ANEXO I This readme.txt file was generated on 2023-05-25 by Alvaro Colina Santamaría GENERAL INFORMATION 1. TITLE OF DATASET: Dataset of the work “Raman spectroelectrochemical determination of clopyralid in tap water” 2. AUTHORSHIP: Name: Martin Perez-Estebanez Institution: Departamento de Quimica. Universidad de Burgos e-mail: mpestebanez@ubu.es ORCID: 0000-0003-1510-5422 Name: William Cheuquepan Institution: Departamento de Quimica. Universidad de Burgos e-mail: wcheuquepan@ubu.es ORCID: 0000-0001-6741-1144 Name: Maria Huidobro Institution: Departamento de Quimica. Universidad de Burgos e-mail: hmhlago@ubu.es Name: José Vicente Cuevas Institution: Departamento de Quimica. Universidad de Burgos e-mail: jvcv@ubu.es ORCID: 0000-0002-2421-1529 Name: Sheila Hernandez Institution: Departamento de Quimica. Universidad de Burgos e-mail: shmunoz@ubu.es ORCID: 0000-0002-0466-8759 Name: Aranzazu Heras Institution: Departamento de Quimica. Universidad de Burgos e-mail: maheras@ubu.es ORCID: 0000-0002-5068-2164 Name: Alvaro Colina Institution: Departamento de Quimica. Universidad de Burgos e-mail: acolina@ubu.es ORCID: 0000-0003-0339-356X DESCRIPTION 1. DATASET LANGUAGE: English 2. KEYWORDS: Spectroelectrochemistry, EC-SOERS, SERS, Raman, Herbicides 3. ABSTRACT: Clopyralid is a common herbicide used all around the world that can be dissolved in the rain stream and accumulate in underground water with the potential threat of reaching drinking water. Many methodologies have been proposed to perform quantitative analysis of this compound but, to this day, no Raman detection of clopyralid has been carried out. Here, a novel methodology to quantify clopyralid, based on Electrochemical Surface Oxidation-Enhanced Raman Scattering (EC-SOERS), is developed, using disposable silver screen-printed electrodes as substrate. The optimization of the electrolytic media is carried out, searching for the conditions where a maximum Raman enhancement is obtained. Moreover, a study about the effect of various interfering compounds, which could be present in water, on the clopyralid Raman response is performed. The results demonstrate that the presented methodology allows the determination of clopyralid in the micromolar range in tap water without any purification or preconcentration step, requiring few minutes to perform the measurement of each sample. 4. DATE OF DATA COLLECTION: 2022 5. DATE OF DATASET PUBLICATION: 29-05-2023 6. FUNDING: Authors acknowledge Ministerio de Ciencia e Innovacion and Agencia Estatal de Investigacion (MCIN/AEI/10.13039/501100011033, PID2020-113154RB-C21), Junta de Castilla y Leon (Grant BU297P18) and Ministerio de Ciencia, Innovacion y Universidades (RED2018–102412-T) for the support of this work. Martín Perez and Sheila Hernandez acknowledge Junta de Castilla y Leon for their predoctoral contracts. ACCESS INFORMATION 1. LICENSE: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 2. Dataset DOI: https://doi.org/10.36443/10259/7684 3. RELATED PUBLICATIONS: Article published in Microchemical Journal, 183 (2022) 108018 (Elsevier) https://doi.org/10.1016/j.microc.2022.108018 METHODOLOGICAL INFORMATION In-situ time-resolved Raman spectroelectrochemistry (TR-Raman-SEC) was performed with a customized SPELEC-RAMAN instrument (Metrohm-DropSens), which includes a 785 nm laser source. The laser power in all experiments was set at 80 mW (254 W cm-2). This instrument was connected to a Raman probe (DRP-RAMANPROBE, Metrohm-DropSens). A home-made cell for screen-printed electrodes was used during the experiments. DropView SPELEC software (Metrohm-DropSens) was used to control the instrument, which allows getting real-time and synchronized spectroelectrochemical data. An integration time of 1 s was used for all the TR-Raman-SEC experiments. AgSPE from Metrohm-DropSens (DRP-C013) were used as electrochemical set-up. These electrodes consist of a working electrode of silver with a diameter of 1.6 mm, a carbon counter electrode and a silver pseudo-reference electrode. Cyclic voltammetry was used as electrochemical technique to perform TR-Raman-SEC experiments. All potentials are referred to the pseudo-reference electrode of silver. For all the samples of the calibration curve, a pretreatment of the electrode surface based on two voltammetric cycles were performed previously to the determination. A CV was applied between -0.35 V and +0.53 V, starting at -0.05 V in anodic direction for each experiment using a blank solution (HClO4 0.1 M + KBr 5 mM), to improve the sensitivity and the reproducibility of the measurements. A scan rate of 0.02 V s-1 and a step potential of 2 mV were set for all electrochemical measurements. All electrochemical experiments were started at -0.05 V in anodic direction. All theoretical calculations were performed using the hybrid functional B3LYP. For the description of the atoms, basis def2-SVP were used for all the elements adding pseudopotentials in the description of the silver. The optimization of the structures was carried out without any restriction. A molecule of water interacting with the silver cation was used to complete the coordination sphere of the metal in its interaction with the clopyralid. The software package orca Gaussian 09 has been used for these DFT calculations. Matlab R2018a is the software used for the treatment and analysis of the data generated. FILE OVERVIEW E02_Clopy0_1mM_HClO4_0_1M_KBr_5mM_AgSPE.csv E02_Clopy0_1mM_HClO4_0_1M_KCl_5mM_AgSPE.csv E04_Clopy0_1mM_HClO4_0_1M_KBr_10mM_AgSPE.csv E06_Clopy0_1mM_HClO4_0_1M_KBr_1mM_AgSPE.csv E10_Clopy0_1mM_HClO4_0_1M_KCl_50mM_AgSPE.csv E19_Clopy0_1mM_HClO4_0_1M_KCl_10mM_AgSPE.csv E20_Clopy0_1mM_HClO4_0_1M_KCl_25mM_AgSPE.csv X1_picloram_0_10mM_HClO4_0_1M_KBr_5mM_AgSPE.csv X2_2_4D_0_1mM_HClO4_0_1M_KBr_5mM_AgSPE.csv E01_90microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E03_5microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E07_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E09_45microM_problema_grifo_HClO4_0_1M_KBr_5mM_AgSPE.csv E11_10microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E13_70microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E15_30microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E17_10microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E19_30microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E21_90microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E25_45microM_problema_grifo_HClO4_0_1M_KBr_5mM_AgSPE.csv E27_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E29_5microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E31_70microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E33_90microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E35_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E37_45microM_problema_grifo_HClO4_0_1M_KBr_5mM_AgSPE.csv E41_30microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E43_10microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E45_70microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E47_5microM_HClO4_0_1M_KBr_5mM_AgSPE.csv ZZE21_90microM_HClO4_0_1M_KBr_5mM_AgSPEINTERPOLADO.csv E01_clopy_35microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E02_clopy_90microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E04_clopy_10microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E06_clopy_60microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E08_clopyproblema_50uM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E10_clopy_35microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E12_clopy_90microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E14_clopy_10microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E16_clopy_60microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E18_clopyproblema_50uM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E20_clopy_60microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E22_clopy_10microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E24_clopy_90microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E26_clopy_35microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E28_clopyproblema_50uM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E30_clopy_90microM_24D_50microM_HClO4_0_1M_KBr_5mM_AgSPE.csv E01_clopy_90uM.csv E03_clopy_10microM.csv E05_clopy_35microM.csv E07_clopy_60microM.csv E09_clopyproblema_50uM.csv E11_clopy_90microM.csv E13_clopy_10microM.csv E15_clopy_35microM.csv E17_clopy_60microM.csv E19_clopyproblema_50uM.csv E21_clopy_35microM.csv E23_clopy_60microM.csv E25_clopy_90microM.csv E27_clopy_10microM.csv E29_problemaclopy_50uM.csv raman_clopiralida_Ag_Carboxilato_01.csv raman_clopiralida_Ag_Carboxilato_02b.csv raman_clopiralida_Ag_piridina.csv Raman_Clopiralida_neutra_fasegas.csv CLOPIRALIDA neutra fase gas.LOG CLOPIRALIDA_AG_CARBOXILATO_01.LOG CLOPIRALIDA_AG_PIRIDINA_01.LOG CLOPRIALIDA_AG_CARBOXILATO_02B.LOG Readme.LOG DATA-SPECIFIC INFORMATION Each “.csv” experiment includes a file with a matrix that include information about time, potential, current, Raman shift and Raman intensity. Each “.log” experiment includes information about the structure obtained from DFT calculations.