VALORIZATION OF BREWER'S SPENT GRAIN BY FURFURAL RECOVERY/REMOVAL FROM SUBCRITICA WATER HYDROLYSATES BY PERVAPORATION

A.E. Illera^a*, P. Alonso-Riaño^a, P. Barea^a, A. Bermejo-López^b, Ó. Benito-Román^a, R. Melgosa^a, S. Beltrán^a, M.T. Sanz^a

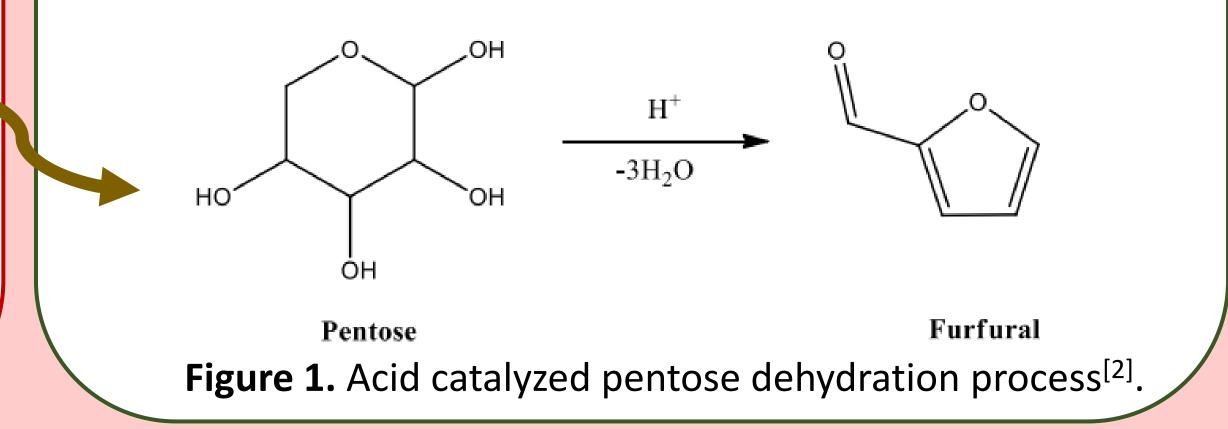
^aDepartment of Biotechnology and Food Science, University of Burgos, Pl. Misael Bañuelos s/n, 09001 Burgos, Spain ^bDepartment of Chemical Engineering, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain **Corresponding author: aeillera@ubu.es*

BSG is a **lignocellulosic biomass** with a valuable protein and carbohydrates **BSG chemical composition**^[1]

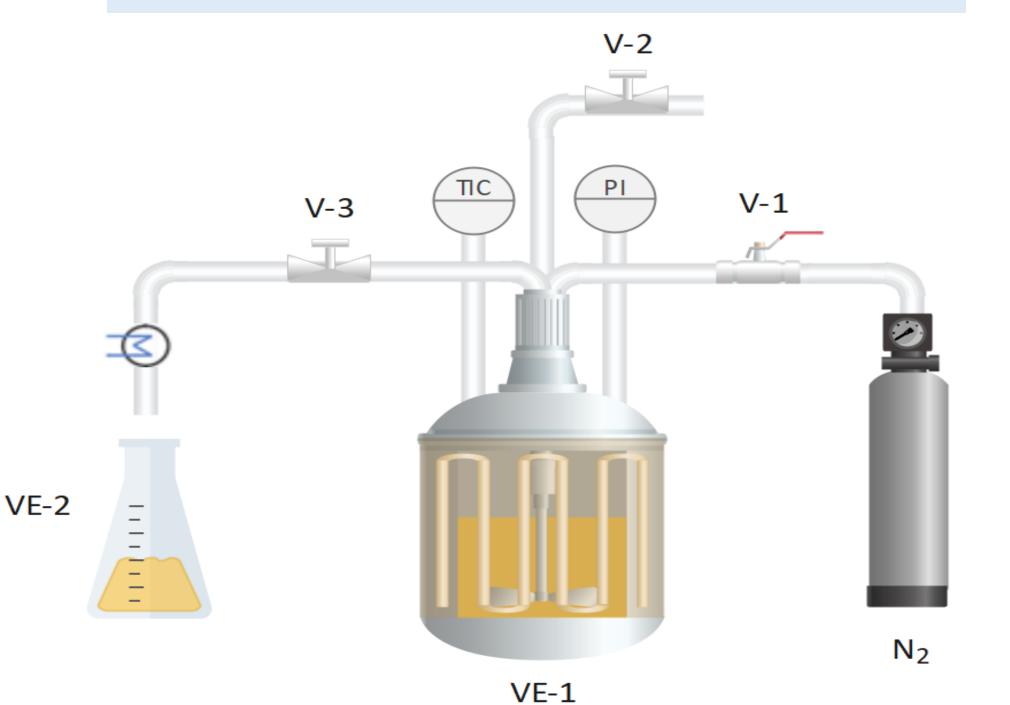
dry-BSG 1100

FURFURAL FROM HEMICELLULOSE

✓ **Furfural** is considered one of the **top value-added chemicals** derived from biomass.


 \checkmark It's conventional production involves the use of strong acids.

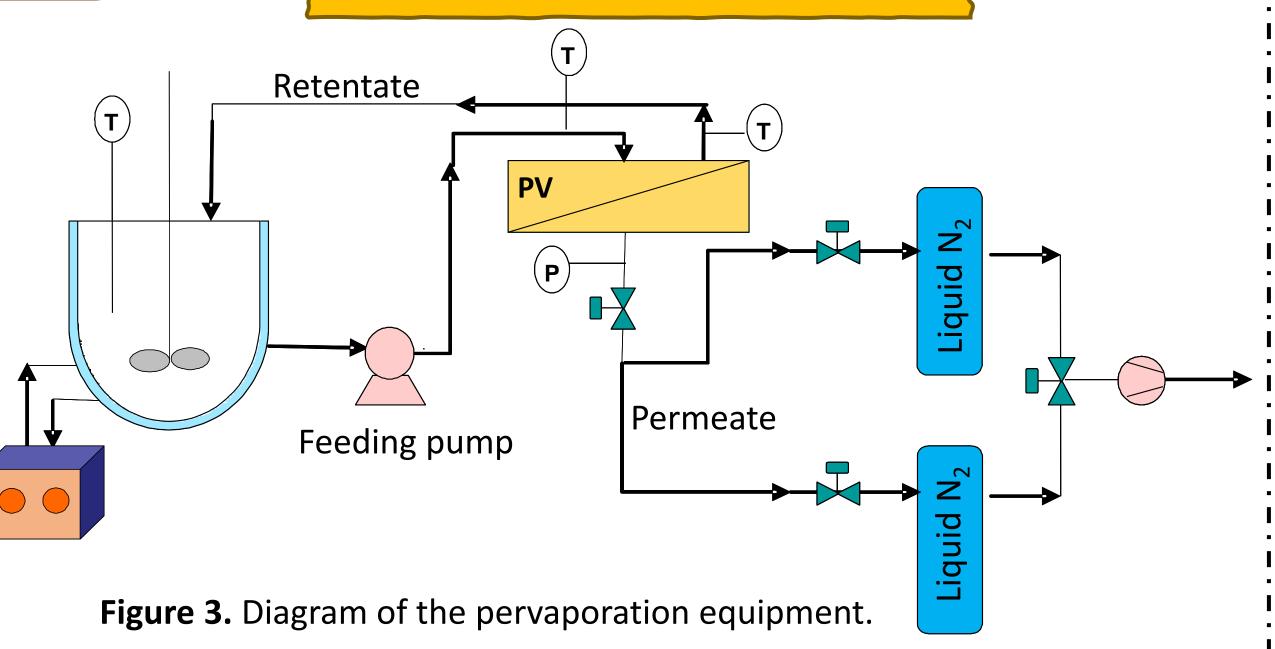
After **beer production**, BSG is generated, being the **85% of the total byproducts** of this industry.



Component	g/100g dry-BS
Protein	22.1 ± 0.5
Cellulose	14.0 ± 0.2
Hemicellulose	32.0 ± 0.6
Lipids	6.2 ± 0.3
Total lignin	20.8 ± 0.2
Ash	3.32 ± 0.06

✓ The **recovery processes** are energy-consuming and use harmful solvents.

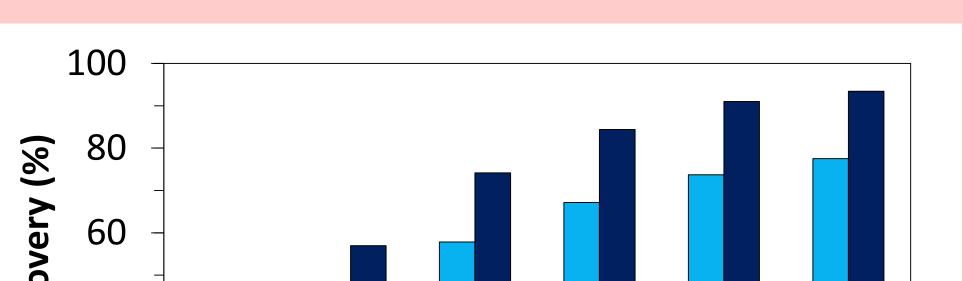
LABORATORY SCALE SubW SYSTEM



This work proposes the **furfural** production from the hemicellulose fraction of the BSG by subW, withouth the addition of any catalyst, and further recovery by organophilic pervaporation.

SWE SYSTEM			
Reactor volume	500 mL		
Pressure	50 bar		
Temperature	175 °C		
Time	60 minutes		

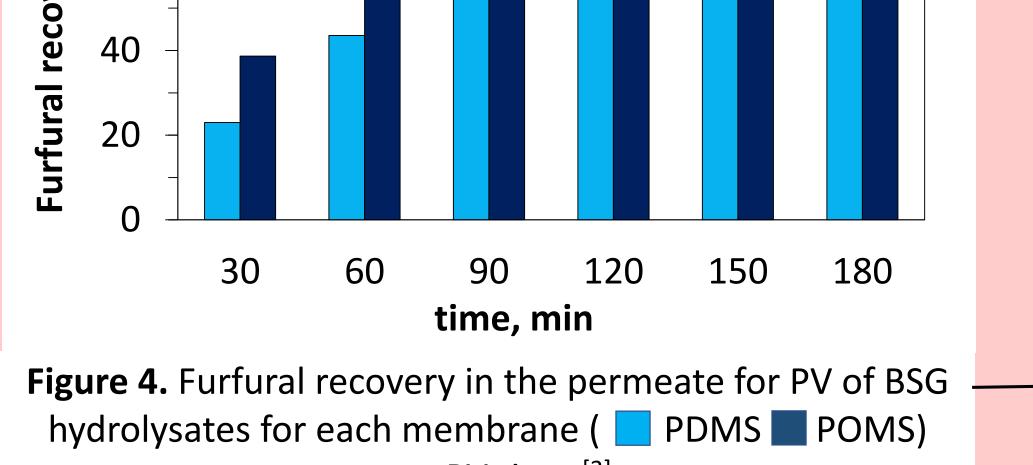
PERVAPORATION SYSTEM


2 types of membranes: **PDMS**: Polydimethyl siloxane **POMS**: Polyoctylmethyl siloxane

5% (w/w)				
PERVAPORATION				
55 °C				
300 Pa				
180 °C				

Figure 2. Diagram of the laboratory-scale subcritical water equipment. VE-1: extractor; VE-2: sample collector; V-1: pressurization valve; V-2: pressure relief valve; V-3: needle valve.

SubW (Subcritical water) was proposed for	Compound	C _{0, PDMS}	C _{PV-PDMS}	C _{0, POMS}	C _{PV-POMS}
the hydrolysis of BSG.	Furfural	1.7	0.35	1.3	0.17
Hydrolysis products included sugar monomers such as xylose, glucose and arabinose and degradation products. Furfural is the main degradation product from the pentoses.	HMF	0.18	0.20	0.15	0.16
	Formic acid	0.46	0.55	0.36	0.41
	Acetic acid	0.85	0.89	0.79	1.0
	Lactic acid	0.27	0.32	0.30	0.31



The **enrichment factor (β)** is the relationship between the concentration in the permeate $\beta = w_{i,p} / w_{i,f}$

and the feed for a specific component

CONCLUSIONS

- Both membranes showed a great selectivity to furfural.
- **POMS** membrane produced the

over PV time.^[3]

Furfural	48	63				
Formic acid	0.82	0.16				
Acetic acid	0.77	0.18				
Furfural recovery increased gradually during pervaporation time for both PDMS and POMS membranes.						

PDMS

highest furfural recovery (93%). The highest enrichment factor for both membranes was towards furfural.

Subcritical water and pervaporation showed to be an effective combination for the production and recovery of biomass-derived furfural.

References

Acknowledgements

[1] P. Alonso-Riaño, M.T. Sanz, Ó. Benito-Román, S. Beltrán, E. Trigueros, Subcritical water as hydrolytic medium to recover and fractionate the protein fraction and phenolic compounds from craft brewer's spent grain, Food Chemistry, 2021, 351, 129264. [2] M. Celman, L. Gutiérrez, C. Ormachea, C. Ferretti, Evaluation of the recovery of furfural from wood scraps, Chemistry *Proceedings*, **2022**, 8, 8.

[3] P. Alonso-Riaño, A.E. Illera, M.S.T. Amandio, A.M.R.B. Xavier, S. Beltrán, M.T. Sanz, Valorization of brewer's spent grain by furfural recovery/removal from subcritical water hydrolysates by pervaporation, Separation and Purification Technology, **2023**, 309, 123008.

This work was supported by the AEI [PID2019-104950RB-00, PID2020-116716RJ-I00, TED2021-129311B-I00, PDC2022-133443-100] and JCyL and ERDF [BU050P20]. P. Alonso-Riaño P. Barea acknowledge JCyL and ESF [ORDEN and EDU/556/2019] and [ORDEN EDU/1868/2022], respectively. A. Bermejo-López to the Margarita Salas grant [MARSA22/03] and R. Melgosa the Beatriz Galindo Fellowship [BG20/00182].

POMS

