

Subcritical Water and Conventional Extraction of Phenolic compounds from Onion Skin Waste: Implications in Diabetes Disease.

E. Trigueros^{a,b,*}, Ó. Benito-Román^b, A.P. Oliveira^a, P.B. Andrade^a, M.T. Sanz^b and S. Beltrán^b

^aREQUIMTE/LAQV, Laboratório de Farmacognosia, Dept. Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal

^bBiotechnology and Food Science Dept., Chemical Engineering Division, University of Burgos, Burgos, Spain *Corresponding author: <u>eandres@ff.up.pt</u>

Introduction

Diabetes type 2 accounts for 90 % of all diabetes worldwide [1]. One strategy for diabetes type 2 treatment consists of blocking the enzymes responsible for carbohydrates digestion, but many side effects have been associated with oral antidiabetics [2]. Onion skin waste (*Allium cepa* L.) (OSW) has been reported to positively affect human health because of its flavonoids content [3]. The aim of this work is to evaluate the antidiabetic potential of a subcritical water (SW) extract obtained at 145 °C in a batch reactor from OSW *Horcal* variety, and to compare it with those obtained by conventional extraction (CE) at 37 °C with an ethanol:water (70 %, v/v) mixture from *Horcal* and *Red* OSW varieties.

Results and discussion

The major compounds found in *Horcal* and *Red* OSW extracts obtained by CE were quercetin and quercetin-4'-glucoside, whereas in the *Horcal* SW extract, protocatechuic acid and quercetin-4'-glucoside were the majority. All the extracts inhibited α -glucosidase and aldose-reductase, but just CE extracts inactivated α -amylase (Fig. 1). Inhibition occurred in a concentration-dependent manner, and the extracts obtained by CE resulted to be more active than the SW extract. However, the strong α amylase inhibition is related to different side effects such as flatulence, diarrhea or liver disorder. Hence, the SW extract presents a great advantage in comparison with CE extracts because, by not inactivating α -amylase, these effects could be avoided [2]. In addition, the IC₅₀ value determined in the SW extract for α -glucosidase (76±4 µg/mL) resulted to be much lower (p < 0.01) than the value determined for acarbose (136.3±1.1 µg/mL), one of the most widely used oral antidiabetics.

Figure 1. Inhibitory effect of OSW extracts $(\triangle Horcal-CE, \bullet Red-CE, \blacktriangle Horcal-SWE)$ on: (A) α -Glucosidase, (B) α -Amylase and (C) Aldose-reductase.

Conclusions

Although extracts obtained by CE resulted to be more active than the SW extract in terms of enzyme inhibition, the latter did not interfere with α -amylase activity, whose inhibition is associated with numerous side effects. SW extraction has been proven to be a useful technology to obtain extracts from OSW with antidiabetic properties because of its ability to inactivate enzymes involved in carbohydrates digestion.

Funding

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020.

Acknowledgements

To Agencia Estatal de Investigación for the grant number PID2020-116716RJ-I00/ AEI / 10.13039/501100011033. Ester Trigueros thanks European Union-NextGenerationEU, Ministry of Universities and Recovery, Transformation and Resilience Plan, for the post-doctoral contract through a call from the University of Burgos. Andreia P. Oliveira thanks FCT (Fundação para a Ciência e Tecnologia) for funding through program DL 57/2016 – Norma transitória (DL57/2016/CP1346/CT0015).

References

[1] International Diabetes Federation. IDF Diabetes Atlas, 10th edition, **2021** [accessed 27 January 2023] <u>https://diabetesatlas.org/</u>

- [2] S. Shobana, et al., Food Chemistry 2009, 115, 1268-1273 doi.org/10.1016/j.foodchem.2009.01.042
- [3] N. Marefati, et al., Pharmaceutical Biology 2021, 59(1), 285-300 doi.org/10.1080/13880209.2021.1874028