ANEXO I This readme.txt file was generated on 2023-05-25 by Alvaro Colina Santamaría GENERAL INFORMATION 1. TITLE OF DATASET: Dataset of the work “Multiamperometric-SERS detection of melamine on gold screen-printed electrodes” 2. AUTHORSHIP: Name: Sheila Hernandez Institution: Departamento de Quimica. Universidad de Burgos e-mail: shmunoz@ubu.es ORCID: 0000-0002-0466-8759 Name: Lydia Garcia Institution: Departamento de Quimica. Universidad de Burgos e-mail: lgc0047@alu.ubu.es Name: Martin Perez-Estebanez Institution: Departamento de Quimica. Universidad de Burgos e-mail: mpestebanez@ubu.es ORCID: 0000-0003-1510-5422 Name: William Cheuquepan Institution: Departamento de Quimica. Universidad de Burgos e-mail: wcheuquepan@ubu.es ORCID: 0000-0001-6741-1144 Name: Aranzazu Heras Institution: Departamento de Quimica. Universidad de Burgos e-mail: maheras@ubu.es ORCID: 0000-0002-5068-2164 Name: Alvaro Colina Institution: Departamento de Quimica. Universidad de Burgos e-mail: acolina@ubu.es ORCID: 0000-0003-0339-356X DESCRIPTION 1. DATASET LANGUAGE: English 2. KEYWORDS: EC-SERS, Gold-electrodes, Time-resolved spectroelectrochemistry, Raman, Melamine 3. ABSTRACT: A new, simple and fast protocol to generate gold-based SERS substrates is presented in this work. Melamine is a compound widely used in the industry that can be toxic for humans if consumed even in low concentrations. EC-SERS is an excellent alternative to classical methods to detect and quantify this compound because Raman spectroscopy provides a fingerprint of the molecules, providing very good sensitivity. In this work, time-resolved Raman spectroelectrochemistry is employed to generate a SERS substrate and to detect melamine, all in a single experiment. The dynamic character of this technique provides valuable information about the interaction of the molecule with the generated substrate. An optimization of the spectroelectrochemical method based on a multi-pulse amperometric detection has been performed. The new protocol presented in this work shows significant figures of merit in a very short experiment time, just 25 s. 4. DATE OF DATA COLLECTION: 2020-2022 5. DATE OF DATASET PUBLICATION: 29-05-2023 6. FUNDING: Authors acknowledge the financial support from Agencia Estatal de Investigación/Ministerio de Ciencia e Innovacion /10.13039/501100011033 (Grant PID2020-113154RB-C21) and Ministerio de Ciencia, Innovación y Universidades (Grant RED2018-102412-T). W. Ch. thanks JCyL for his postdoctoral fellowship (Grant BU297P18). S.H. and M.P-E. thank JCyL and European Social Fund for their predoctoral fellowships. ACCESS INFORMATION 1. LICENSE: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 2. Dataset DOI: https://doi.org/10.36443/10259/7682 3. RELATED PUBLICATIONS: Article published in Journal of Electroanalytical Chemistry, 918 (2022) 116478 (Elsevier) https://doi.org/10.1016/j.jelechem.2022.116478 METHODOLOGICAL INFORMATION Time-resolved Raman spectroelectrochemistry (TR-Raman-SEC) experiments were carried out with a customized SPELEC-Raman (Metrohm-DropSens), with an integrated laser of 638 nm, an appropriate spectrophotometer, and a potentiostat. Gold screen-printed electrodes (Au-SPE, DRP-220BT, Metrohm-DropSens) were used in all experiments to ensure good reproducibility. A customized Raman-SEC cell was used to carry out all the experiments with these Au-SPE. These electrodes consist of a 4 mm diameter gold working electrode, a gold counter electrode, and a pseudo-reference silver electrode, all of them printed on a ceramic platform. The laser power was 20 mW (63 mW/cm2), and the integration time was kept 1 s for all experiments. Dropview SPELEC (Metrohm-DropSens) is the software used for the simultaneous acquisition of spectral and electrochemical information, allowing also data treatment. Matlab R2018a is the software used for the treatment and analysis of the data generated. Statgraphics Centurion XIX has been used for the treatment and analysis of the data generated. Two electrochemical techniques are used in this work: (1) Cyclic voltammetry (CV). A CV was carried out to explore the behavior and the SERS response of melamine in 0.1 M KCl medium. The vertex potentials were ?0.80 V and +1.40 V, starting at +0.70 V in the anodic direction. All potentials are referred to a silver pseudo-reference electrode. Different scan rates were used (0.02 V·s?1, 0.05 V·s?1 and 0.10 V·s?1). (2) Multi-pulse amperometric detection (MAD). This technique shows a better response in a reproducible way after the optimization of the experimental parameters by using the design of experiments (DOE). A protocol with 3 steps is followed: (1) the applied potential is +1.15 V for 5 s, (2) 0.00 V for 15 s, and (3) ?0.70 V for 5 s. In this way, the whole experiment is performed in just 25 s. Electrochemical and spectroscopic responses are simultaneously collected, with high temporal resolution (integration time: 1 s). A tap water sample was analyzed to demonstrate the good capability of detection of the multi-pulse amperometry detection protocol based on EC-SERS. For this purpose, a 6.7 ?M melamine sample was prepared in 0.1 M KCl using tap water as solvent without any other treatment of the water. Characterization of the modified Au SPE surface was performed using Field Emission-Scanning Electron Microscopy (FE-SEM). A Zeiss Gemini 560 microscope operating at 2.0 keV was used to obtain images of the surface at magnification of 25,000×. FILE OVERVIEW E01_KCl_0_1_M_AuSPEBT_1.csv E01_Melam_10_microM_KCl_0_1_M_AuSPEBT_pulsos_1.csv E02_Melam_0_01_mM_KCl_0_1_M_AuSPEBT_Voltamp_1.csv E02_Melam_0_05_mM_KCl_0_1_M_AuSPEBT_1.csv E01_s4_Melamina_10uM_KCl_0_1M_AuSPEBT.csv E02_s1_Melamina_1uM_KCl_0_1M_AuSPEBT.csv E04_s3_Melamina_7uM_KCl_0_1M_AuSPEBT.csv E05_s5_Melamina_13uM_KCl_0_1M_AuSPEBT.csv E06_s2_Melamina_4uM_KCl_0_1M_AuSPEBT.csv E07_s4_Melamina_10uM_KCl_0_1M_AuSPEBT.csv E08_s3_Melamina_7uM_KCl_0_1M_AuSPEBT.csv E09_s5_Melamina_13uM_KCl_0_1M_AuSPEBT.csv E10_s2_Melamina_4uM_KCl_0_1M_AuSPEBT.csv E12_s1_Melamina_1uM_KCl_0_1M_AuSPEBT.csv E13_s3_Melamina_7uM_KCl_0_1M_AuSPEBT.csv E14_s5_Melamina_13uM_KCl_0_1M_AuSPEBT.csv E15_s2_Melamina_4uM_KCl_0_1M_AuSPEBT.csv E16_s1_Melamina_1uM_KCl_0_1M_AuSPEBT.csv E17_s4_Melamina_10uM_KCl_0_1M_AuSPEBT.csv E19_mp_agua_grifo_5uM.csv E20_mp_agua_grifo_5uM.csv E21_mp_agua_grifo_5uM.csv DOE_Statgraphics.docx E01_Melam_0_01_mM_KCl_0_1_M_1_AuSPEBT_1.csv E02_Melam_0_01_mM_KCl_0_1_M_2_AuSPEBT_1.csv E03_Melam_0_01_mM_KCl_0_1_M_3_AuSPEBT_1.csv E04_Melam_0_01_mM_KCl_0_1_M_4_AuSPEBT_1.csv E05_Melam_0_01_mM_KCl_0_1_M_5_AuSPEBT_1.csv E06_Melam_0_01_mM_KCl_0_1_M_6_AuSPEBT_1.csv E07_Melam_0_01_mM_KCl_0_1_M_7_AuSPEBT_1.csv E08_Melam_0_01_mM_KCl_0_1_M_8_AuSPEBT_1.csv E09_Melam_0_01_mM_KCl_0_1_M_9_AuSPEBT_1.csv E10_Melam_0_01_mM_KCl_0_1_M_10_AuSPEBT_1.csv E11_Melam_0_01_mM_KCl_0_1_M_11_AuSPEBT_1.csv E12_Melam_0_01_mM_KCl_0_1_M_12_AuSPEBT_1.csv E13_Melam_0_01_mM_KCl_0_1_M_13_AuSPEBT_1.csv E14_Melam_0_01_mM_KCl_0_1_M_14_AuSPEBT_1.csv E15_Melam_0_01_mM_KCl_0_1_M_15_AuSPEBT_1.csv E16_Melam_0_01_mM_KCl_0_1_M_16_AuSPEBT_1.csv E17_Melam_0_01_mM_KCl_0_1_M_17_AuSPEBT_1.csv E18_Melam_0_01_mM_KCl_0_1_M_18_AuSPEBT_1.csv E19_Melam_0_01_mM_KCl_0_1_M_19_AuSPEBT_1.csv Readme 11112019.docx E01_Melam_0_01_mM_KCl_0_25_M_AuSPEBT_Voltamp_1.csv E02_Melam_0_01_mM_KCl_0_1_M_AuSPEBT_Voltamp_1.csv E03_Melam_0_01_mM_KCl_0_05_M_AuSPEBT_Voltamp_1.csv E02_Melam_0_01_mM_KCl_0_1_M_AuSPEBT_Voltamp_1.csv E05_Melam_0_01_mM_HCl_0_1_M_AuSPEBT_Voltamp_1.csv E01_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E02_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E03_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E04_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E05_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E06_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E07_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E08_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E09_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv E10_Melam_0_02_mM_KCl_0_1_M_AuSPEBT_1.csv DATA-SPECIFIC INFORMATION Each “.csv” experiment includes a file with a matrix that include information about time, potential, current, Raman shift and Raman intensity. The file “DOE_Statgraphics.docx” includes the results of the experimental design wizard.