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A B S T R A C T   

When the prevalence of positive samples in a whole population is low, the pooling of samples to detect them has 
been widely used for epidemic control. However, its usefulness for applying analytical screening procedures in 
food safety (microbiological or allergen control), fraud detection or environmental monitoring is also evident. 

The expected number of tests per individual sample that is necessary to identify all ‘positives’ is a measure of 
the efficiency of a sample pooling strategy. Reducing this figure is key to an effective use of available resources in 
environmental control and food safety. This reduction becomes critical when the availability of analytical tests is 
limited, as the SARS-CoV-2 pandemic showed. 

The outcome of the qualitative analytical test is binary. Therefore, the operation governing the outcome of the 
pooled samples is not an algebraic sum of the individual results but the logical operator ’ ∨ ’ (‘or’ in natural 
language). Consequently, the problem of using pooled samples to identify positive samples naturally leads to 
proposing a system of logical equations. Therefore, this work suggests a new strategy of sample pooling based on: 
i) A half-fraction of a Placket-Burman design to make the pooled samples and ii) The logical resolution, not 
numerical, to identify the positive samples from the outcomes of the analysis of the pooled samples. 

For a prevalence of ‘positive’ equal to 0.05 and 10 original samples to be pooled, the algorithm presented here 
results in an expected value per individual equal to 0.37, meaning a 63% reduction in the expected number of 
tests per individual sample. 

With sensitivities and specificities of the analytical test ranging from 0.90 to 0.99, the expected number of tests 
per individual ranges from 0.332 to 0.416, always higher than other pooled testing algorithms. In addition, the 
accuracy of the algorithm proposed is better or similar to that of other published algorithms, with an expected 
number of hits ranging from 99.16 to 99.90%. 

The procedure is applied to the detection of food samples contaminated with a pathogen (Listeria mono-
cytogenes) and others contaminated with an allergen (Pistachio) by means of Polymerase Chain Reaction, PCR, 
test.   

1. Introduction 

Pooled testing or ‘group testing’ is the process of testing samples 
together as a combined group, rather than individually, to identify those 
samples with a binary trait of interest: positive samples. When a ‘pooled 
sample’ (group) tests negative, none of the original samples included in 
it needs to be analysed so all of them are discarded. If the pooled sample 
tests positive, at least one of its original samples is positive so further 
investigation is required. This might involve an individual analysis of 
each original sample or additional steps of sample pooling to unam-
biguously identify the positive original samples. As long as the preva-
lence of the trait of interest is small and appropriate group sizes are 

chosen, pooled testing can lead to substantial reductions in the number 
of tests when compared to testing each sample individually. 

The pioneer work in group testing emerges from Dorfman’s research 
on the detection of defective members in large populations [1], since 
procedures based on individual inspections, whether a rare infectious 
disease in a population or defective items in manufacturing, are often 
time-consuming and unaffordable. 

Although Dorfman’s method has been widely used in medical ap-
plications, further developments in group testing have led to increasing 
testing capacity which has benefited testing a series of diseases in a 
variety of human applications, including blood donation screening [2], 
detection for Human Immunodeficiency Virus, HIV [3–5], influenza 
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outbreak surveillance [6,7], chlamydia and gonorrhea testing [8], 
detection of Hepatitis C virus, HVC [9], drug screening [10] as well as 
veterinarian applications, such as salmonella in horses [11], disease 
detection in cattle and buffaloes [12], West Nile virus in mosquitoes 
[13], trichomoniasis in cattle [14] or animal testing of multiple diseases 
[15]. 

In addition to biomedical studies, group testing has also been 
employed in a large number of applications in environmental studies 
(pesticides in water) [16], trace metals in water [17], human exposure 
to pollutants [18], and food safety (dioxin monitoring in milk [19], 
bovine milk surveillance [20], salmonella in eggs [21], salmonella in 
pigs [22], salmonella in birds [23], surveillance in aquaculture [24]). 

Recently, sample pooling has been largely boosted by the Severe 
Acute Respiratory Syndrome CoronaVirus 2, SARS-CoV-2, pandemic 
[25,26], an unprecedented public health crisis. The shortage of Poly-
merase Chain Reaction, PCR, assays, the gold standard for identifying 
infection required, coupled with the fast spread of emerging variants, 
requires rapid diagnostic and screening tests and has prompted research 
to increase the testing capacity of laboratories. A search in Scopus with 
the terms ‘Group testing’ or ‘Pooled testing’ or ‘Sample pooling’ or 
‘Specimen pooling’ within title-keywords provides more than eight 
hundred document results, 248 of them published since 2020. Of the 
latter, 180 contain the term ‘SARS-CoV-2’ or ‘COVID-19’ and 189 
include the term ‘PCR’. The literature on sample pooling related to the 
SARS-CoV-2 has highlighted the growth in testing capacity and the 
drastic reduction in testing times needed, by means of different pooling 
methodologies aimed at determining, among other issues, the optimal 
number of samples that could successfully be combined into a pool for a 
given prevalence [27–31]. 

The mathematical theory on group testing can be found in Ref. [32]. 
Given the total number of samples and the number of positive samples, 
the aim is to figure out the number of groups (tests) needed to accurately 
identify the positive samples, and the composition of these groups. An 
extensive survey of recent developments for group testing can be found 
in Ref. [33], including a classification of algorithms based on different 
criteria: adaptive (groups designed sequentially depending on previous 
test outcomes) vs nonadaptive, noiseless (the test procedure works 
perfectly) vs noisy testing, exact recovery (all positive samples are 
detected) vs partial recovery, binary vs non-binary outcomes. 

According to Ref. [33], the statistical aspects of group testing are 
typically broken up into two different problems. The first one is the 
identification problem, where the aim is developing an algorithm which 
minimizes the expected number of tests per individual sample while 
keeping the expected accuracy as high as possible, which implies the 
optimal group size selection [34]. The second one is the estimation 
problem, aiming at estimation of prevalence (the overall proportion of 
positive samples) or of individual specific probability of being positive 
as function of a set of given factors. This paper is focused on the iden-
tification problem. 

The assessment of group testing algorithms can be conducted with 
some figures or merit or operational characteristics. The most commonly 
used is the efficiency or expected number of tests per individual. How-
ever, in the presence of test error, accuracy of outcomes should be 
considered. This entails the computation of four additional figures of 
merit: the pooling sensitivity, that is, the probability that a truly positive 
original sample will be categorized as positive, the pooling specificity, i. 
e, the probability that a truly negative original sample will be catego-
rized as negative, as well as the Positive Predictive Value(PPV) which is 
the probability that a primary positive will be a true positive and the 
Negative Predictive Value (NPP) or probability that a primary negative 
will be a true negative. 

Denoting by T, the number of tests required to identify the positive 
samples for an initial group of size I, some assumptions are made to 
determine the efficiency [35]. Firstly, all original samples are indepen-
dent and identically distributed with probability p of being positive, so 
prevalence equals p. Secondly, given a pooled sample having at least one 

positive original sample, the probability of testing positive Se (test 
sensitivity) equals the sensitivity for a test of an individual sample, that 
is a pool of size 1. Finally, for a pooled sample with no ’positives’, the 
probability of testing positive is equal to 1-Sp, where Sp is the test 
specificity, which is assumed to be independent of pool size. The last two 
imply that there is no dilution effect, i.e. that pooling samples does not 
alter the likelihood of identifying positive cases or the false negative 
rate, thus requiring a prior knowledge of the maximum pool size for a 
particular application. Models incorporating dilution effects may be 
found in Refs. [36,37]. 

Group testing algorithms are usually classified into hierarchical and 
non-hierarchical categories [33,38]. In hierarchical group testing, in-
dividuals are tested over multiple stages in non-overlapping groups. The 
original idea of Dorfman is a two-stage algorithm, but three-stage and 
four-stage algorithms are also frequently used [39]. As to 
non-hierarchical procedures (non-adaptative group testing), individual 
samples are tested in overlapping groups at the initial stage, so an in-
dividual sample can be represented in more than a group, with the final 
purpose to reduce the number of individual samples which have to go to 
a further stage, i. e., the number of retests. 

In 2D-array testing, all original samples, I, are arranged in a square 
matrix n × n and 2n pooled samples are formed by combining the 
samples of each row and each column. After analyzing the pooled 
samples, an individual sample in cell (i, j) must be retested in a second 
stage if row i tests positive and column j tests positive [40]. Array testing 
may also involve initially testing a ‘master group’ consisting of all 
samples within the array. If this group tests negative, all samples are 
declared negative. Otherwise, the testing of row and column groups 
proceeds as mentioned. When individual samples have unequal proba-
bilities of being positive, the configuration of a 2D-array can be modified 
to isolate the higher-risk samples using gradient or spiral methods [41], 
thus expecting as negative most of rows and columns. 

Instead of 2D-arrays, samples can be arranged either physically or 
algorithmically into a 3D cubical structure, where groups are formed 
over rows, columns, and layers, and intersections of positive groups 
show the possibility of positive simples [42]. 

Traditionally, group testing assumes the same probability of being 
positive for all samples, which is often unrealistic. When additional in-
formation (known risk factors) is available on samples, the probability of 
being positive may vary from sample to sample, so the testing process 
should consider heterogeneous probabilities to reinforce its efficiency. 
Recent research on the so-called Informative group testing, also known 
as risk-based pooling or generalized group testing, has been performed 
[43,44]. In hierarchical algorithms, this results in testing low probability 
samples in large groups while high risk samples are tested in small 
groups. In array testing, samples are arranged in the array to minimize 
the number of rows and columns that tests positive. The implementation 
of informative group testing requires the estimation of these probabili-
ties, which may be performed using regression models. 

Taking into account the group testing algorithm to be implemented, 
an optimal set of group sizes, the so-called optimal testing configuration 
(OTC), has to be determined. To do this, a function must be selected and 
optimized. As suggested, the most common objective function is effi-
ciency, so from I original samples, represented within one initial group 
for hierarchical testing or in one array for array testing, the expected 
number or tests per individual sample, E(T)/I is minimized. However, 
alternative functions including accuracy, that is the expected number of 
correct classifications C, can be used. This results in maximizing accu-
racy per individual sample divided by the expected number of tests per 
individual sample, E(C)/E(T), or equivalently, minimizing E(T)/E(C) 
[45]. A different pooling strategy to get the optimal pooled samples is 
built in Ref. [46] through a Bayesian D-optimal experimental design, 
where the function to maximize is the mutual information between the 
binary response (negative/positive) of the pooled sample and the code 
assigned according to the individual samples pooled, which is equiva-
lent to minimizing the expected posterior entropy. 
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Optimal group testing strategies have also been developed when 
testing for more than one response variable at a time [47], for example, 
in screening for sexually transmitted diseases, or for coronavirus and 
other viruses producing similar symptoms. The R package binGroup2, 
Statistical Tools for Infection Identification via Group Testing, encom-
passes 27 different algorithms for the usual setting of a binary response 
(positive/negative) from independent individuals within a group. They 
allow testing error and single or multiple-response assays, including 
hierarchical/non-hierarchical algorithms in homogeneous or heteroge-
neous populations. The optimal testing configuration is based on an 
estimated prevalence, a test’s reliability in detecting positive and 
negative cases and a range of potential initial pool sizes [48]. 

Within the field of chemometrics, some authors [49–51] have 
developed a different approach to obtain the pooled samples in the 
analytical laboratory by means of supersaturated (SS) designs of 
experiments. 

These kinds of designs are suitable for screening when the number of 
potential factors is very high, thus giving place to an unfeasible number 
of experimental units in terms of both costs and time. SS designs are 
characterized by Nss experimental units to study fss ≥ Nss-1 factors. 
Therefore, there are not enough degrees of freedom to properly estimate 
the factors main effects, which might be somehow confused with some 
interactions. As perfect orthogonality is impossible to achieve, SS de-
signs are built by using an optimality criterion which approaches 
orthogonality as much as possible. 

Nevertheless, in the early exploratory stages of an investigation, 
when the aim is to identify the critical factors, disregarding interactions 
which will be better detected in later stages, some SS designs have been 
proved very useful [52]. 

In the context of sample pooling, or what the research group of Cela 
calls Strategic Sample Composition (SSC), the factors (columns in the SS 
design matrix) are the original samples from which the pooling is made, 
whereas the experimental units are the pooled samples (rows in the SS 
design matrix). As each original sample may be either absent (− 1) or 
present (+1) in a particular pooled sample, we are dealing with 2-level 
designs. 

Regarding the pooling of samples, SS designs make sense because the 
interactions effects are actually null, i.e., effects are additive in the 
analytical assay, resulting in a small number of experimental units 
(pooled samples). 

In this work, a new sample pooling algorithm is suggested. It is based 
on a SS design, particularly on a half-fraction of a Plackett-Burman 
design with N rows and f columns, using a branching column. This re-
sults in a procedure that is developed in several stages but cannot be 
categorized as hierarchical since the pooled samples overlap. 

The distinctive feature of qualitative assays, such as PCR, is that the 
experimental response of the assay is binary (negative/positive). 
Therefore, whether a pooled sample includes one or more positive 
samples, the result remains just as positive regardless of the number of 
positive samples that form it. Consequently, unlike other applications of 
SS designs, the analysis of the results is not obtained by regressing the 
analytical response of the pooled sample (0/1) on the code assigned to 
the pooled sample according to the individual samples pooled. 

This paper is organized as follows: After this introduction, the pro-
posed methodology is formally described in section 2. This section in-
cludes the design of the pooled samples (section 2.1), the logical 
formalization of sample pooling, and the determination of the original 
samples to be analysed individually (sections 2.2 and 2.3). This section 
ends with an illustrative example of the methodology (section 2.4). 
Section 3 details the software, analytical method, and preparation of the 
original samples to which the proposed methodology will be applied. 
The results and discussion are in Section 4, which includes the efficiency 
and accuracy of the proposed pooling method, and their comparison 
with other published algorithms, as well as the application to the 
detection of the pathogen Listeria monocytogenes and the allergen 
Pistachio. 

Finally, the paper ends with some conclusions, several references and 
two annexes, one with a MATLAB function to solve the logical system, 
and the other with the calculations for the expected number of tests. 

2. Methodology 

This section describes: i) the procedure to obtain the pooled samples, 
ii) the logical modeling of the problem, and iii) the logical procedure 
leading to the identification of the original positive samples. 

2.1. Experimental design 

Regarding the procedure to get the pooled samples from I original 
samples, let T be the number of tests performed on pooled samples. The 
test matrix (or test design) is denoted by X = (xti), t = 1, 2,…,T, i = 1,2,
…, I where xti = 1 if the i-th original sample is in the t-th pooled sample 
and xti = 0 if the i-th original sample is not in the t-th pooled sample. 

Instead of using a traditional pooling algorithm (hierarchical or 
array-wise), the pooled samples have been generated using a SS design, 
built in turn as a half-fraction of a Plackett-Burman design with N rows 
and f columns PB(N,f). Following [53], one column of the PB(N,f) is 
chosen as branching column so that all experiments where the branching 
column is either at high or low level, respectively, are selected and then 
the branching column is deleted, resulting in two supersaturated designs 
with fSS = f− 1 factors and NSS––N/2 experiments. Then, the half-fraction 
containing the experiments with all factors at level (− 1) is retained. 
Therefore, each row represents a pooled sample formed by the original 
samples that correspond to the code (− 1) of the retained half-fraction. 
Particularly, a half-fraction of a PB(12,11) design is used, so we are 
dealing with fSS = 11− 1 factors, the i = 10 original samples, and a total 
NSS = 12/2 experiments, the T = 6 pooled samples to be analysed. 

To adapt the notation of the design matrix to the traditional notation 
of pooled testing, the usual ‘-1’ of the PB matrix has been replaced with 
‘1’, and the ‘+1’of the PB with ‘0’. The design matrix, X6×10, is shown in 
Table 1, where the elements xti = 1 indicate the original samples Si, i = 1, 
…, 10 (columns) which are combined in each pooled sample Pt, t = 1, …, 
6 (rows). 

2.2. Logical modeling of the problem 

The application of an analytical test, such as a PCR, to the i-th 
original sample Si, i = 1, …, I, results in a ‘logical value’, lv(Si), to the 
statement ‘the sample Si is positive’. This is formally defined in Eq. (1) 

lv(Si)=

{
0, if the statement ′the original sample Si is positive′ is false
1, if the statement ′the original sample Si is positive′ is true

(1) 

The same definition applies to each pooled sample Pt, t = 1,2, …, T. 
Formally defined in Eq. (2) 

lv(Pt)=

{
0, if the statement ′the pooled sample Pt is positive′ is false
1, if the statement ′the pooled sample Pt is positive′ is true

(2)  

In the problem studied here, once the tests (e.g. PCR tests) have been 

Table 1 
Design matrix to obtain the pooled samples, built with a half-fraction of a 
Plackett-Burman (12,11). The ‘1’ represents the original samples included in 
each of the six pooled samples used.  

Pooled samples Original samples 

S1 S2 S3 S4 S5 S6 S7 S 8 S9 S10 

P1 0 0 1 0 0 0 1 1 0 1 
P2 1 1 0 1 0 0 0 0 0 1 
P3 0 0 1 1 1 0 0 0 1 0 
P4 1 0 0 0 1 1 0 1 0 0 
P5 0 1 0 0 0 1 1 0 1 0 
P6 1 1 1 1 1 1 1 1 1 1  
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performed, the lv(Pt) are known experimentally, while the lv(Si) are the 
unknowns to be found. 

From the design matrix X, using the Boolean inclusive OR operator ∨, 
where 0 ∨ 0 = 0 and 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1, the formal equations of 
the logical values are constructed. There is one equation for each pooled 
sample, which reflects its distinctive composition and its test outcome. 
Formally, we have the system, Eq. (3), of the T logical equations: 

lv(Pt)= ⋁
I

i=1
xtilv(Si), t= 1, 2,…, T (3) 

As usually denoted, let yt ∈ {0,1} be the outcome of the test on the t- 
th pooled sample, t = 1, 2,…,T. Assuming a noiseless framework, i.e., 
both sensitivity and specificity equal to 1 as well as no dilution effect, yt 
= 1 (positive outcome in a pooled sample) if at least one of the original 
samples is positive, and yt = 0 (negative outcome in a pooled sample) if 
all the original samples are negative. Therefore, yt = lv(Pt) and the 
system of Eq. (3) becomes: 

yt = ⋁
I

i=1
xtilv(Si), t= 1, 2,…, T (4)  

In the system of logical Eq. (4), both the coefficients xti, t = 1, 2,…,T, i =
1, 2,…I forming the design matrix X, and the outcomes of the pooled 
samples, yt , t = 1, 2,…,T, are known, whereas the logical values iden-
tifying the positive original samples lv(Si), i = 1, 2,…, I have to be found. 

This formulation of the problem prevents the use of numerical 
methods to solve systems of algebraic equations and requires a logical 
solution. 

2.3. Logical procedure for the identification of positive samples 

The logical method for unequivocally identifying the positive 

original samples is developed in the following three rounds: 
Round 1: First, the pooled sample number 6 of Table 1, formed by all 

original samples or ‘master pool’, is analysed. If it tests negative, then all 
the original samples are negative, otherwise there is at least one positive 
sample and we have to move on to round 2. 

Round 2: T-1, that is, the remaining 5 pooled samples are analysed. 
Round 3: Based on the results of round 1 and round 2, it is logically 

decided which original samples cannot be positive. The remaining 
original samples are potential ‘positives’ that must be analysed indi-
vidually to identify the true ‘positives’. 

Therefore, the rationale of the procedure rests on discarding original 
samples, Si, that cannot be positive according to the test outcomes of the 
pooled samples, and otherwise conducting individual tests. 

Formally, rounds 2 and 3 are defined as follows: 
Let D be the set of original samples Si i = 1, …, I that will be dis-

carded. For each of the original samples, if the logical value of propo-
sition (5) is 1, then Si ∈ D. 

lv
(

⋁
T

t=1
(xti = 1)⋀(lv(Pt)= 0)

)

(5)  

2.4. A case-study 

For illustrative purposes, a particular case (Case 1 from Fig. 1) in the 
detection of Listeria is considered, whose outcomes yt, the PCR’s of the 
pooled samples, are showed in Table 2. 

As pooled samples 2 and 5 test negative, we can logically discard the 
original samples S1, S2, S4, S6, S7, S9 and S10, marked with green ‘1’. The 
remaining original samples, S3, S5 and S8, in red bold, cannot be dis-
carded so they are potential positive samples that must be tested 
individually. 

Fig. 1. Outline of the rounds carried out in the Detection of Listeria monocytogenes by means of PCR and logical solution for the identification of positive samples.  
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3. Software and experimental 

3.1. Software 

The procedure for identifying the original samples to be analysed, 
explained in Section 2.3, is carried out by a function, solver1, written in 
MATLAB [54] and showed in Annex A of supplementary data, has been 
used. 

3.2. Experimental procedure 

The procedure of construction of the pooled samples and their 
analysis has been applied to the detection by polymerase chain reaction 
(PCR) of the pathogen Listeria monocytogenes and the allergen Pistachio. 
The Listeria monocytogenes is regulated by Commission Regulation (EC) 
No 2073/2005 of November 15, 2005 on microbiological criteria for 
foodstuffs, whereas the presence of Pistachio by Regulation (EU) No 
1169/2011 of the European Parliament and of the Council of October 
25, 2011 on food information provided to consumers. 

The PCR analyses have been carried out by AGROLAB IBERICA, S.L. 
U. Burgos by accredited method (Standard UNE-EN ISO/IEC 17025 
accreditation nº 258/LE2068). 

3.3. Preparation of samples 

Two types of food matrices have been considered: rice flour and 
liquid sample (with carbohydrates as the main component). With each 
of them, four batches have been prepared, each with 10 samples. In each 
case with the rice flour matrix, one, two or no samples have been doped 
with the Pistachio allergen. Similarly, in liquid samples with carbohy-
drates as the main component: one, two or no samples have been doped 
with Listeria monocytogenes. 

The doped samples have been prepared with a double-blind protocol. 
According to the suggested methodology, the samples to be analysed 
individually are determined after getting the outcomes of round 2, so 
neither the authors of this work nor the analysts of AGROLAB could 
know which samples had been doped. Therefore, this task was per-
formed by a third person, independent of both analysts and researchers. 

The protocol for doping the samples has been the same with Listeria 
monocytogenes and Pistachio. Four batches of 10 samples were prepared 
with their corresponding matrices. In the first batch, one sample was 
randomly chosen to be doped. In the second batch, two samples, 
randomly chosen out of the 30 possibilities involving the analysis of 3 
individual samples in round 3, were doped. Likewise, in the third batch, 
two samples were doped, but they were randomly chosen from the 15 
possibilities involving the analysis of 6 individual samples in round 3. 

Finally, none of the 10 samples in the fourth batch was doped. The four 
batches were sent in random order to the laboratory, which did not 
know the number and position in the batch of the doped samples. The 
laboratory made two aliquots of each individual sample, using one of 
them to prepare the pooled samples of each batch according to Table 1, 
and then delivered the outcomes. 

Once the results were analysing with the proposed methodology, the 
laboratory was tasked with analyzing the individual samples of round 3 
in each batch, and finally the corresponding results of these new ana-
lyses were received. 

4. Results and discussion 

4.1. Efficiency and accuracy of the proposed pooling method 

The comparison of the suggested pooling procedure with other 
pooling algorithms has been conducted using a prevalence of 0.05, and 
several combinations of sensitivity, Se, and specificity, Sp, of the 
analytical test, with values of 0.90, 0.95, 0.99 and 1.00 (see Tables 3 and 
4). Considering all the groups of size 10 from a population of 100,000 
individual samples, the application of the chemical analysis has been 
reproduced computationally for each combination of Se and Sp different 
from 1.00. This means, first, generating 100,000 numbers (zeros or 
ones) which represent the status of individual samples (negative or 
positive), where the probability of ‘1’ (being positive) equals the prev-
alence. Secondly, these samples are divided into 10,000 initial groups of 
size I = 10, and for each of them, the design matrix, detailed in section 
2.1, is used to make the pooled samples (P1 to P6). Thirdly, the true 
outcome of every pooled sample is logically determined: the logical 
value will be ‘1’ (positive) if at least one of the individual samples is 
positive, and ‘0’ (negative) if all of them are negative. Finally, from the 
true logical values of the pooled samples, using the logical procedure 
described in section 2.2 (round 1 to 3), the true logical values for the 
individual samples, lvtrue(Si) are found. 

It must be noted that every time the analytical test is applied to a 
sample, whether individual or pooled, a logical value not necessarily the 
true one is obtained due to the particular combination of Se and Sp of this 
analytical test. So, once the whole procedure has finished, logical values 
are obtained for each individual sample, lvobt(Si). 

If lvobt(Si) = lvtrue(Si) the suggested procedure performs a correct 
classification. Otherwise, the classification of sample Si is wrong. From 
these results, some figures of merit have been obtained, particularly, the 
efficiency and the accuracy of the pooling strategy. 

4.1.1. Expected number of tests 
The assessment of the group testing proposal is conducted in terms of 

Table 2 
Design matrix for the pooling and test outcomes yt of the pooled samples (negative/positive) in Case 1 from 
Fig. 1. ‘1’ represents the original samples included in each of the 6 pooled samples. Original samples (Si) marked 
with green ‘1’ are logically discarded in each pool. Original samples (Si) not discarded in any pool (in red bold) 
have to be tested individually. 
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efficiency, particularly, the expected number of tests per individual 
(original) sample that is necessary to identify all the positives, E(T)/I. 
Results are showed in Table 3. 

Last column of Table 3 shows E(T)/I when the sensitivity and spec-
ificity of the analytical test are not taken into account, i.e., with Se=Sp =

1.00. In this case, the algorithm presented here, which is not strictly 
hierarchical, results in an expected value per individual E(T)/I = 0.37, 
using Eq. B1 in Annex B of Supplementary data. That is, to decide on 
each original sample whether it is positive or not, it is only expected to 
perform 0.37 analytical tests on average. This means a reduction of 63% 
compared to individual tests. 

Comparisons of this efficiency with those of alternative pooling al-
gorithms are shown in Table 3. For a two-stage (2-S) hierarchical 
method, the Optimal Test Configuration (OTC) with a pooled sample of 
size 10 in the first stage and samples of size 1 in the second stage, results 
in efficiency equal to 0.51 (49% of reduction). The three-stage (3-S) 
hierarchical method, where the OTC has an initial pool size of 10, sub-
sequent pool sizes of 4, 3, and 3 in the second stage and individual 
samples in the third stage, performs better: E(T)/I = 0.38, reducing the 
expected number of tests by 62% when compared to individual testing. 

2D-arrays have been used with and without master pool, both with a 
3x3 grid and a 4x4 grid. When the master pool is included, all the 
original samples in the array are amalgamated for the first stage of the 
algorithm. If the master pool tests positively, rows and columns (of size 3 
or 4) are tested in the second stage of the algorithm. Individual testing 
needs to be performed at the intersection of positive rows and columns. 
Also, whenever a row (column) tests positively without any column 
(row) testing positively, all samples within the positive row (column) 
need to be tested individually. A 3x3 array with master pool (which loses 
one of our 10 original samples) gives an efficiency of 0.69, and thus a 
reduction of 31%. Likewise, a 4x4 array with master pool (which would 
require six additional original samples) leads to an expected number of 
tests of 8.95 and a corresponding E(T)/I of 0.56 (8.95/16), which means 
a reduction of 44%. Without using a master pool, both procedures reach 
worse results: efficiency reduces by 27% and 43%, respectively. 

When Se and Sp do not equal 1, computation of E(T)/I for the pooling 
procedure suggested is performed by the 10,000 groups of size 10, 
detailed above. For the remaining pooling procedures in Table 3, the 
computation has been carried out by means of an app in Ref. [55] which 
implements the algorithms developed in Ref. [48]. In hierarchical al-
gorithms, the optimal test configurations (OTC) for an initial pool size of 
I = 10 have been used. In 2D array algorithms, the two closest initial 
sizes to 10, which are 9 or 16, have been considered. The expected 
number of tests per individual sample is showed in columns 3 to 7 of 
Table 3. 

Clearly the best values are always seen for the proposed pooling al-
gorithm (supersaturated-based design), the closest being the optimal 3-S 
hierarchical of size 10. Therefore, the suggested procedure, even if it has 
not been optimized, shows higher efficiency than other methods. 

4.1.2. Accuracy measures 
In addition to the expected number of tests, the accuracy of correctly 

classifying truly positive and negative individuals is also important. As 
defined in section 2.2, the outcome of testing the i-th (i = 1, …, I) sample 
is lvob(Si) = 1 if it is diagnosed positive, and lvob(Si) = 0 if it is diagnosed 
negative. Likewise, lvtrue(Si) = 1 or lvtrue(Si) = 0 are used to denote the 
true status of the sample. The probability of a correct positive diagnosis 
after applying the pooling procedure to the i-th sample is named ‘pooling 
sensitivity’, defined as PSe = p(lvob(Si) = 1| lvtrue(Si) = 1). Similarly, the 
‘pooling specificity’, PSp = p (lvob(Si) = 0| lvtrue(Si) = 0), is the proba-
bility of a correct negative diagnosis. 

Table 4 shows the values of PSe and PSp for different pairs of sensi-
tivity/specificity of the analytical test used in the screening and a 
prevalence p = 0.05. The results for the algorithm presented here have 
been obtained from 100,000 simulated cases, while those of the 
remaining algorithms have been taken from Table S2 of the Supporting 
Information of reference [45], where PSe and PSp refer to the optimal 
configuration of the respective pooling algorithm. For the optimization 
of the hierarchical algorithms, a master pool ranging from 3 to 40 was 
considered, while for 2D arrays, the same range of group sizes (rows and 

Table 3 
Comparison of pooling algorithms. Optimal Test Configuration (OTC) and expected number of tests per individual sample E(T)/I, according to the sensitivity and 
specificity of the analytical test used in the screening method.  

Pooling algorithm OTC Sensitivity/Specificity 

0.99/0.99 0.95/0.95 0.90/0.90 0.99/0.90 0.90/0.99 1.00/1.00 

Supersaturated-based design  0.366 0.370 0.374 0.416 0.332 0.370 
2-S Hierarchical 10,1 0.503 0.511 0.521 0.557 0.467 0.510 
3-S Hierarchical 4,3,3 0.380 0.381 0.383 0.424 0.342 0.380 
2D array 3x3 w/master pool 3x3 0.699 0.719 0.730 0.796 0.643 0.622 
2D array 3x3 w/o master pool 3x3 0.741 0.794 0.849 0.843 0.749 0.653 
2D array 4x4 w/master pool 4x4 0.565 0.580 0.585 0.639 0.520 0.895 
2D array 4x4 w/o master pool 4x4 0.581 0.621 0.661 0.658 0.588 0.911  

Table 4 
Comparison of accuracy for pooling algorithms. Optimal Test Configuration (OTC), pooling sensitivity, PSe, and pooling specificity, PSp, depending on the sensitivity 
and specificity of the analytical test used in the screening method.  

Pooling algorithm Sensitivity/Specificity 

0.99/0.99 0.95/0.95 0.90/0.90 0.99/0.90 0.90/0.99 

PSe PSp PSe PSp PSe PSp PSe PSp PSe PSp 

Supersaturated-based design 0.9665 0.9999 0.8351 0.9953 0.7241 0.9897 0.9697 0.9872 0.7022 0.9994 
Pooling size 10  10  10  10  10  
2-S Hierarchical 0.9801 0.9981 0.9025 0.9082 0.8100 0.9719 0.9801 0.9735 0.8100 0.9982 
OTC 5,1  5,1  6,1  5,1  5,1  
3-S Hierarchical 0.9703 0.9990 0.8574 0.9930 0.7290 0.9853 0.9703 0.9874 0.7290 0.9988 
OTC 9,3,1  9,3,1  12,4,1  9,3,1  12,4,1  
2D array w/o master pool 0.9705 0.9905 0.8581 0.9926 0.7302 0.9842 0.9705 0.9839 0.7301 0.9986 
OTC 10,1  10,1  10,1  9,1  11,1  
2D array w/master pool 0.9986 0.9736 0.9930 0.8600 0.9858 0.7091 0.9842 0.7617 0.9988 0.9660 
OTC 100,10,1 100,10,1 100,10,1 81,9,1 121,11,1  
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columns) was taken. For example, in the 3S Hierarchical, an OTC 12,4,1 
means an initial pool of 12 samples in the first stage, pooled samples of 
size 4 in the second stage and samples of size 1 in the third stage. 
Regarding the OTC for a 2D array w/master pool algorithm, written as 
121,11,1 (last row and column of Table 4) means an array of 121 
samples, pooled samples of size 11 corresponding to rows and columns, 
which finally leads to test individual samples (size 1). For the proposed 
algorithm, supersaturated-based design, the initial sample size is 10, and 
neither the design matrix structure nor the pooled sample size is 
optimized. 

In pooling algorithms 2 to 5 of Table 4, PSe and PSp depend on the 
OTC selected, which in turn, depends on the Se y Sp considered for the 
analytical test. 

For any pair sensitivity/specificity, our proposal shows higher PSp 
compared to the remaining algorithms. PSe is a bit lower, particularly 
when compared to the 2D array w/master pool algorithm, which uses a 
big master pool (100 samples). However, it should be noted that 2D 
array algorithms have a much lower efficiency (see Table 3). On the 
other hand, there is a great similarity between the results of the pro-
posed algorithm and those of the 3-S Hierarchical for the optimal 
configuration. 

The proposed algorithm shares with the others (except the 2D array 
with master pool of 121 samples), the asymmetric effect of Se and Sp on 
PSe and PSp. When Se is low, there is a remarkable decrease in PSe, while 
this does not occur when Sp is low, since PSp does not experience that 
drop (with the exception mentioned). This can best be seen in the last 
four columns of Table 4, which correspond to the sensitivity/specificity 
pairs 0.99/0.90 and 0.90/0.99. 

Another way to assess the accuracy of a pooling algorithm is through 
the expected number of hits, E(C), which for the proposed algorithm 
ranges from 9.916 to 9.990 for an initial master pool of size 10. 

4.2. Pathogen Listeria monocytogenes and allergen Pistachio testing 

The results of the detection of the pathogen Listeria monocytogenes 
are represented in Fig. 1. The left panel shows the pooling procedure 
suggested. It should be noted that, according to the description above, 
the ‘master pool’ is tested in the first round (Pool1), although in the 
design matrix, this corresponds to the sixth row. 

The right panel shows the PCR outcomes of the pooled samples: 
positive (bold plus symbol) or negative (green minus symbol). 

Regarding the detection of Listeria, Case 3 results in only one negative 
outcome (the second pooled sample or Pool 2, thus discarding original 
samples 1, 2, 4 and 10, so the six remaining original samples must be 
individually analysed (round 3). However, in Case 2, three outcomes are 
negative (Pool 1, 2 and 5) so almost all the original samples can be ruled 
out and just original sample 5 has to be retested. As for Case 1, which 
corresponds to the outcomes showed in Table 2, two pooled samples 
(Pool 2 and 5) test negative, and therefore original samples 3, 5 and 8 
must be tested individually. Naturally, when the ‘master pool’ tests 
negative, as in Case 4, no further test is required. 

Anyway, original samples in round 3 are potentially positive but 
individual testing shows not all of them are actually positive: a 
maximum of 2 are detected in each case, reflecting our experimental 
conditions. The true positive samples were S5 and S8 in Case 1, S5 in Case 
2, and S3 and S6 in Case 3. 

Similarly, the results of the detection of the allergen Pistachio can be 
seen in Fig. 2. The left panel is the same as in Fig. 1, identical design 
matrix, but the right panel shows a different set of PCR outcomes of the 
pooled samples. As explained above, no additional test is required when 
the ‘master pool’ is negative (Case 3), but otherwise, the number of 
original samples which are tested individually in round 3 (sample S9 in 
Case 1, samples S1, S4 and S5 in Case 2 and samples S1, S2, S6, S7, S8 and 
S10 in Case 4) increases as the number of pooled samples that test 

Fig. 2. Outline of the rounds carried out in the Detection of Pistachio by means of PCR and logical solution for the identification of positive samples.  
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negative decreases (three in Case 1, two in Case 2 and one in Case 4). The 
actual positive samples were S9 in Case 1, S1 and S4 in Case 2, and S6 and 
S10 in Case 3. 

In summary, all samples doped with either Listeria or Pistachio in our 
experiment, positive samples, have been correctly identified with the 
logical methodology developed in section 2. 

5. Conclusions 

The described design matrix, based on a half-fraction of a Placket- 
Burman design, along with the modeling of the problem as a logical 
system of equations, solved through the suggested logical procedure, 
proves high efficiency compared to other sample pooling strategies and 
algorithms. 

For a prevalence of 0.05 and 10 original samples, the expected 
number of samples to be analysed for each original sample is 0.37. This 
means reducing the expected number of tests by 63% compared to in-
dividual testing. In addition, the accuracy of the algorithm proposed is 
better or similar, depending on the sensitivity and specificity of the 
analytical test, to that of other published algorithms, with an expected 
number of hits ranging from 99.16 to 99.90%. 

The procedure can be implemented for routine analysis because the 
pooling structure (design matrix) is fixed and the analysis of the results 
of round 2 can be performed online. 

This work opens a line of research that will continue with the opti-
mization of the design matrix, its dimension and structure. 
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S. Schneitler, S. Smola, Pooling of samples for testing for SARS-CoV-2 in 
asymptomatic people, Lancet Infect. Dis. 20 (11) (2020) 1231–1232, https://doi. 
org/10.1016/S1473-3099(20)30362-5. 

[28] B. Abdalhamid, C.R. Bilder, E.L. McCutchen, S.H. Hinrichs, S.A. Koepsell, P. 
C. Iwen, Assessment of specimen pooling to conserve SARS CoV-2 testing 
resources, Am. J. Clin. Pathol. 153 (6) (2020) 715–718, https://doi.org/10.1093/ 
ajcp/aqaa064. 

[29] X. Sun, L. Deng, X. Zhan, X. Chen, X. Yang, Y. Huang, X. Chen, W. Zheng, Pooled 
sampling is an efficient and economical strategy for SARS-CoV-2 detection in low- 

L.A. Sarabia et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.chemolab.2023.104902
https://doi.org/10.1214/aoms/1177731363
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref2
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref2
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref2
https://doi.org/10.1093/biomet/82.2.287
https://doi.org/10.1097/00002030-200012010-00015
https://doi.org/10.1097/01.olq.0000263262.00273.9c
https://doi.org/10.1097/01.olq.0000263262.00273.9c
https://doi.org/10.3201/eid1307.060861
https://doi.org/10.1128/JCM.05631-11
https://doi.org/10.1128/JCM.05631-11
https://doi.org/10.1097/OLQ.0b013e318231cd4a
https://doi.org/10.1097/OLQ.0b013e318231cd4a
https://doi.org/10.1016/j.cmi.2022.09.006
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref10
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref10
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref10
https://doi.org/10.1111/jvim.16586
https://doi.org/10.14202/vetworld.2014.586-593
https://doi.org/10.1186/s13071-016-1948-9
https://doi.org/10.1186/s13071-016-1948-9
https://doi.org/10.1177/10406387221149407
https://doi.org/10.1007/s13253-022-00511-4
https://doi.org/10.1007/s13253-022-00511-4
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref16
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref16
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref16
https://doi.org/10.1039/B200081B
https://doi.org/10.1016/j.envres.2019.109048
https://doi.org/10.1016/j.envres.2019.109048
https://doi.org/10.3168/jds.2012-5898
https://doi.org/10.3168/jds.2012-5898
https://doi.org/10.1016/j.prevetmed.2016.08.001
https://doi.org/10.1016/j.prevetmed.2016.08.001
https://doi.org/10.1016/j.ijfoodmicro.2013.12.005
https://doi.org/10.1016/j.ijfoodmicro.2013.12.005
https://doi.org/10.1017/S0950268809002702
https://doi.org/10.1016/j.prevetmed.2010.12.007
https://doi.org/10.1016/j.prevetmed.2010.12.007
https://doi.org/10.1111/jfd.13083
https://doi.org/10.1016/j.jcv.2022.105133
https://doi.org/10.1016/j.cmi.2021.04.007
https://doi.org/10.1016/j.cmi.2021.04.007
https://doi.org/10.1016/S1473-3099(20)30362-5
https://doi.org/10.1016/S1473-3099(20)30362-5
https://doi.org/10.1093/ajcp/aqaa064
https://doi.org/10.1093/ajcp/aqaa064


Chemometrics and Intelligent Laboratory Systems 240 (2023) 104902

9

prevalence areas, Clin. Lab. 68 (5) (2022), https://doi.org/10.7754/Clin. 
Lab.2021.210851. 

[30] D. Zhou, M. Zhou, Mathematical model and optimization methods of wide-scale 
pooled sample testing for COVID-19, Mathematics 10 (7) (2022) 1183, https://doi. 
org/10.3390/math10071183. 

[31] K. Heaney, A.V. Ritchie, R. Henry, A.J. Harvey, M.D. Curran, J.P. Allain, H.H. Lee, 
Evaluation of sample pooling using the SAMBA II SARS-CoV-2 test, J. Virol 
Methods 299 (2022), 114340, https://doi.org/10.1016/j.jviromet.2021.114340. 

[32] D. Du, F.K. Hwang, Combinatorial group testing and its applications, in: Series on 
Applied Mathematics 12, second ed., World Scientific, Singapore, 1999 https://doi. 
org/10.1142/4252. 

[33] M. Aldridge, O. Johnson, J. Scarlett, Group testing: an information theory 
perspective, Found. Trends™ Commun. Inf. Theory 15 (3–4) (2019) 196–392, 
https://doi.org/10.1561/0100000099. 

[34] H. Kim, M. Hudgens, J. Dreyfuss, D. Westreich, C. Pilcher, Comparison of group 
testing algorithms for case identification in the presence of test error, Biometrics 63 
(2007) 1152–1163, https://doi.org/10.1111/j.1541-0420.2007.00817.x. 

[35] M. Aldridge, Pooled Testing to Isolate Infected Individuals, 2021 55th Annual 
Conference On Information Sciences And Systems, (CISS), Baltimore, MD, USA, 2021, 
pp. 1–5, https://doi.org/10.1109/CISS50987.2021.9400313. 

[36] C.S. McMahan, J.M. Tebbs, C.R. Bilder, Regression models for group testing data 
with pool dilution effects, Biostatistics 14 (2) (2013) 284–298, https://doi.org/ 
10.1093/biostatistics/kxs045. 

[37] D. Wang, C.S. McMahan, C.M. Gallagher, A general regression framework for group 
testing data, which incorporates pool dilution effects, Stat. Med. 34 (27) (2015) 
3606–3621, https://doi.org/10.1002/sim.6578. 

[38] C. Bilder C, Group Testing for Identification, Wiley StatsRef: Statistics Reference 
Online, 2019, https://doi.org/10.1002/9781118445112.stat08227. 

[39] P. Hou, J.M. Tebbs, C.R. Bilder, C.S. McMahan, Hierarchical group testing for 
multiple infections, Biometrics 73 (2) (2017) 656–665, https://doi.org/10.1111/ 
biom.12589. 

[40] P. Hou, J. Tebbs, D. Wang, C. McMahan, C. Bilder, Array testing for multiplex 
assays, Biostatistics 21 (2020) 417–431, https://doi.org/10.1093/biostatistics/ 
kxy058. 

[41] N. Lagopati, P. Tsioli, I. Mourkioti, A. Polyzou, A. Papaspyropoulos, 
A. Zafiropoulos, K. Evangelou, G. Sourvinos, V.G. Gorgoulis, Sample pooling 
strategies for SARS-CoV-2 detection, J. Virol Methods 289 (2021), https://doi.org/ 
10.1016/j.jviromet.2020.114044. 

[42] H.Y. Kim, M.G. Hudgens, Three-dimensional array-based group testing algorithms, 
Biometrics 65 (3) (2009) 903–910, https://doi.org/10.1111/j.1541- 
0420.2008.01158.x. 

[43] C. McMahan, J. Tebbs, C. Bilder, Informative dorfman screening, Biometrics 68 
(2012) 287–296, https://doi.org/10.1111/j.1541-0420.2011.01644.x. 

[44] C. McMahan, J. Tebbs, C. Bilder, Two-dimensional informative array testing, 
Biometrics 68 (2012) 793–804, https://doi.org/10.1111/j.1541-0420.2011. 
01726.x. 

[45] B. Hitt, C. Bilder, J. Tebbs, C. McMahan, The objective function controversy for 
group testing: much ado about nothing? Stat. Med. 38 (2019) 4912–4923, https:// 
doi.org/10.1002/sim.8341. 

[46] Y. Daon, A. Huppert, U. Obolski, DOPE: D-Optimal Pooling Experimental design 
with application for SARS-CoV-2 screening, J. Am. Med. Inf. Assoc. 28 (12) (2021) 
2562–2570, https://doi.org/10.1093/jamia/ocab169. 

[47] C. Bilder, J. Tebbs, C. McMahan, Informative group testing for multiplex assays, 
Biometrics 75 (2018) 278–288, https://doi.org/10.1111/biom.12988. 

[48] B. Hitt, C. Bilder, F. Schaarschmidt, B. Biggerstaff, C. McMahan, J. Tebbs, B. Zhang, 
M. Black, P. Hou, P. Chen, binGroup2: identification and estimation using group 
testing, R package version 1.0.2, https://CRAN.R-project.org/package=
binGroup2/, 2020. 

[49] R. Cela, E. Martínez, A.M. Carro, Supersaturated experimental designs. New 
approaches to building and using it: Part I. Building optimal supersaturated designs 
by means of evolutionary algorithms, Chemometr. Intell. Lab. Syst. 52 (2) (2000) 
167–182. 

[50] R. Cela, E. Martínez, A.M. Carro, Supersaturated experimental designs new 
approaches to building and using it. Part II. Solving supersaturated designs by 
genetic algorithms, Chemometr. Intell. Lab. Syst. 57 (2001) 75–92. 

[51] B. Dejaegher, Y. Vander Heyden, Supersaturated designs: set-ups, data 
interpretation, and analytical applications, Anal. Bioanal. Chem. 390 (2008) 
1227–1240, https://doi.org/10.1007/s00216-007-1641-0. 

[52] R. Cela, M. Claeys-Bruno, R. Phan-Tan Luu, Screening strategies, in: S. Brown, 
R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics, vol. 1, Elsevier, 
Oxford, 2009, pp. 251–300. 

[53] D.K.J. Lin, A new class of supersaturated designs, Technometrics 35 (1993) 28–31. 
[54] MATLAB, version 9.9.0.2037887 (R2020b), The Mathworks, Inc., Natick, MA, 

USA, 2022. 
[55] C. Bilder, J. Tebbs, C. McMahan, A shiny app for pooled testing. https://bilder.sh 

inyapps.io/PooledTesting/. (Accessed 5 June 2023). 

L.A. Sarabia et al.                                                                                                                                                                                                                              

https://doi.org/10.7754/Clin.Lab.2021.210851
https://doi.org/10.7754/Clin.Lab.2021.210851
https://doi.org/10.3390/math10071183
https://doi.org/10.3390/math10071183
https://doi.org/10.1016/j.jviromet.2021.114340
https://doi.org/10.1142/4252
https://doi.org/10.1142/4252
https://doi.org/10.1561/0100000099
https://doi.org/10.1111/j.1541-0420.2007.00817.x
https://doi.org/10.1109/CISS50987.2021.9400313
https://doi.org/10.1093/biostatistics/kxs045
https://doi.org/10.1093/biostatistics/kxs045
https://doi.org/10.1002/sim.6578
https://doi.org/10.1002/9781118445112.stat08227
https://doi.org/10.1111/biom.12589
https://doi.org/10.1111/biom.12589
https://doi.org/10.1093/biostatistics/kxy058
https://doi.org/10.1093/biostatistics/kxy058
https://doi.org/10.1016/j.jviromet.2020.114044
https://doi.org/10.1016/j.jviromet.2020.114044
https://doi.org/10.1111/j.1541-0420.2008.01158.x
https://doi.org/10.1111/j.1541-0420.2008.01158.x
https://doi.org/10.1111/j.1541-0420.2011.01644.x
https://doi.org/10.1111/j.1541-0420.2011. 01726.x
https://doi.org/10.1111/j.1541-0420.2011. 01726.x
https://doi.org/10.1002/sim.8341
https://doi.org/10.1002/sim.8341
https://doi.org/10.1093/jamia/ocab169
https://doi.org/10.1111/biom.12988
https://CRAN.R-project.org/package=%20binGroup2/
https://CRAN.R-project.org/package=%20binGroup2/
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref49
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref49
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref49
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref49
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref50
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref50
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref50
https://doi.org/10.1007/s00216-007-1641-0
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref52
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref52
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref52
http://refhub.elsevier.com/S0169-7439(23)00152-1/sref53
https://bilder.shinyapps.io/PooledTesting/
https://bilder.shinyapps.io/PooledTesting/

	Logical analysis of sample pooling for qualitative analytical testing
	1 Introduction
	2 Methodology
	2.1 Experimental design
	2.2 Logical modeling of the problem
	2.3 Logical procedure for the identification of positive samples
	2.4 A case-study

	3 Software and experimental
	3.1 Software
	3.2 Experimental procedure
	3.3 Preparation of samples

	4 Results and discussion
	4.1 Efficiency and accuracy of the proposed pooling method
	4.1.1 Expected number of tests
	4.1.2 Accuracy measures

	4.2 Pathogen Listeria monocytogenes and allergen Pistachio testing

	5 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


