expo-

nentially with the number of features: O
(

2|N|
)

. Consequently, in most 

real-world scenarios, only estimations can be calculated. As a result, 
multiple less computationally expensive approximations were proposed 
to estimate the Shapley values (Lundberg et al., 2020; Lundberg & Lee, 
2017; Štrumbelj & Kononenko, 2010, 2014). 

We opted for Lundberg and Lee’s approximation in the present 
contribution because of its multiple advantages (detailed below). 

3.3. SHAP (SHapley Additive exPlanations) 

The SHAP (SHapley Additive exPlanations) method (Lundberg & 
Lee, 2017) was originally conceived as an approximation to compute the 
Shapley values of the different feature values in individual predictions. 
Notably, SHAP also incorporates global interpretation methods based on 
the aggregation of individual Shapley values. 

Let us begin with the calculation of the Shapley values for individual 
predictions and how it is enacted in SHAP. Remarkably, one key inno-
vation in SHAP is that the Shapley value decomposition is represented 
by a linear model, that is, an additive feature attribution method. Spe-
cifically, for a dataset X with dimensions m× n, i.e., m rows (instances) 
and n columns (features), the explanation of the prediction obtained for 
a particular instance x is formulated as follows: 

g(z′

) = ϕ0 +
∑N

j=1
ϕjz

′

j (8) 

Where g is the explanatory model; z′ is a binary vector (also known as 
coalition vector) that indicates whether the feature values participate in 
the individual prediction (1) or not (0); specifically, z′

∈ {0,1}N with N 
being the maximum coalition size, i.e., the total number of feature 
values; and ϕj are the Shapley values. 

Please note that this linear representation in (8) is nothing but an 
artifice for the computation of the Shapley values. 

As detailed in the previous section, the Shapley values are the only 
fair way to distribute the difference between the individual prediction 
and the average prediction among all the feature values involved, since 
they simultaneously satisfy the axioms of efficiency, symmetry, null 
player, and additivity. As for the SHAP approximation, in Lundberg & 
Lee (2017) some discrepancies between Shapley properties and SHAP 
properties are detailed. Notwithstanding, the three main desirable 
properties of SHAP are: 

1. Local accuracy, which is the result of expressing the Shapley 
efficiency property in terms of the explanatory model g (instead of the 
val function) and the coalition vector z′ . Concretely, for our instance of 
interest x: 

g(x) = g
(
z′

x

)
= ϕ0 +

∑N

j=1
ϕjz

′

xj (9) 

If we now assume that all feature values are present, i.e., we set the 
coalition vector z′

x to all 1s, we get: 

g(x) = g
(
z′

x

)
= ϕ0 +

∑N

j=1
ϕjz

′

xj = ϕ0 +
∑N

j=1
ϕj (10) 

Which is a reformulation of equation (3): 

∑

j∈N
ϕj(val) = val(N) ≡ ϕ0 +

∑N

j=1
ϕj = g

(
z′

x

)
= g(x) (11) 

2. Missingness ensures that features that are missing in the coalition 
vector receive an attribution of 0: 

z’
xj = 0→ϕj = 0 (12) 

This property is not within the original properties of Shapley values. 
However, it was included in SHAP to avoid artefacts in the results, since, 
given that in the additive linear expression —equation (9)— the Shapley 
values are multiplied by 0 or 1 according to the coalition vector z′ , it 
could be the case that an absent feature had an arbitrary Shapley value 
without affecting the local accuracy property —note that since it is 
multiplied by 0, whatever its value, it has no impact on equation (9). 

3. Consistency, which is formulated in terms of two different 

explanatory models f̂
′

and f̂ as follows: 

If  f̂
’
x(z

’) − f̂
’
x(z

’\{j} ) ≥ f̂ x(z
’) − f̂ x(z

’\{j} )

then  ϕj( f̂
’
, x) ≥ ϕj( f̂ , x)

Hence, consistency refers to the fact that if in an alternative 

explanatory model ( f̂
′

) the marginal contribution of a feature value in-
creases or remains the same with respect to a previous explanatory 
model ( f̂ ), regardless of the other feature values, then the corresponding 
Shapley values obtained with the alternative model also increase or 
remain the same accordingly. Importantly, Lundberg and Lee (2017) 
proved that from this consistency property, the Shapley axioms of 
linearity, null player and symmetry also hold. 

The name given by Lundberg and Lee (2017) to their Shapley value 
estimation procedure is KernelSHAP. Specifically, it consists of five main 
steps: (i) sampling K feature value coalitions; (ii) obtaining the corre-
sponding predictions for each coalition vector (for which it is necessary 
first to map coalition vectors to actual feature values); (iii) computing 
the weight for each coalition according to the equation of the SHAP 
kernel (eq. 14); (iv) fitting a weighted linear regression model in which 
the sampled coalition vectors are the input, the SHAP kernel is the 
weighting scheme, and the prediction for the different coalitions is the 
output; and (v) returning the coefficients of the linear model, which are 
the Shapley values. 

The detail of the coalition weighting scheme (eq. 14) is the following: 

πx(z
′

) =
(N − 1)

(
N
|z′ |

)
|z′
|(N − |z′

| )
(14) 

Where z′ is the coalition vector for instance x, |z′

| is the number of 
features present in coalition z′ (i.e., those with a 1 in the coalition vec-
tor), and N is the total number of features in the dataset, i.e., the 
maximum coalition size. Notably, this weight is conceived so that for 
each sampled coalition, it corresponds to the weight that the coalition 
would get in the Shapley value estimation. Hence, both small (majority 
if 0 s) and large (majority of 1 s) coalitions obtain the largest weights. 
The rationale behind it is that to learn the most about individual fea-
tures, the best approach is to study them in isolation. Remarkably, since 
better Shapley value estimates are obtained if large-weight coalitions are 
used as inputs for the linear regression model, KernelSHAP is imple-
mented so that coalitions are considered in the sampling scheme in 
descending order of weight. 

In addition, it should be noted that in KernelSHAP, feature values 
absent in the coalition vector are replaced by the value of that feature in 
a randomly sampled data instance. This mechanism is technically known 
as sampling from the marginal distribution and implies ignoring the 
possible correlations and dependence structures between features 
included and not included in the coalition(s). 
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4. Method formulation 

Let be an acyclic directed graph that defines the precedence re-
lationships —i.e., the constraints and temporality— of the p activities of 
a given project. Two types of points in time are considered in the 
method:  

1. The planning time. It is the moment at which the duration of each of 
the activities is defined by a stochastic distribution —considered to 
be known— and which can be dependent or independent of other 
previous activities. It is worth noting that no assumptions are made 
about the type of the stochastic distribution. Regarding cost, a 
planned (stochastic or deterministic) cost function is assumed for 
each activity. Typically, the planning stage is carried out before 
project execution starts, i.e., EV = 0. Still, the method can be applied 
without loss of generality for later replanning conditional on a 
partially completed project history (EV = a).  

2. The actual time (analysis time). It is posterior to the planning time and 
is defined by a given earned value, EV = b. 

The first step of the method takes place at the planning time and 
consists of generating a dataset compatible with the project schedule —i. 
e., with the stochastic distributions of task durations— via Monte Carlo 
simulation of the associated project PERT/CPM network (see top part of 
Fig. 2). For this purpose, the project is simulated n times. For each Monte 
Carlo simulation, the completion progress in terms of the duration of all 
activities at analysis time EV = b is collected. These observations are 
points in a p-dimensional space χ ≡ R p with xb

i ∈ χ, where xb
i denotes 

the vector of task durations for the ith simulation of project realisation at 
the time in the simulation when EV = b. The dataset is completed with a 
response variable yi for each vector xb

i . Depending on the type of analysis 
to be performed later with the method, yi can be either a continuous or a 
categorical variable. Typically, it takes one of the following four values:  

1. yi = DBAC
i , where DBAC

i represents the total duration of the project at 
the end of simulation i.  

2. yi = Tb
i , where Tb

i represents the simulation time in which the 
simulation i reached EV = b.  

3. yi = CBAC
i , where CBAC

i represents whether the simulation i finished 
earlier or later than the planned time in the project plan.  

4. yi = Cb
i , where Cb

i denotes whether the simulation time at which 
simulation i reached the value EV = b is ahead or behind what would 
be expected for that EV value. 

In the machine learning literature, the first two cases define regres-
sion problems and the next two define classification problems. Let us 
consider case 1) to illustrate the formulation of the method. 

In this case, we are looking for a model f that captures the rela-
tionship f : χ→R in the best possible way. Specifically, we are interested 
in the distribution of the dependent variable Y given X as explanatory 
variables, where Y is the vector of all the responses yi (duration of the 
project at the end of simulation i) and X denotes the n × p matrix of all 
the xb

i vectors for the n simulations. The main assumption of the method 
is that f(x) is a reasonable approximation of EY|x(Y), i.e., that 
EY|x(Y) ≈ f(x). Notably, the quality of fit will typically increase as a 
function of the size of the dataset (the larger the dataset, the better the 
quality of fit), and the ability of the model in terms of bias-variance to fit 
the problem (Hastie et al., 2009). In our approach, we propose to 
consider a sufficiently flexible set of models and to perform model se-
lection by nested-cross validation (stratified in the case of classification). 
Remarkably, if more efficient machine learning models are developed in 
the future, these could become part of the set of models considered for 
model selection. As for nested cross-validation, its need arises from the 
fact that many of the best-performing algorithms in both regression and 
classification are parametric, so an outer loop is required to identify the 
family of best-performing algorithms, and an inner loop is needed to 
adjust θ̂ ∈ Θ, where Θ is the space of all the possible model parameters 

Fig. 2. Methodology flowchart.  
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and θ̂ are the parameters selected. The θ̂ search process consists of 
selecting the set of model coefficients that minimises some predefined 
loss function L(): θ̂ = argminθ̂∈ΘL[{Y, f(θ;X)}+λ(θ) ] , where y is the 
response vector, f(θ;X) are the predictions made by model f when co-
efficients θ are used, and λ(θ) is a regularisation term typically included 
to control model complexity (Zou & Hastie, 2005). 

Once a model has been selected by nested cross-validation, we have a 
relationship y = f(x). As noted above, the meaning and interpretation of 
y will depend on the target value selected from the four options available 
[1.- 4.]. 

Interestingly, the exploration of this function f(x) by means of 
Shapley Additive Explanations allows for two types of analysis 
depending on the time point at which it is performed: 

1. Forward analysis. Assume we are at a time point in which the 
progress of the project is given by EV = a (see left part of Fig. 2). We are 
interested in identifying the key activities that allow reaching a later 
time —specifically, the time when EV = b— in the best possible way 
—less duration and cost. To that end, we can use the Shapley values 
provided by the SHAP package (Lundberg & Lee, 2017). More precisely, 
the SHAP summary plots of the model function combine the importance 
of the input variables (the project activities in this case) with their 
impact on the response variable y. It is an aggregated analysis —since 
each point in the summary plot corresponds to the Shapley value for a 
given feature value in a particular instance— that shows the compara-
tive influence of the different tasks on the output, and the relationships 
between the value of a feature —for instance, the duration of one of the 
activities— and the prediction. Besides, information about each activity 
can also be disaggregated using SHAP Dependence Plots and SHAP 
Interaction Values. SHAP Dependence Plots allow identifying the 
importance of each task in the prediction (measured through Shapley 
values) according to its feature value(s). As for SHAP Interaction Values, 
they quantify the effect of the interaction between pairs of variables 
once their individual contributions have been discounted. 

In the framework of Explainable Machine Learning, this type of 
analysis of the model function f(x) corresponds to a global interpretation 
of the model and can be helpful for the project manager to make pro-
spective decisions. With respect to traditional methods in project man-
agement, our approach provides richer and more complete information 
than, for instance, criticality indices, and helps to better understand the 
relationships between variables/project activities and their implications 
for decision-making. 

2. Backward analysis is conducted at a given control time (actual 
time when EV = b) (see right part of Fig. 2). In this context, under-
standing the contribution of each task to the current situation —i.e., how 
we got to where we are and who are the main responsible parties for 
it—is also relevant. In these cases, the Shapley values for the current 
stage of the project at the time of control serve to fairly distribute the 
responsibility for the result among the different tasks. In Explainable 
Machine Learning terms, this type of analysis of the model function f(x)
corresponds to a local model interpretation and can be extremely useful 
for both the project manager and the project sponsor in attributing 
responsibilities. 

In the case when yi = DBAC
i and control is performed at EV = b, with 

the model trained on the information obtained when EV = a = 0, 
backward analysis could be conducted to determine, at the time of 
control (EV = b), the impact that the duration of each task has had on the 
final prediction of the total duration of the project. At that stage, a 
replanning could be performed considering EV = b as the planning time, 
training a new model conditioned to the current situation, and using EV 
= BAC as the analysis time. Once fit, we could perform a forward 
analysis of the remaining project. 

For the other possible values of the output variable yi, the interpre-
tation changes and, therefore, the method offers complementary infor-
mation. In particular, for yi = Tb

i (case 2), the analysis is conducted with 
respect to the actual time (EV = b) instead of the project completion time 

(EV = BAC), thus serving to identify the most influential tasks with 
respect to project duration at the actual time (EV = b). As for yi = CBAC

i 

(case 3) and yi = Cb
i (case 4), the interpretation of the analyses is based 

on the relevance of the tasks for meeting or not meeting the target 
duration in the planned completion time or the actual time, respectively. 
Remarkably, while the interpretation is made on the absolute value of 
duration in the first two cases, the results are probabilistic in the other 
two cases. 

5. Case study 

5.1. Description 

In this section, we provide an application example of the method-
ology proposed. In particular, we have chosen the project example from 
Lambrechts et al. (2008) and used by Acebes et al. (2014b, 2015) to 
illustrate the triad method. Specifically, we incorporated project un-
certainty into the case study through Monte Carlo simulation, and 
modelled the project planning and control as follows. The directed 
acyclic graph in Fig. 3 depicts the dependence relationships between 
activities. Activity durations are assumed to follow a known probability 
distribution, a normal distribution characterised by the mean and the 
variance of the activity duration (Table 2). In addition, we assumed a 
fixed variable cost for each task since, although the focus of our analyses 
is on the time dimension of the project, costs are necessary to compute 
the earned value. On top of that, we introduced a change in the prob-
ability distribution of the duration of activity A5 conditional on the 
occurrence of a given event in activity A2. The details of this change are 
explained in the next section. The code for the Monte Carlo simulations 
and the Shapley value analyses of this case study is publicly available in 
the repository https://github.com/jismartin/sheva. 

5.2. Simulation scenarios 

The stochasticity of the project is explored via Monte Carlo simula-
tion (50,000 iterations). The control time is set at the project state when 
the earned value (EV) of the project activities is equal to 75% of the 
planned value at end of the project. In each simulation iteration, activity 
durations are drawn from their respective probability distributions of 
duration. In addition, the duration of activities at 75% EV, and the final 
duration of the project were collected too. 

Among the possible sources of uncertainty and risk that can affect 
projects (Curto et al., 2022; Hazır & Ulusoy, 2020; Mentis, 2015; Orangi 
et al., 2011), environmental factors can have a very relevant impact in 
some industries. For example, in the construction sector, weather and 
meteorological conditions are one of the leading causes of project delays 
and changes in planning (Ballesteros-Pérez et al., 2015, 2018; Durdyev 
& Hosseini, 2019; Ibbs & Kang, 2018), being environmental factors also 
relevant in marine operations (Gudmestad, 2019; Kubacka et al., 2021). 
To illustrate the usefulness of the method in this respect —while keeping 

Fig. 3. Project network of our case study. The duration of each activity follows 
a normal distribution whose parameters are shown in Table 2. 
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a simple design— we assumed that the probability distribution of the 
duration of activity A5 changes as a function of its starting time. Spe-
cifically, if activity A2 is delayed with respect to its mean duration by 
one standard deviation or more (4.91), then the probability distribution 
of A5 changes from N(6, 1.72) to N(18, 1.72), i.e., its mean duration 
increases drastically. It should be noted that this modification is exag-
gerated so that the effect can be illustrated more clearly in the analyses. 
In particular, the objective is to simulate an increase in the average 
duration of one activity triggered by the duration of another. The 
rationale behind changing the probability distribution of the duration 
depending on the starting time of the activity is that many tasks are 
affected by meteorological conditions whose probability depends on the 
month or season in which they are undertaken. For example, in this 
same line, Acebes et al. (2014a) modelled the seasonal risk derived from 
the probability of frost days for each month in the city of Valladolid 
(Spain), with a potential negative impact on some tasks. Because of this 
phenomenon, there is an interaction effect between the activity affected 
by its start time (A5) and its precedent activity (A2), which also de-
termines the beginning of subsequent tasks. To analyse whether the 
machine learning model selected can capture this interaction effect and 
whether the SHAP method correctly attributes both responsibility and 
importance to activity A2, we compared this seasonal risk scenario 
—which we called the conditional interaction scenario— with a baseline 
in which the probability distribution of the duration of task A5 changes 
randomly with a frequency identical to that of the conditional interaction 
scenario. 

5.3. Model selection 

Once the dataset for the case study was created via Monte Carlo 
simulation (50,000 simulations of the project) we used four machine 
learning algorithms based on decision tree ensembles to try to capture 
the relationship f : χ→Y for the different values of Y considered to be of 
interest. Remarkably, the four of them are state-of-the-art algorithms 
with high predictive performance in different contexts (Feng et al., 
2020; Fernández-Delgado et al., 2014; Gómez-Ríos et al., 2017; Martin 
et al., 2022). As discussed in the Method formulation section, we used 
nested-cross validation —specifically 5-fold nested cross-validation— 
for the analyses. In the inner loop of the nested cross-validation scheme, 
the hyperparameters of the algorithms were optimised through a grid 
search. In the outer loop, model selection was performed based on the 
predictive error obtained (mean squared error, MSE) for the case of 
regression. Eventually, the best algorithm according to the above 5-fold 
nested cross-validation was fitted to the full dataset and parameterised 
using grid search 5-fold cross-validation. 

In particular, of the four ensemble algorithms used in this analysis, 
three were based on boosting for regression: Adaptive Boosting (Ada-
Boost) (Freund & Schapire, 1996), Gradient Boosting (Friedman, 2001), 
and eXtreme Gradient Boosting (XGBoost) (T. Chen & Guestrin, 2016), 
and the remaining one on bootstrap aggregation (bagging): Random 
Forest (Breiman, 2001a). As for the more technical details, boosting 
consists in obtaining a strong learner from the sequential combination of 
weak base learners (Gómez-Ríos et al., 2017). In the case of AdaBoost, in 
each iteration, the weight of each data point changes such that the next 

learner preferentially focuses on those points that had a higher error in 
the previous iterations. In Gradient Boosting, instead of modifying the 
weights of the different instances, the algorithm tries to optimise the loss 
function of the previous learner. With respect to XGBoost, it shares many 
theoretical elements with Gradient Boosting; however, it implements 
parallelisation and incorporates different mechanisms to efficiently 
exploit memory resources and significantly reduce computation times. 
Lastly, the random forest algorithm combines the results of multiple 
classification or regression trees that are trained on different boot-
strapped samples from the original training set. Importantly, it also uses 
the random subspace method at each split of the decision trees, thus 
achieving greater decorrelation between the estimators and better re-
sults than simply using the bagging technique. The regression results 
obtained for our case study are shown in Table 3. For more details on the 
computation procedures and/or the results, please refer to: https://gith 
ub.com/jismartin/sheva. 

For the classification approach, the model selection and model fitting 
procedures were very similar to the ones for regression, with the 
exception that we used accuracy (instead of MSE) as the quality metric 
for model selection, and that the versions of the algorithms were 
adapted for binary classification. The classification results obtained for 
our case study are shown in Table 4. 

5.4. Forward analysis 

In the forward analysis, as previously stated, the aim is to identify the 
key activities for the project to reach the end time (EV = BAC) while 
keeping the duration and cost as low as possible. We summarise this 
analysis with SHAP summary plots and SHAP dependence plots. 

5.4.1. SHAP summary plots 
Fig. 4 shows the SHAP summary plots of the two scenarios consid-

ered: the conditional interaction scenario and the baseline. This plot 
simultaneously combines the importance of each project activity with 
the feature effects. The different project tasks are ordered on the y-axis 
according to their importance (average SHAP value, provided in 
brackets to the right of the task name). On its part, the position on the x- 
axis represents the Shapley value for a project activity and a simulation 
(instance). More precisely, for each task on the vertical axis, the different 
SHAP values obtained for each of the simulations are plotted as a data 
point along the horizontal axis, adding some vertical jitter to avoid 
overlapping. The colour of the data points represents the variability of 
task durations, where an intense red indicates a high task duration 
relative to its average duration. 

Several insights can be drawn from this plot: (1) the average SHAP 
value shows the relative importance of each project activity with respect 
to the response variable Y. Since in Fig. 4, the analysis was conducted for 
yi = DBAC

i , the top-ranked tasks are the most relevant for determining 
the final duration of the project; (2) the colour of the data points pro-
vides additional information on the duration value of a given task for a 
specific realisation (each point is coloured according to its duration 
value between red for long durations and blue for short durations); 
specifically, colours allow to interpret an individual value of task 
duration within the range of variability of the duration of this task, and 
to assess its effect on the final prediction. 

Table 2 
Parametrisation of the activities for the case study.  

Activity Mean duration Variance Variable cost 

1 2  0.15 755 
2 4  0.83 1750 
3 7  1.35 93 
4 3  0.56 916 
5 6  1.72 34 
6 4  0.28 1250 
7 8  2.82 875 
8 2  0.14 250  

Table 3 
Results obtained via 5-fold nested cross-validation for regression model selec-
tion. The model with the best performance metric, gradient boosting, has been 
used.  

Model MSE (mean) MSE (stdv) 

Gradient Boosting Regressor  9.1939  0.2734 
Random Forest Regressor  9.2052  0.2514 
XGBoost Regressor  9.2168  0.2687 
AdaBoost Regressor  11.0620  0.1232  
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Fig. 4 also shows the dependence between activity A2 and activity A5 
in the scenario with seasonal risk (conditional interaction scenario) when 
compared with the baseline scenario. Specifically (and as originally 
intended), when A2 has a high duration, it causes an increase in the 
duration of A5 due to its environmental constraints —which we 
modelled as a change in the probability distribution of its duration from 
N(6, 1.72) to N(18, 1.72). On the contrary, if its duration remains at 
average or low duration values, the impact of A2 on the final project 
duration is minimal since, as it is not triggering an increase in the 
duration of task A5, other alternative paths in the project network 
become the most relevant. These results contrast with those of the 
baseline (i.e., the model without interaction between tasks A2 and A5), 
where, because of the independence of their durations, the impact and 
relative importance of the path through A2 and A5 is split between the 
two activities (instead of being mostly assigned to A2). In addition, the 
relevance of A5 is much higher than in the conditional interaction scenario 

due to its polarised statistical behaviour. 
Notably, the information that can be extracted from the SHAP 

summary plots is very useful for a project manager, since it complements 
task information with other global importance measures, such as the 
criticality index or the cruciality index (Williams, 2002), but with the 
advantages that in this case: (i) task importance is combined with its 
level of uncertainty; (ii) interactions between tasks are captured; (iii) 
individual information (i.e., the particular value of task duration for a 
given simulation) is provided, which allows conducting case-level 
analysis; and (iv) by aggregating the individual interpretations of the 
case-level analyses, it is possible to perform global analyses of the 
different activities from a joint perspective of the entire project network. 

5.4.2. SHAP dependence plots 
While SHAP summary plots provide general and comparative infor-

mation between the different tasks that integrate the project, SHAP 
dependence plots provide more detailed information on the individual 
importance of each of the activities. This type of plot shows the marginal 
effect that a particular predictor has on the final prediction of the fitted 
model. Specifically, for each individual simulation, the horizontal axis 
represents the duration value of the task, and the vertical axis represents 
its corresponding SHAP value. Therefore, variance (in importance) can 
be observed on the y-axis. In terms of interpretation, the prediction can 
be regarded as starting from the average prediction for the dataset and 
then being affected by the effect of each task duration in each simula-
tion; this effect is quantified by the corresponding SHAP value and can 
either contribute to increase the final prediction (positive SHAP value) 

Table 4 
Results obtained via 5-fold nested cross-validation for classification model se-
lection. The model with the best performance metric, gradient boosting, has 
been used.  

Model Accuracy (mean) Accuracy (stdv) 

Gradient Boosting Classifier  0.8570  0.0020 
XGBoost Classifier  0.8564  0.0023 
Random Forest Classifier  0.8544  0.0035 
AdaBoost Classifier  0.8537  0.0028  

Fig. 4. SHAP summary plots of the two 
scenarios considered: conditional interaction 
scenario (top) and baseline scenario (bot-
tom). Each subfigure represents the relative 
importance of the project tasks (their dura-
tion) on the total project duration. The 
vertical axis shows the project tasks ordered 
from top to bottom according to their 
average SHAP value (in brackets to the right 
of the task name). For each task, the SHAP 
values obtained for each individual simula-
tion are shown as a data point (with vertical 
jitter to avoid overlapping) and coloured as 
a function of the relative task duration.   
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or to decrease it (negative SHAP value). As for the global interpretation 
of each subfigure in Fig. 5, it shows how the duration value of a given 
project activity relates to the model output —in this case, the total 
project duration, which is indicated by means of the colour scale. In 
other words, negative SHAP values indicate an impact on expected 
project duration capable of reducing it, while positive SHAP values 
indicate the potential for delaying it. 

In our case study, for each of the two scenarios considered (condi-
tional interaction scenario and baseline), since the influence is measured 
on the same scale, the figures allow for a detailed comparison of the 
relative impact of the different activities as a function of their duration. 

Furthermore, a high variance or vertical spread of SHAP values given an 
activity duration value indicates possible interaction and non-linear 
effects with the rest of the project activities, e.g., the possible exis-
tence of parallel paths. 

The results in Fig. 5 are very revealing to understand the impact of 
each of the project activities in the two scenarios. Firstly, one can see 
that the distribution of SHAP values of activity A2 is notoriously 
different in each case. In the scenario with seasonal risk (top subfigure), 
the duration of activity A2 is key in determining the total project 
duration (note that there is a yellowish cloud of points in the A2 subplot 
corresponding to those simulations in which a delay in A2 caused an 

Fig. 5. Dependence plot of the different project activities for the two scenarios: conditional interaction scenario (top) and baseline (bottom). Each of the individual 
plots shows the marginal effect of the duration of each activity on the range of variation of the duration of each task and its impact on the expected total project 
duration (given by the colour scale). 
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increase in the final duration of the project). As already known, this 
effect is due to the seasonal character of activity A2 in this scenario. 
More precisely, when A2 duration exceeds the seasonal threshold (4.91, 
defined by design in the initial conceptualisation), A5 is affected by an 
increase in its average duration that translates into the final duration of 
the project jumping from expected values within the range 10–15 to 
expected values close to 25. In contrast, the impact of activity A2 in the 
baseline scenario has a very different behaviour that will be better un-
derstood with the next type of plot: the dependence plot for activity 
interactions. 

5.4.3. Dependence plot for activity interactions 
This type of plot constitutes an additional analysis tool that allows a 

better understanding of the interrelation between project tasks. In Fig. 6, 
we illustrate this interrelation effect for our case study by monitoring 
activities A2 and A5 and comparing their behaviour in the two scenarios: 
conditional interaction scenario and baseline —i.e., the scenario without 
forced interrelation between A2 and A5. In the scenario with seasonal 
risk (Fig. 6, left), we see that the dependence plot for activity in-
teractions perfectly captures the effect that A2 has on A5. Specifically, 
and as intended by design, we can see that when A2 is delayed, A5 is also 
delayed due to the interrelation between the two —remember that if A2 
is delayed, A5 follows a distribution with a higher average value. 
Consequently, two clusters of points appear in the interdependence 
plots, one for smaller durations of both A2 and A5 activities and the 
other for longer durations of the two. Moreover, we observe that the 
yellowish data points —which correspond to the cluster with longer 
activity durations— have positive SHAP values and present a positive 
correlation between the duration of activity A2 and its SHAP values; 
such correlation can be interpreted as a tendency towards increasing the 
duration of A5 and, eventually, the final duration of the project. 
Remarkably, this effect is caused by the criticality of activity A2 since it 
becomes part of the critical path when it is delayed, so its duration 
directly impacts the project duration. As for the baseline scenario, it has 
two clouds of data points as well; however, their interpretation is 
different. Yellowish points correspond to high A5 durations and purplish 
points correspond to low A5 durations. Remarkably, the points from 
both clusters extend along the entire horizontal axis, which evidences 
that there is no relationship between the durations of A2 and A5. In the 
yellowish cluster, i.e., when A5 durations follow a distribution with a 
higher average value, we see an increasing linear relationship (positive 

correlation) between the duration of A2 and its SHAP values; this linear 
relationship extends from negative to positive values on both axes, thus 
covering almost the entire plot. As for its interpretation, it would be as 
follows: in the yellowish cloud of points activity A2 is always part of the 
critical path, so an increase/decrease in its duration directly affects the 
total project duration. In other words, the duration of A2 is added almost 
directly and linearly (one-to-one) to determine the global SHAP value of 
activity A2, which is nothing but the contribution of A2 to the final 
duration of the project. 

On the other hand, for low duration values of A5 (purplish cluster in 
Fig. 6 right), A2 SHAP values have a higher vertical spread, which in-
dicates that the path along A2 may be critical, but other alternative 
paths also exist; this implies that increases in the duration of A2 are not 
directly transferred (in a one-to-one fashion as before) to the duration of 
the project. 

5.5. Backward analysis 

One of the main advantages of the SHAP framework is that it allows 
for both global and local interpretability. In the forward analysis per-
formed in the previous sections, the aim was to understand the global 
behaviour of the model that encapsulates the stochastic behaviour of the 
project network. This information is relevant for future decision-making 
on project completion. Notwithstanding, understanding the reasons 
behind the current state of the project (case-level analysis) is also very 
relevant. This is what backward analysis is all about. Specifically, for a 
given project realisation, it uses SHAP to explain the individual contri-
butions of the model inputs to the current situation. 

To explain the usefulness of backward analysis, we first simulated 
the project until the moment when it reached an EV = 75% of the BAC 
and, for that time point, we registered the progress of each project ac-
tivity in terms of duration. This information is shown in Fig. 7., where 
the duration of the activities is represented on the y-axis of each of the 
subplots. It should be noted that the subplots on the left correspond to 
the conditional interaction scenario, while those on the right correspond to 
the baseline scenario. Concretely, each subfigure is a waterfall plot in 
which the influence of each task on the output variable is represented by 
a coloured flag; the length of the flag is proportional to the magnitude of 
the influence, and its colour is given by the sign of the influence: red if it 
is positive and blue if it is negative. This influence value (in numbers 
inside the flag) indicates how the task modifies the output under 

Fig. 6. Dependence plot of the interactions between activities A2 and A5 for the two scenarios: conditional interaction scenario (left) and baseline scenario (right). 
These plots show the Shapley value of activity A2 for each Monte Carlo simulation as a function of the durations of activity A2 (horizontal axis), and the duration of 
activity A5 (indicated by the colour scale). 
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scrutiny. Please recall that, as explained in the forward analysis, SHAP 
starts the prediction from the average prediction for the dataset (ex-
pected value —E[f(X) ]); in Fig. 7., this value is provided below the 
horizontal axis. On its part, the final prediction of the output variable for 
the project realisation considered is presented in the right top corner 
—f(x).

In the top subfigures, we analyse how the current state of the project 
(the activity durations at the time of control, i.e., when the EV = 75% 
BAC) relates to the duration of the project yi = Tb

i (for b = 75% BAC ). In 
this case, we are interested in explaining the current state of the project 
in terms of its current duration, namely y = 9.684. This project duration 
is slightly longer than expected for the level of earned value considered 
(E[f(X) ] = 9.15). Nonetheless, the models for both scenarios give 
similar values around 9.68 (see f(x) values on the right top corner of the 
subfigures in Fig. 7.), which implies that both predict a project delay 
compared to the expected duration. Notably, both top subfigures show 
equivalent explanations for this delay, as both point to activity A3 as the 
responsible. In particular, activity A3 has slightly delayed the time at 
which we reach an EV = 75% BAC, causing an increase of 0.5 time 
units. 

In the bottom subfigures, the fitted models associate the current 
project status with the expected total duration of the project: yi = DBAC

i . 
Therefore, in this case, the question to answer is different: we want to 
explain why and how the expectation of the total project duration has 
changed due to its current state (progress). The results obtained are very 
interesting and clearly reflect the usefulness of the method. In the con-
ditional interaction scenario, the prediction for the project duration has 
changed from 15.638 (its expected value) to 23.102. The trigger for this 
increase in the predicted value is the duration of activity A2; the other 
variables influence minimally. In particular, the delay in A2 has changed 
the total duration expectation of activity A5 (which has started but is 
still unfinished), so the project is likely to be significantly delayed. This 
contrasts with the prediction for the baseline scenario (bottom right 

subfigure), for which the model prediction (15.638) is only slightly 
longer than the expected total project duration given the current prog-
ress. More precisely, although in the baseline scenario the progress of 
activities A2 and A7 worsens the total duration predicted, the progress 
of A5 and A6 compensates for this delay (decreases in time of 0.45 and 
0.22 time units, respectively). Consequently, the reading to be made 
from the baseline is that, since there are no interactions between tasks in 
this scenario, the behaviour is very different, and the attributions of 
responsibility for the expected completion time are also distinct. 

To complete the backward analysis and illustrate how further in-
formation can be obtained for control purposes, Fig. 8 shows the analysis 
of the project at EV = 75% of the BAC —i.e., at the same time point as 
Fig. 7— but now using yi = CBAC

i as the output variable in the model. 
CBAC

i represents whether the simulation i finished before or after the final 
duration foreseen in the project plan (planned value). The left subfigure 
in Fig. 8 shows the results for the conditional interaction scenario, while 
the right subfigure corresponds to the baseline scenario. To determine 
whether the total duration of the project is delayed or not, we compared 
it to the final duration obtained for the deterministic PERT of the project 
—knowing a priori that it is probably a very optimistic value under 
stochastic conditions (Acebes et al., 2014b; Klingel, 1966; MacCrimmon 
& Ryavec, 1964; Schonberger, 1981). (Please recall that the results 
would be different if we used another PV curve). Specifically, in our 
analysis, the model results confirm that the baseline probability of fin-
ishing the project with delay E[f(X) ] is very high in both cases: 0.945 and 
0.927, respectively. Importantly, since we know the progress of the tasks 
up to the control time, we can determine whether the probability of 
completing the project has changed with respect to the baseline planned 
value and the reasons for the change. In our example, the results show 
that the chances of finishing on time are low. In the conditional interac-
tion scenario (left panel of Fig. 8), the duration of activity A2 has wors-
ened the forecast of on-time project completion by 0.03, and the 
duration of activities A3 and A7 by an additional 0.01. This means that 

Fig. 7. Waterfall control plots for the analysis of the duration of a given realisation of our example project at EV = 75% BAC. Two scenarios considered: conditional 
interaction scenario (left) and baseline (right), and two possible outputs analysed: the duration of the project at the current state: yi = Tb

i (top) and its total duration 
until project end: yi = DBAC

i (bottom). The value E[f(X)] on the x-axis represents the average predicted value across all Monte Carlo simulations, hence constituting 
the expected predicted value. The value f(x) shown at the right top of each subplot represents the new prediction for this instance as a consequence of the progress of 
the tasks. Specifically, the SHAP values indicate how each task contributed (positively or negatively) to the instance prediction compared to the average prediction. 
High absolute SHAP values indicate a significant impact of the task on the change in prediction. 
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the model has captured the effect that A2 will have on the probability 
that A5 will be long, thus attributing to it a relevant impact on the 
likelihood of completing the project on time. In the baseline scenario 
(right of Fig. 8.), the worsening of the forecast is primarily attributed to 
the durations of activities A3 and A7. These results are consistent with 
those in Fig. 7, but with the added value that they complete the analysis 
from a probabilistic perspective (recall that in Fig. 7, we had absolute 
duration values instead of probabilities). 

A noteworthy aspect of these plots, and which differs from the typical 
use of SHAP, is that in Fig. 8., task durations are provided as probabil-
ities. In particular, in classification models, the SHAP package returns by 
default the influence of variables in terms of log odds. However, the 
interpretation of log odds and of their changes is not as intuitive as that 
of probabilities, which is what we provide in Fig. 8. To perform this 
transformation, the probabilities have been calculated from the log odds 
as the estimate of the Shapley values of the logit function. In the case of a 
project as simple as our case study, this transformation can be computed 
without difficulty, and, thus, the exact values can be obtained. However, 
the process can be computationally expensive (its computational 
complexity is exponential). In the repository associated with this work, 
we show how we use the method of Castro et al. (2009) to calculate the 
transformation. It is an unbiased polynomial method to estimate the 
Shapley values based on sampling theory. We use this as an alternative 
to SHAP because of the unintuitive nature of log odds. 

6. Discussion 

6.1. Methodological discussion 

Our proposal is mainly methodological, consisting in a XAI extension 
of the stochastic earned value analysis, originally presented by Acebes 
et al. (2015) through the triad method. The case study in the previous 
section has served to illustrate the proposed methodology in detail. 

The main contributions of this study may be summarised as follows:  

• This paper presents a novel stochastic earned value technique based 
on the inclusion of a SHAP-value-based explainability layer. Such 
incorporation substantially increases the information available and 
enables a deeper understating of the project and its interrelations, 
thus allowing for more informed decision making than previous 
approaches.  

• From a retrospective analysis perspective, given the current earned 
value, our method allows to: (i) compare whether the current project 
time and/or cost are as expected; (ii) to explain how each task has 
contributed to the current situation; and (iii) to analyse the change in 
completion expectations (in time and/or budget) through SHAP 
instance-level explanations (single prediction explanations).  

• Prospectively, given a project control point, the use of SHAP global 
model explanations provides quantitative information on the overall 
effect and the relative importance of the different project tasks on the 
project outcome. Notably, such information is provided at different 
levels of detail depending on the type of analysis chart. 

Notwithstanding, the development of our method implied several 
decisions, choices and assumptions that may be of interest to discuss. 

First, our method takes both the probability distributions of task 
durations (or costs) and the project network as inputs. In this regard, 
note that both the probability distributions and the project network can 
be of any type but are assumed to be known. Regarding probability 
distributions, as shown in the case study, they may account for in-
teractions with other tasks, risks, processes or external probabilistic 
events that can be of interest to model in the project plan. As for the 
project network, even though our description of the method is focused 
on CPM/PERT networks (Kelley, 1961; Malcolm et al., 1959), other 
networks may be used. In this line, further refinements may be necessary 
to evaluate its effectiveness in projects defined by GERT networks 
(Pritsker, 1966). 

Second, our method requires sampling the probabilistic network of 
the project, which implies instantiating the probabilistic events and 
simulating them to generate the different analysis datasets. To that end, 
we employed Monte Carlo simulation as the sampling method, obtaining 
both the datasets and the expected values. Importantly, this technique is 
straightforward and facilitates experiment design, even in the case of 
interactions, as previously illustrated. However, other statistical sam-
pling and design of experiments techniques may be more efficient in 
obtaining a dataset that covers the space of possible combinations, 
particularly in situations with limited time constraints. 

Subsequently, our proposal involves fitting machine learning models 
to the different datasets previously obtained via Monte Carlo sampling. 
In this regard, our method is model-agnostic because it proposes to use 
several models and select the one with the best predictive performance 
on previously unseen samples. Such model selection approach is based 
on the important current line of research in automated machine learning 
(Chauhan et al., 2020; Hutter et al., 2019). Specifically, we chose as 
performance metrics the mean squared error (MSE) for regression and 
accuracy for classification. However, other metrics may be more 
appropriate depending on the project and its conditions. For instance, in 
a classification problem in which the cost of false positives or false 
negatives is not equivalent (it is not the same cost to predict that the 
project will finish on time and be wrong as to predict that it will not 
finish on time and be wrong), alternative metrics that weigh the 
confusion matrix differently could be used. Once the performance 
metrics are calculated, the selection of the best-performing algorithm is 
done by means of nested-cross validation (NCV). Remarkably, because 

Fig. 8. Waterfall control plots for probability analysis. The individual instance analysed corresponds to a project in which the task durations are those indicated on 
the y-axis, with an earned value advance equal to 75% of the BAC. The figures correspond to a model fitted with yi = CBAC

i . The figure on the left shows the analysis 
for the conditional interaction scenario, while the baseline scenario is comparatively analysed on the right. The value E[f(X)] on the x-axis represents the average 
predicted probability computed across all Monte Carlo simulations to complete the project after the time limit planned. The value of f(x) at the top of each subfigure 
represents the new prediction (for the project realisation considered) of the probability of delay given the progress of the activities. 

J.I. Santos et al.                                                                                                                                                                                                                                 



Computers & Industrial Engineering 180 (2023) 109261

17

of the model-agnostic nature of our method, it will allow for the inclu-
sion of new and better algorithms that may emerge in the future. 

Another important aspect to highlight is that the entire methodology 
relies on the correct stochastic definition of the project. Values that fall 
outside of the expected ranges imply that the predictive methods require 
extrapolation, which means that the results should not be trusted. 
Depending on the objectives of the analysis, such as risk management, it 
might be better to train the datasets on uniform distributions or to use 
other sampling methods that include extreme values more often, even if 
this means that the expected values differ from those of the project. 

It is also noteworthy that, since our method allows to generate as 
much simulation data as needed and may use universal approximator 
models (or directly explainable techniques without mediating through 
surrogated models), it facilitates approximating the learning model to 
the stochastic project model at convenience. Nevertheless, it should be 
noted that model fitting and the calculation of SHAP values can be 
computationally expensive in very complex projects, hence posing 
challenges and relevant questions in the application scale of our method. 
Specifically, while optimised SHAP value calculation techniques are 
already available, these are specific for certain machine learning models 
such as tree-based models (Tree SHAP) or deep learning ones (Deep 
SHAP), hence potentially compromising the generality of the approach. 
In this regard, since for application purposes the computational effi-
ciency of all simulation and fitting techniques will be crucial, more 
research will be needed to move from academic solutions to professional 
real-world ones. In upcoming years, if future research reveals that 
certain machine learning algorithms are systematically more time- 
efficient than others and capable of consistently obtaining superior 
predictive results, then the set of models considered for selection could 
be reduced, thereby improving the computational burden of the overall 
process. 

Besides, it should be noted that different models may produce similar 
results when fitted on the same data due to the different internal 
structures and assumptions underlying each one, resulting in the well- 
known Rashomon Effect (Breiman, 2001b). Therefore, to increase the 
robustness of the analyses and explanations with a lower simulation 
burden, using Rashomon sets, or directly using interpretable models 
(Rudin, 2019) (depending on their performance) may be interesting 
avenues for future research. 

Lastly, in relation to the explainability tools implemented in our 
method, we chose SHAP because we believe that the axiomatic prop-
erties that it inherited from Shapley’s solution make it the most suitable 
approach for the problem addressed in comparison to other alternatives 
such as Break Down (Robnik-Sikonja & Kononenko, 2008) and Local 
Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 
2016). In particular, such properties are especially desirable for the 
framework of prediction-level local explanations that underpins our 
backward analysis approach. 

Nevertheless, SHAP is not the only recent XAI tool that can provide 
relevant information on prediction models from a prospective perspec-
tive. Hence, future research may explore the use of XAI tools comple-
mentary to SHAP. Such tools may offer alternative views on the 
relationship between task-sensitivity metrics and outcomes at the level 
of global model explanations. For example, from a model-agnostic 
perspective, Permutation Feature Importance (Fisher et al., 2019), In-
dividual Conditional Expectations (Goldstein et al., 2015), and Accu-
mulated Local Effects (Apley & Zhu, 2020), among other techniques, 
may potentially provide valuable and different insights into the influ-
ence of task duration and cost on the final project outcome(s). 
Furthermore, various machine learning models, such as decision trees 
and ensemble techniques, provide specific tools to conduct variable 
importance analyses (Wei et al., 2015), which could enrich the overall 
picture particularly in complex projects. 

6.2. Managerial implications 

The methodology proposed in this paper has significant implications 
for project management under uncertainty. Thanks to the XAI layer it 
incorporates to the framework of stochastic earned value management, 
it can help project managers to improve project control, manage 
complexity risk, and make better decisions. 

By means of a proactive, data-driven approach, our methodology 
provides more detailed information on the relationship between project 
activities, progress and expected vs. obtained results. By leveraging 
simulation techniques, machine learning models and XAI, project 
managers can better understand the non-linear impact of the project 
network and its different tasks on project performance, which will 
translate into better decisions. 

In particular, the use of SHAP as the explainability layer allows to 
quantify how different project activities and decisions would affect the 
overall project outcomes (time and cost). Consequently, these prospec-
tive analyses can help project managers make better decisions/adjust-
ments on project execution so that time and cost targets are met in later 
project phases. 

Besides, SHAP also allows to retrospectively analyse the causes of 
project deviations from the planned value curve (both in time and cost), 
which has significant implications as well. Specifically, it allows for a 
certain level of accountability attribution between the parties involved 
in the project. Apart from that, from a knowledge and experience 
management perspective, our method helps to identify possible biases in 
planning and provides clues to improve future planning in projects with 
similar activities. 

Eventually, as previously stated, a relevant advantage of our meth-
odology is its generalisability. The approach is general and model- 
agnostic, making it a versatile tool that can be used in different sec-
tors and project types. Notwithstanding, since the computational burden 
of some of the analyses can be high, project managers (and future 
research) may need to assess the computational resources required to 
apply this methodology to larger projects, and determine whether the 
advantages of general approaches to model selection outweigh the 
computational costs. 

7. Conclusions 

In this paper, we have proposed a new methodology for the advanced 
control of projects subject to stochastic variability based on the EVM and 
the triad methods. The inputs for our method are: (i) the primary ele-
ments of the EVM —earned value (EV), planned value (PV), and actual 
cost (AC); (ii) the stochastic definition of activity durations; and (iii) the 
relationships between project activities (and eventually costs) according 
to the project network. From this information, two types of analyses: 
forward and backward, can be conducted. 

To perform forward analysis, the proposed method consists of three 
phases: (i) the obtention of Monte Carlo simulations compatible with the 
stochastic definition of the project, (ii) the selection of the machine 
learning model that best encapsulates the behaviour of the project from 
the simulation data, and (iii) the exploitation of the model results 
through interpretable machine learning techniques, in particular, 
through SHAP. This forward analysis framework allows for a global 
understanding of the influence of the different activities on the final 
project duration and/or of the probability of finishing the project on 
time. Through SHAP summary plots, the relative impact of each activity 
can be analysed in terms of the duration values of each task. This in-
formation can be enriched and detailed by means of Shap dependence 
plots and plots for activity interactions, in which the combined effect of 
the activity durations on the performance measures of interest can be 
analysed. 

Alternatively, by feeding the machine learning model with the du-
rations of the tasks performed up to the actual time (control time), the 
backward analysis framework can be used to explore how the project 
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predictions have changed conditional on the current project status and 
to identify the reasons for such change. 

The proposed methodology provides two types of analysis that can 
be helpful for a project manager. Forward analysis provides more 
descriptive richness than classic task importance analysis techniques but 
keeps the overall project information condensed and easily under-
standable. Furthermore, understanding the non-linear relationship be-
tween inputs-outputs —such as those defined by project structures— 
allows for improved decision-making by acting on the decision levers 
with the most significant impact. In turn, the information from the 
backward analyses provides the project manager with essential control 
information. It allows to know how the future expectations of the project 
have changed conditional on the current situation and provides her with 
a tool to fairly attribute the responsibility for the progress of the project 
up to the moment of analysis (control). 

The method presented has been illustrated with a case study based on 
the EVM and project duration analysis. Still, it is a very general frame-
work, easily adaptable to other integrated control techniques such as 
EDM, or to the study of costs instead of durations —which could be 
conducted in an identical way. Furthermore, it is also possible to feed 
models based on task durations and progress rates, which may allow a 
better fit to the project structure in small projects. 

Eventually, the method proposed does also have some limitations 
related to the choices and decisions made to formulate it, such as the 
computational burden for large-scale projects, the possibility that other 
stochastic sampling techniques may also provide good results, the use of 
CPM/PERT networks instead of GERT ones, etc. Nonetheless, these 
limitations constitute promising lines for future research that will be 
worth exploring. 
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