
Avoiding order reduction when integrating linear initial boundary value problems
with exponential splitting methods

I. Alonso-Mallo and B. Cano
∗
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It is well known the order reduction phenomenon which arises when exponential methods are used to
integrate time-dependent initial boundary value problems, so that the classical order of these methods is
reduced. In particular, this subject has been recently studied for Lie–Trotter and Strang exponential splitting
methods, and the order observed in practice has been exactly calculated. In this article, a technique is
suggested to avoid that order reduction. We deal directly with nonhomogeneous time-dependent boundary
conditions, without having to reduce the problem to the homogeneous ones. We give a thorough error
analysis of the full discretization and justify why the computational cost of the technique is negligible in
comparison with the rest of the calculations of the method. Some numerical results for dimension splittings
are shown, which corroborate that much more accuracy is achieved.
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problems.

1. Introduction

Splitting methods are well known to be of interest for differential problems in which the numerical integra-
tion of separated parts of the equation is much easier or cheaper than the numerical integration as a whole
(Yanenko, 1971; Hundsdorfer & Verwer, 2003). Moreover, if the stiff part of those separated problems
is linear, it can be solved in an explicit way using exponential-type methods without showing stability
problems. This makes exponential splitting methods very much suitable for the numerical integration of
partial differential equations and, in particular, for multidimensional problems in simple domains, where
considering alternatively each direction of the differential operator leads to simpler integrators.

In Faou et al. (2015), a thorough analysis is given for the classical first-order Lie–Trotter and clas-
sical second-order Strang exponential methods when integrating linear initial boundary value parabolic
problems under homogeneous Dirichlet boundary conditions. The general conclusion there is that order
reduction to 1 appears for the local error with Lie–Trotter method, although there is no order reduction
for the global one. With Strang method, order reduction to 1 for the global error is shown. When the
boundary condition is not homogeneous, but it is the restriction of a known smooth function on the total
domain, then the problem can be reduced to one in which the boundary condition is homogeneous, but
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in which the source term contains derivatives of that smooth function, which must be calculated. In any
case, the previous mentioned order reduction would turn up.

Our aim in this article is to approximate regular solutions of linear differential problems with gener-
alizations of Lie–Trotter and Strang methods that avoid completely order reduction. Moreover, we will
deal directly with nonhomogeneous and time-dependent boundary conditions. We will give a technique
to do it, which requires a computational cost that is negligible compared with the total cost of the method,
because it just adds calculations with grid values on the boundaries and not with the number of grid values
on the total domain. In this sense, this technique is as cheap as that suggested in Alonso-Mallo et al.
(2016) for exponential Lawson methods and, among others, in Alonso-Mallo (2002) and Alonso-Mallo
et al. (2004) for other standard Runge–Kutta type methods. The idea, in a similar way as in Connors et
al. (2014), LeVeque (1986) and LeVeque & Oliger (1983), is to consider suitable intermediate boundary
conditions for the split evolutionary problems. The main difference with LeVeque (1986) and LeVeque &
Oliger (1983) is that they just consider the one-dimensional first order in time hyperbolic problem, where
one of the splitting parts is assumed to be smooth (or vary slowly) and the suggestion of the intermediate
boundary conditions is very much based on a particular space discretization. As distinct, in the present
article, both the problem and the space discretization are much more general. As for Connors et al. (2014),
although the problem is more general than in LeVeque (1986) and LeVeque & Oliger (1983), numerical
differentiation is required to approximate the boundary conditions of the intermediate evolutionary prob-
lems, while here they are given directly in terms of data. Besides, as we consider exponential methods
and use exact boundary values, no stability requirement is needed and, as final differences, not only the
class of linear problems is more general here, but also the way to measure the error in the analysis is
more standard.

Moreover, in contrast to other examples of analysis on order reduction in the literature (Einkemmer
& Ostermann, 2015, 2016a; Faou et al., 2015), we consider, not only the time discretization, but also
the space discretization for each part of the differential operator splitting. This is important, not only
because in practice a space discretization is necessary and therefore the errors that come from space
must be controlled, but also because the complete description of the suggested method must be given
to those who are just interested in applying the method and not on the analysis. More particularly, we
consider spatial schemes satisfying quite general hypotheses, which include, for example, simple finite
differences or collocation spectral methods. Moreover, the exact formulas which must be implemented
after full discretization to avoid order reduction in the local and global error are given in (6.3)–(6.5) for
Lie–Trotter and in (7.5)–(7.9) for Strang method. In Section 8.1, we justify that, for dimension splittings,
the terms corresponding to the boundary in those formulas can always be calculated in terms of the
data of the problem for Lie–Trotter method and, when the splitting terms of the differential operator
commute, also for Strang method. Nevertheless, for the latter integrator, when the splitting operators do
not commute, we offer the alternative (7.9)–(7.13), which boundaries can always be calculated in terms
of data. In such a way, just order 2 instead of 3 is obtained for the local error but, in any case, no order
reduction is shown for the global error in practice.

Although it is not an aim of this article, there are already results on applying a similar technique to
nonlinear problems (Alonso-Mallo et al., 2017; Cano & Reguera, 2017) and in Einkemmer & Ostermann,
2016b they try to compare with the technique in Einkemmer & Ostermann (2015, 2016a) for reaction-
diffusion problems.

The article is structured as follows. Section 2 gives some preliminaries on the abstract formulation of
the problem and the definition of the time integrators. Section 3 describes the technique to avoid order
reduction after time discretization with Lie–Trotter method as well as the analysis on the local error.
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Section 4 does the same for Strang method. In Section 5, the hypotheses on the spatial discretization
are stated. Sections 6 and 7 describe the formulas for the implementation after full discretization for
Lie–Trotter and Strang methods, respectively, and the local and global errors are then analysed. Finally,
in Section 8, it is justified that the dimension splitting problem fits into the abstract framework and the
information which is needed on the boundary can be calculated from data. Besides, some numerical
results are given, which corroborate the results of previous sections.

2. Preliminaries

Let X and Y be Banach spaces and let L : D(L) → X and ∂ : D(L) → Y be linear operators. Our goal is
to study full discretizations of the linear abstract inhomogeneous initial boundary value problem

u′(t) = Lu(t) + f (t), 0 ≤ t ≤ T ,
u(0) = u0 ∈ X,

∂u(t) = g(t) ∈ Y , 0 ≤ t ≤ T .
(2.1)

The abstract setting (2.1) permits to cover a wide range of evolutionary problems governed by linear
partial differential equations. To assure that (2.1) is well posed, we assume that (cf. Palencia & Alonso-
Mallo, 1994):

(i) The boundary operator ∂ : D(L) ⊂ X → Y is onto.

(ii) Ker(∂) is dense in X and L0 : D(L0) = ker(∂) ⊂ X → X, the restriction of L to Ker(∂), is the
infinitesimal generator of a C0-semigroup {etL0}t≥0 in X, which type ω is assumed to be negative.

(iii) If λ ∈ C satisfies Re(λ) > ω and v ∈ Y , then the steady-state problem

Lx = λx, (2.2)

∂x = v,

possesses a unique solution denoted by x = K(λ)v. Moreover, the linear operator K(λ) : Y → D(L)

satisfies

‖K(λ)v‖X ≤ M‖v‖Y ,

where the constant M holds for any λ such that Re(λ) ≥ ω0 > ω.

The main goal of this work is to propose a suitable generalization, for initial boundary value problems,
of two popular exponential splitting time integrators, the Lie–Trotter and the Strang methods. Therefore,
we suppose that

L = A + B, (2.3)

where A : D(A) → X and B : D(B) → X are linear operators that are assumed to be simpler than L in
some sense, and D(L) ⊆ D(A) ∩ D(B). We also suppose that, for some Banach spaces YA and YB, the
linear operators ∂A : D(A) → YA and ∂B : D(B) → YB satisfy the following assumptions:

(A1) Ker(∂) = Ker(∂A) ∩ Ker(∂B).
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(A2) A0 : Ker(∂A) ⊂ X → X and B0 : D(B0) = Ker(∂B) ⊂ X → X, the restrictions of A (resp. B) to
Ker(∂A) (resp. Ker(∂B)) are the infinitesimal generators of C0- semigroups in X: { etA0}t≥0, with
type ωA, and {etB0}t≥0, with type ωB. We assume that max(ωA, ωB) < 0.

(A3) If λ ∈ C satisfies Re(λ) > max(ωA, ωB) and vA ∈ YA, vB ∈ YB, then the steady-state problems

Ax = λx,
∂Ax = vA,

By = λy,
∂Bx = vB,

(2.4)

possess unique solutions denoted by x = KA(λ)vA, y = KB(λ)vB. Moreover, these operators
KA(λ) : YA → D(A), KB(λ) : YB → D(B), satisfy

‖KA(λ)vA‖X ≤ LA‖vA‖YA , ‖KB(λ)vA‖X ≤ LB‖vB‖YB , (2.5)

where the constants LA, LB hold for any λ such that Re(λ) ≥ ω1 > max(ωA, ωB).

To define the time integrators that are used in this article, we will consider initial boundary value problems
which can be written as

u′(s) = Au(s),
u(0) = u0,

∂Au(s) = v0 + v1s + v2s2,
(2.6)

where u0 ∈ X and v0, v1, v2 ∈ YA. (Similar problems with B instead of A are also used.) The study of
the well-posedness of these problems is not the objective of this article, but when the initial value is
regular and compatible with the boundary datum at s = 0, we can explicitly obtain the solution using the
hypotheses (A2) and (A3).

Lemma 2.1 (Pazy, 1983; Alonso-Mallo et al., 2017) If f ∈ C1([0, T ], X), then
∫ t

0 esA0 f (t − s) ds ∈ D(A0)

and

A0

∫ t

0
esA0 f (t − s) ds = etA0 f (0) − f (t) +

∫ t

0
esA0 f ′(t − s) ds,

for t ≥ 0.

Proposition 2.2 Assume that u0 ∈ D(A) and ∂Au0 = v0, then the solution of (2.6) is given by

u(t) = etA0 (u0 − KA(0)v0) + KA(0)(v0 + v1t + v2t2) (2.7)

−
∫ t

0
esA0 KA(0)(v1 + 2v2(t − s)) ds.

Proof. Since ∂Au0 = v0, u0 − KA(0)v0 ∈ D(A0) and therefore

∂A

(
etA0(u0 − KA(0)v0)

) = 0.
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On the other hand, from Lemma 2.1,

∂A

(∫ t

0
esA0 KA(0)(v1 + 2v2(t − s)) ds

)
= 0,

and we deduce that ∂Au(t) = v0 + v1t + v2t2. Moreover,

u′(t) = etA0 A0 (u0 − KA(0)v0) + KA(0)(v1 + 2v2t) − etA0 KA(0)v1 −
∫ t

0
esA0 KA(0)2v2 ds.

On the other hand, using Lemma 2.1 and the definition of KA(0),

Au(t) = etA0 A0 (u0 − KA(0)v0) − A0

∫ t

0
esA0 KA(0)(v1 + 2v2(t − s)) ds

= etA0 A0 (u0 − KA(0)v0) − etA0 KA(0)v1 + KA(0)(v1 + 2v2t) −
∫ t

0
esA0 KA(0)2v2 ds.

Finally, it is straightforward that u(0) = u0. �

Remark 2.3 Notice that (2.7) is well defined for any u0 ∈ X and v0, v1, v2 ∈ YA; therefore, it may be
considered as a generalized solution of (2.6), which can be used even when u0 is not regular or not
compatible with the boundary values. We will use this fact to establish the time integrator method in the
following section.

Because of hypothesis (A2), {ϕj(tA0)}3
j=1 and {ϕj(tB0)}3

j=1 are bounded operators for t > 0, where
{ϕj} are the standard functions used in exponential methods (Hochbruck & Ostermann, 2010), which are
defined by

ϕj(tA0) = 1

tj

∫ t

0
e(t−τ)A0

τ j−1

( j − 1)! dτ , j ≥ 1, (2.8)

and can be calculated in a recursive way through the formulas

ϕj+1(z) = ϕj(z) − 1/j!
z

, z �= 0, ϕj+1(0) = 1

(j + 1)! , ϕ0(z) = ez. (2.9)

These functions are well known to be bounded on the complex plane when Re(z) ≤ 0.
For the time integration, we will center on Lie–Trotter and Strang methods, which when applied to a

finite-dimensional linear problem, such as

U ′(t) = M1U(t) + M2U(t) + F(t), (2.10)

where M1 and M2 are matrices, is described by the following formulas at each step

Un+1 = ekM1 ekM2
(
Un + kF(tn)

)
, (2.11)

Un+1 = e
k
2 M1 e

k
2 M2

(
e

k
2 M2 e

k
2 M1 Un + kF

(
tn + k

2

))
. (2.12)

where k > 0 is time step size and tn = nk for n ≥ 0.
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For the study of the Lie–Trotter method, we also assume that the solution of (2.1) satisfies the
following:

(A4) For every t ∈ [0, T ], and for any natural numbers l1, l2, j such that l1 + l2 + j ≤ 2, u(j)(t) ∈ D(Al1Bl2)

and Al1 Bl2 u( j)(t) ∈ C([0, T ], X).

Remark 2.4 From the hypothesis (A4) and the formulas

u′ = Au + Bu + f , Au′ = A2u + ABu + Af , Bu′ = BAu + B2u + Bf ,

we deduce that f (t) ∈ D(A) ∩ D(B) for t ∈ [0, T ] and f , Af , Bf ∈ C([0, T ], X).

For the finer results on Strang method, we assume that

(A4′) For every t ∈ [0, T ], and for any natural numbers l1, l2, l3, l4, j such that l1 + l2 + l3 + l4 + j ≤ 3,
u(j)(t) ∈ D(Al1 Bl2 Al3 Bl4) and Al1Bl2 Al3 Bl4 u(j)(t) ∈ C([0, T ], X).

Remark 2.5 From the hypothesis (A4′) we deduce that f (t) ∈ D(A) ∩ D(B) ∩ D(A2) ∩ D(B2) ∩ D(AB)

for t ∈ [0, T ] and f , Af , Bf , A2f , B2f , ABf ∈ C([0, T ], X).

Remark 2.6 Although the assumptions (A4) and (A4′) seem complicated, we emphasize that, in the
context of partial differential problems, they only imply that the solution u(t) is regular enough in time
and space.

We would like to clarify that, in the literature, A and B usually denote what we now call the operators
A0 and B0 (which are the restriction of the present A and B to the kernels of the boundary operators ∂A

and ∂B). In such a case, hypotheses similar to (A4) and (A4′) are artificial since belonging to the domain
of a power of A0 (or B0) implies vanishing conditions in the boundary, which are not necessarily satisfied
by the solution of (2.1). Because of that order reduction turns up in the general case and that is what we
manage to avoid in the present article.

3. Time semidiscretization: exponential Lie–Trotter splitting

In this section, we give the technique to generalize the Lie–Trotter exponential method for the solution of
initial boundary value problems with nonvanishing boundary conditions. Besides, we prove the full order
of the local error of the time semidiscretization, that is, the time order reduction is completely avoided.

3.1 Description of the technique

The technique that we suggest is based on the following:
When L0 is the infinitesimal generator of a C0-semigroup etL0 , t ≥ 0, and u0 ∈ D(L0), the solution of

the problem

u′(t) = L0u(t),

u(0) = u0, (3.1)

is given by u(t) = etL0 u0. In this way, we are able to use exponential methods when we want to approximate
the solution of an ordinary differential system and, in the case of a partial differential problem, we can
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approximate the solution of a pure initial value problem or an initial boundary value problem with
homogeneous or periodic boundary values.

For unbounded operators that are not associated with vanishing boundary conditions, as those in (2.1),
we mimic (3.1) by solving analogous differential problems where some boundaries must be specified. As
we aim to generalize C0-semigroups, for the boundaries, we consider Taylor expansions until the order
of accuracy we want to achieve. More precisely, considering, for χ = A or χ = B, the notation φχ ,η0,η̂(s)
for the solution of

η′(s) = χη(s),

η(0) = η0,

∂χη(s) = ∂χ η̂(s), (3.2)

we first consider

vn(s) = φB,un+kf (tn),v̂n(s), (3.3)

where

v̂n(s) = u(tn) + kf (tn) + sBu(tn). (3.4)

Then, we take

wn(s) = φA,vn(k),ŵn(s), (3.5)

where

ŵn(s) = u(tn) + kf (tn) + kBu(tn) + sAu(tn). (3.6)

(Notice that, although vn(s), v̂n(s), wn(s) and ŵn(s) do in fact depend on k, we do not include the parameter
k as a subindex to simplify the notation.)

In such a way, the numerical method is given by

un+1 = wn(k). (3.7)

In practice, we need to calculate the boundary values ∂Bv̂n(s) and ∂Aŵn(s) in terms of data. In Section 8,
we study how to calculate these boundary values taking hypothesis (A4) into account when the splitting
is dimensional.

3.2 Local error of the time semidiscretization

To study the local error, we consider the value obtained in (3.7) starting from u(tn) instead of un. More
precisely, we consider

un+1 = wn(k),

where wn(s) = φA,vn(k),ŵn(s) with ŵn(s) as in (3.6) and vn(s) = φB,u(tn)+kf (tn),v̂n(s) where v̂n(s) as in (3.4).
Before bounding the local error ρn+1 = ūn+1 − u(tn+1), let us first study more thoroughly wn(s) and

vn(s).
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Lemma 3.1 Under hypotheses (A1)–(A4),

vn(s) = u(tn) + kf (tn) + sBu(tn) + ksϕ1(kB0)Bf (tn) + s2ϕ2(sB0)B
2u(tn),

wn(s) = u(tn) + k(Bu(tn) + f (tn)) + sAu(tn) + k2esA0 [ϕ1(kB0)Bf (tn) + ϕ2(kB0)B
2u(tn)]

+ ksϕ1(sA0)A(Bu(tn) + f (tn)) + s2ϕ2(sA0)A
2u(tn),

where ϕ1(z) and ϕ2(z) are defined in (2.8).

Proof. Notice that

v̂′
n(s) = Bu(tn) = Bv̂n(s) − sB2u(tn) − kBf (tn).

Therefore,

v′
n(s) − v̂′

n(s) = B(vn(s) − v̂n(s)) + sB2u(tn) + kBf (tn),
vn(0) − v̂n(0) = 0,

∂B(vn(s) − v̂n(s)) = 0.

Then,

vn(s) = v̂n(s) +
∫ s

0
e(s−τ)B0 [τB2u(tn) + kBf (tn)] dτ

= u(tn) + kf (tn) + sBu(tn) + s2ϕ2(sB0)B
2u(tn) + ksϕ1(sB0)Bf (tn).

On the other hand,

ŵ′
n(s) = Au(tn) = Aŵn(s) − kAf (tn) − kABu(tn) − sA2u(tn),

ŵn(0) = u(tn) + kBu(tn) + kf (tn).

Therefore,

w′
n(s) − ŵ′

n(s) = A(wn(s) − ŵn(s)) + kAf (tn) + kABu(tn) + sA2u(tn),

wn(0) − ŵn(0) = k2ϕ2(kB0)B
2u(tn) + k2ϕ1(kB0)Bf (tn),

∂A(wn(s) − ŵn(s)) = 0,

from what

wn(s) − ŵn(s) = k2esA0 [ϕ2(kB0)B
2u(tn) + ϕ1(kB0)Bf (tn)]

+
∫ s

0
e(s−τ)A0 [kA(Bu(tn) + f (tn)) + τA2u(tn)] dτ ,

which proves the lemma taking the definition (2.8) of ϕ1 and ϕ2 into account. �

From this, we deduce the full order of consistency.
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Theorem 3.2 Under assumptions (A1)–(A4), when integrating (2.1) along with (2.3) with Lie–Trotter
method using (3.7), the local error satisfies

ρn+1 ≡ un+1 − u(tn+1) = O(k2).

Proof. By considering s = k in Lemma 3.1 and using (2.1), it is clear that

ūn+1 = u(tn) + k[Bu(tn) + Au(tn) + f (tn)]
+ k2ekA0ϕ2(kB0)B

2u(tn) + k2ϕ1(kA0)ABu(tn) + k2ϕ2(kA0)A
2u(tn)

+ k2ekA0ϕ1(kB0)Bf (tn) + k2ϕ1(kA0)Af (tn)

= u(tn) + ku′(tn) + O(k2) = u(tn+1) + O(k2). �

4. Time semidiscretization: exponential Strang splitting

With the same idea as in Section 3, we describe now how to generalize Strang exponential method to initial
boundary value problems with nonvanishing boundary values in such a way that time order reduction is
completely avoided.

4.1 Description of the technique

For the time integration of (2.1) along with (2.3), we first consider

vn(s) = φA,un ,̂vn(s), (4.1)

where

v̂n(s) = u(tn) + sAu(tn) + s2

2
A2u(tn); (4.2)

secondly,

wn(s) = φB,vn( k
2 ),ŵn

(s), (4.3)

where

ŵn(s) = u(tn) + k

2
Au(tn) + k2

8
A2u(tn) + sBu(tn) + s

k

2
BAu(tn) + s2

2
B2u(tn); (4.4)

thirdly,

rn(s) = φB,wn( k
2 )+kf (tn+ k

2 ),̂rn
(s), (4.5)

where

r̂n(s) = u(tn) + k

2
Au(tn) + k

2
Bu(tn) + kf

(
tn + k

2

)

+ k2

8
A2u(tn) + k2

4
BAu(tn) + k2

8
B2u(tn)

+ sBu(tn) + s
k

2
BAu(tn) + s

k

2
B2u(tn) + skBf

(
tn + k

2

)
+ s2

2
B2u(tn); (4.6)

1302 ALONSO-MALLO ET AL.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/38/3/1294/4085564 by U
niversidad de Burgos user on 09 N

ovem
ber 2023



and, finally,

zn(s) = φA,rn( k
2 ),̂zn

(s), (4.7)

where

ẑn(s) = u(tn) + k

2
Au(tn) + kBu(tn) + kf

(
tn + k

2

)

+ k2

8
A2u(tn) + k2

2
BAu(tn) + k2

2
B2u(tn) + k2

2
Bf

(
tn + k

2

)

+ sAu(tn) + s
k

2
A2u(tn) + skABu(tn) + skAf

(
tn + k

2

)
+ s2

2
A2u(tn). (4.8)

Then, we advance a step by taking

un+1 = zn

(
k

2

)
. (4.9)

In practice, we need to calculate the boundary values in (4.1), (4.3), (4.5) and (4.7) in terms of data f and
g. In Section 8, we study how to calculate these boundary values taking hypothesis (A4′) into account
when alternating directions are used.

4.2 Local error of the time semidiscretization

To study the local error, we consider the functions vn, wn, rn and zn, obtained in (4.1), (4.3), (4.5), (4.7),
starting from un = u(tn) in (4.1). Following a similar argument as that of Lemma 3.1, this result follows:

Lemma 4.1 Under hypotheses (A1)–(A3) and (A4′),

vn(s) = v̂n(s) + s3ϕ3(sA0)A
3u(tn),

wn(s) = ŵn(s) + k3

8
esB0ϕ3

(
k

2
A0

)
A3u(tn) + k2

8
sϕ1(sA0)BA2u(tn) + k

2
s2ϕ2(sA0)B

2Au(tn)

+ s3ϕ3(sA0)B
3u(tn),

rn(s) = r̂n(s) − esB0

[
k3

8
e

k
2 B0ϕ3

(
k

2
A0

)
A3u(tn) + k3

16
ϕ1

(
k

2
A0

)
BA2u(tn)

+k3

8
ϕ2

(
k

2
A0

)
B2Au(tn) + k3

8
ϕ3

(
k

2
A0

)
B3u(tn)

]

+ sϕ1(sB0)

[
k2

4
B2Au(tn) + k2

8
B3u(tn)

]

+ s2ϕ2(sB0)

[
k

2
B2Au(tn) + k

2
B3u(tn) + kB2f

(
tn + k

2

)]
+ s3ϕ3(sB0)B

3u(tn),
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zn(s) = ẑn(s) − esA0 e
k
2 B0

[
k3

8
e

k
2 B0ϕ3

(
k

2
A0

)
A3u(tn) + k3

16
ϕ1

(
k

2
A0

)
BA2u(tn)

+k3

8
ϕ2

(
k

2
A0

)
B2Au(tn) + k3

8
ϕ3

(
k

2
A0

)
B3u(tn)

]

+ sk2ϕ1(sA0)

[
1

8
A3u(tn) + 1

2
ABAu(tn) + 1

2
AB2u(tn) + 1

2
ABf

(
tn + k

2

)]

+ s2kϕ2(sA0)

[
1

2
A3u(tn) + A2Bu(tn) + A2f

(
tn + k

2

)]
+ s3ϕ3(sA0)A

3u(tn).

From Lemma 4.1, it is clear that

zn

(
k

2

)
= ẑn

(
k

2

)
+ O(k3)

= u(tn) + k(A + B)u(tn) + kf (tn)

+ k2

2

(
(A + B)2u(tn) + (A + B)f (tn) + f ′(tn)

) + O(k3)

= u(tn) + ku′(tn) + k2

2
u′′(tn) + O(k3) = u(tn + k) + O(k3).

Then, if we define

un+1 = zn

(
k

2

)
,

we have proved the following result:

Theorem 4.2 Under assumptions (A1)–(A3), (A4′), when integrating (2.1) along with (2.3) with Strang
method using the procedures (4.1)–(4.9), the local error satisfies

ρn+1 = u(tn+1) − un+1 = O(k3).

We will show in Section 8 that, when the splitting is dimensional, the terms of second order in s and
k in the functions (4.2)–(4.4)–(4.6)–(4.8) can be calculated in terms of the data f and g only when the
operators A and B commute. However, the alternative boundary values

v̂n(s) = u(tn) + sAu(tn),
ŵn(s) = u(tn) + k

2 Au(tn) + sBu(tn),
r̂n(s) = u(tn) + k

2 Au(tn) + k
2 Bu(tn) + kf (tn + k

2 ) + sBu(tn),
ẑn(s) = u(tn) + k

2 Au(tn) + kBu(tn) + kf (tn + k
2 ) + sAu(tn),

(4.10)

can always be calculated and we obtain
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Theorem 4.3 Under assumptions (A1)–(A4), when integrating (2.1) along with (2.3) with Strang method
using the technique (4.1), (4.3), (4.5), (4.7), (4.9), with the alternative boundary values (4.10), the local
error satisfies

ρn+1 = u(tn+1) − un+1 = O(k2).

5. Spatial discretization

In this section, we describe a quite general procedure to discretize in space the corresponding evolutionary
problems.

Although the previous analysis is valid for other types of boundary conditions, we consider here, for
the sake of simplicity, an abstract spatial discretization which is suitable for Dirichlet boundary conditions.
(Look at Alonso-Mallo et al., 2017, for a complete analysis of a similar technique with Neumann or Robin
boundary conditions for nonlinear problems, where the nonlinear part is a smooth operator. With linear
problems, although both operators are unbounded, the analysis there would be extended in a simpler
way, because the boundary conditions can always be exactly calculated in terms of data instead of just
approximately, as it happens in Alonso-Mallo et al., 2017).

Without loss of generality, we will assume that we have the same parameter of space discretization
for A and B. Let us denote it by h ∈ (0, h0]. Let Xh be a family of finite dimensional spaces, approximating
X . The norm in Xh is denoted by ‖·‖h. We suppose that

Xh = Xh,0 ⊕ Xh,b

in such a way that the internal approximation is collected in Xh,0 and Xh,b accounts for the boundary
values.

The elements in D(A0) ∩ D(B0), which are regular in space and have vanishing boundary conditions,
can be approximated in Xh,0. However, it is possible to consider elements u ∈ X that are regular in space,
but with nonvanishing boundary conditions, i.e. u ∈ D(A) ∩ D(B). Then, it is necessary to use the whole
discrete space Xh.

Since the solution is known at the boundary, our goal is to obtain a value in Xh,0, which is a good
approximation inside the domain. Let us take a projection operator

Ph : X → Xh,0.

When x ∈ D(A0) ∩ D(B0), Phx will be its best approximation in Xh,0. We also assume that there exist
interpolation operators

Qh,A : YA → Xh,b, Qh,B : YB → Xh,b,

which permit to discretize spatially the boundary values.
On the other hand, the operators A and B are approximated by means of the operators

Ah : Xh → Xh,0, Bh : Xh → Xh,0,

in such a way that Ah,0 and Bh,0, the restrictions of Ah and Bh to the subspaces Xh,0, are approximations of
A0 and B0. Therefore, when xh = xh,0 + xh,b ∈ Xh,0 ⊕ Xh,b = Xh, we have

Ahxh = Ah,0xh,0 + Ahxh,b, Bhxh = Bh,0xh,0 + Bhxh,b.
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Using this, the following semidiscrete problem arises after discretizing (2.1) along with (2.3) in space,

U ′
h(t) = Ah,0Uh(t) + Bh,0Uh(t)

+AhQh,A∂Ag(t) + BhQh,B∂Bg(t) + Phf (t),
Uh(0) = Phu(0).

(5.1)

The subsequent analysis is carried out under the following hypotheses, which are related to those in
Alonso-Mallo et al. (2016) (see also Brenner et al., 1982).

(H1) The operators Ah,0 and Bh,0 are invertible and generate uniformly bounded C0-semigroups etAh,0 ,
etBh,0 , on Xh,0 satisfying

||etAh,0 ||h, ||etBh,0 ||h ≤ M, (5.2)

where M ≥ 1 is a constant.

(H2) For each u ∈ X , vA ∈ YA and vB ∈ YB, there exist constants C, C′
A and C′

B such that

‖Phu‖h ≤ C‖u‖X ,
∥∥Qh,AvA

∥∥
h
≤ C′

A‖vA‖YA ,
∥∥Qh,BvB

∥∥
h
≤ C′

B‖vB‖YB . (5.3)

(H3) We define the elliptic projections Rh,A : D(A) → Xh,0 and Rh,B : D(B) → Xh,0 as the solutions of

Ah(Rh,Au + Qh,A∂Au) = PhAu, Bh(Rh,Bu + Qh,B∂Bu) = PhBu. (5.4)

We assume that there exists a subspace Z of X, such that, for u ∈ Z ,

(a) A−1
0 u, B−1

0 u ∈ Z and etA0 u, etB0 u ∈ Z , for t ≥ 0,

(b) for some εh,A and εh,B which are small with h,∥∥Ah,0(Phu − Rh,Au)
∥∥

h
≤ εh,A ‖u‖Z ,

∥∥Bh,0(Phu − Rh,Bu)
∥∥

h
≤ εh,B ‖u‖Z .

6. Full discretization: exponential Lie–Trotter splitting

Instead of integrating firstly in space (5.1) and then in time, which is the standard method of lines for
the integration of (2.1), in this section, we apply the space discretization to the intermediate evolutionary
problems that were described in Section 3 when integrating firstly in time. In such a way, the following
final formulas are obtained.

6.1 Final formula for the implementation

We apply the space discretization described above to the operators A and B, which appear in the evo-
lutionary problems (3.2) corresponding to (3.3) and (3.5), and we obtain Vh,n(s), Wh,n(s) ∈ Xh,0 as the
solutions of

V ′
h,n(s) = Bh(Vh,n(s) + Qh,B∂Bv̂n(s)),

Vh,n(0) = Uh,n + kPhf (tn), (6.1)
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where v̂n(s) is that in (3.4), Uh,n ∈ Xh,0 is the numerical solution in the interior of the domain after full
discretization at n steps, and

W ′
h,n(s) = Ah(Wh,n(s) + Qh,A∂Aŵn(s)),

Wh,n(0) = Vh,n(k), (6.2)

where ŵn(s) is that in (3.6). In such a way, using the variations of constants formula,

Vh,n(k) = ekBh,0 [Uh,n + kPhf (tn)] +
∫ k

0
e(k−s)Bh,0 BhQh,B∂B[u(tn) + kf (tn) + sBu(tn)] ds,

Wh,n(k) = ekAh,0 Vh,n(k) +
∫ k

0
e(k−s)Ah,0 AhQh,A∂A[u(tn) + kBu(tn) + kf (tn) + sAu(tn)] ds,

and, using then the definition of the functions ϕ1 and ϕ2 in (2.8),

Vh,n(k) = ekBh,0 [Uh,n + kPhf (tn)] (6.3)

+ k

[
ϕ1(kBh,0)BhQh,B∂B[u(tn) + kf (tn)] + kϕ2(kBh,0)BhQh,B∂BBu(tn)

]
,

Wh,n(k) = ekAh,0 Vh,n(k) (6.4)

+ k

[
ϕ1(kAh,0)AhQh,A∂A[u(tn) + k(Bu(tn) + f (tn))] + kϕ2(kAh,0)AhQh,A∂AAu(tn)

]
,

and the numerical solution at step n + 1 is therefore given by

Uh,n+1 = Wh,n(k). (6.5)

Moreover, we will take, as initial condition,

Uh,0 = Phu(0). (6.6)

Remark 6.1 Notice that, when

∂u(tn) = ∂Au(tn) = ∂Bu(tn) = 0, (6.7)

it is also deduced from (2.1) along with (2.3) that ∂f (tn) = 0. Therefore, formulas (6.3)–(6.4) just reduce
to the standard time integration with Lie–Trotter method of the corresponding differential system

U ′
h(t) = Ah,0Uh(t) + Bh,0(t)Uh(t) + Phf (t).

Although the order for the local error under these assumptions is not explicitly stated in Faou et al. (2015),
when the exact solution of (2.1) satisfies (6.7), we are implicitly proving that there is no order reduction
in the local error with the standard Lie–Trotter method.

Remark 6.2 The calculation of the terms in (6.3) and (6.4) which contain the exponential-type functions
can be performed with Krylov techniques in general Gockler & Grimm (2013) and with discrete sine
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transforms for some particular cases. In any case, we would like to notice that, for many space discretiza-
tions, for vA ∈ YA and vB ∈ YB, AhQh,AvA and BhQh,BvB are local in the sense that they vanish on the interior
grid nodes (or great part of them) (see Section 8). Because of this, for the terms that contain the functions
ϕ1 and ϕ2, another possibility when the step size k is fixed during all integration is to calculate once and
for all at the very beginning just some columns of the matrices, which represent ϕ1(kAh,0), ϕ2(kAh,0),
ϕ1(kBh,0) and ϕ2(kBh,0). After that, at each step, just a linear combination of those columns would be
necessary. In practice, Ah,0 and Bh,0 can be represented by block-diagonal matrices (where the blocks in
the diagonal can even be the same in some cases, as when A + B is the Laplacian) and therefore, ϕ1 or ϕ2

over k times those matrices is also block diagonal. Due to that, the number of nonvanishing elements of
each necessary column of ϕi(kAh,0) and ϕi(kBh,0) would just be O(J) if J is the number of nodes in each
direction.

6.2 Local errors

To define the local error, we consider

Uh,n+1 = Wh,n(k), (6.8)

where Wh,n(s) is the solution of

W
′
h,n(s) = Ah(Wh,n(s) + Qh,A∂Aŵn(s)),

Wh,n(0) = V h,n(k),
(6.9)

with ŵn(s) that in (3.6) and V h,n(s) the solution of

V
′
h,n(s) = Bh(V h,n(s) + Qh,B∂Bv̂n(s)),

V h,n(0) = Ph[u(tn) + kf (tn)], (6.10)

with v̂n(s) in (3.4). We now define the local error at t = tn as

ρh,n = Phu(tn) − Uh,n,

and study its behaviour in the following theorem.

Theorem 6.3 Under assumptions (A1)–(A4) and (H1)–(H3), when integrating (2.1) with Lie–Trotter
method as described in (6.3), (6.4), (6.5), (6.6), whenever the functions in (A4) belong to the space Z
which is introduced in (H3), the local error after full discretization satisfies

ρh,n+1 = O(kεh,A + kεh,B + k2),

where εh,A and εh,B are those in (H3b).

Proof. From the definition of ρh,n,

ρh,n+1 = (Phu(tn+1) − Phun+1) + (Phun+1 − Uh,n+1)

= Phρn+1 + (Phwn(k) − Wh,n(k)).
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Using Theorem 3.2 and (5.3), the first term in parenthesis is O(k2). To bound the second term, we apply
the operator Ph to (3.2) (corresponding to wn(s)) and use (5.4),

Phw′
n(s) = PhAwn(s)

= Ah(Rh,Awn(s) + Qh,A∂Aŵn(s))
= Ah,0Phwn(s) + Ah,0(Rh,A − Ph)wn(s) + AhQh,A∂Aŵn(s)

Phwn(0) = Phvn(k).

Then, subtracting (6.9),

Phw′
n(s) − W

′
h,n(s) = Ah,0(Phwn(s) − Wh,n(s)) + Ah,0(Rh,A − Ph)wn(s),

Phwn(0) − Wh,n(0) = Phvn(k) − V h,n(k).

Solving this problem exactly,

Phwn(k) − Wh,n(k) = ekAh,0(Phvn(k) − V h,n(k)) (6.11)

+
∫ k

0
e(k−s)Ah,0 Ah,0(Rh,A − Ph)wn(s) ds.

Making the difference now between (3.2) multiplied by Ph (and corresponding to vn(s)) and (6.10),

Phv′
n(s) − V

′
h,n(s) = Bh,0(Phvn(s) − V h,n(s)) + Bh,0(Rh,B − Ph)vn(s),

Phvn(0) − V h,n(0) = 0,

which implies that

Phvn(k) − V h,n(k) =
∫ k

0
e(k−s)Bh,0 Bh,0(Rh,B − Ph)vn(s) ds = O(kεh,B),

due to (5.2) and (H3b) considering that vn(s) ∈ Z because of Lemma 3.1, the hypotheses on u and f ,
(H3a) and the recursive definition of {ϕj}. Using this in (6.11) together with (5.2), (H3), and Lemma
3.1 again with wn(s) ∈ Z now, it follows that Phwn(k) − Wh,n(k) = O(kεh,A + kεh,B), which proves the
result. �

6.3 Global errors

We now study the global errors at t = tn,

eh,n = Phu(tn) − Uh,n.

Theorem 6.4 Under the same assumptions of Theorem 6.3 and assuming also that there exists a constant
C such that, whenever nk ∈ [0, T ],

‖(ekAh,0 ekBh,0)n‖h ≤ C, (6.12)
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the global error satisfies

eh,n = O(k + εh,A + εh,B),

where εh,A and εh,B are those in (H3b).

Proof. It suffices to notice that

eh,n+1 = [Phu(tn+1) − Uh,n+1] + [Uh,n+1 − Uh,n+1] = ρh,n+1 + Wh,n(k) − Wh,n(k),

where the definition of ρh,n+1, (6.5) and (6.8) have been used. Then, considering (6.1), (6.2), (6.9) and
(6.10),

Wh,n(k) − Wh,n(k) = ekAh,0(V h,n(k) − Vh,n(k)) = ekAh,0 ekBh,0(Phu(tn) − Uh,n),

and we obtain the recursive formula

eh,n+1 = ρh,n+1 + ekAh,0 ekBh,0 eh,n.

Since eh,0 = 0 because of (6.6), this implies that

eh,n =
n∑

l=1

(ekAh,0 ekBh,0)n−lρh,l,

which, together with Theorem 6.3 and (6.12), proves the result. �

Remark 6.5 Condition (6.12) is directly deduced from (5.2) whenever Ah,0 and Bh,0 commute. The more
general nonconmutative case has been studied in Ostermann & Schratz (2013) in an abstract setting
(that is, without considering the spatial discretizations) with other assumptions which imply that stability
bound for exponential splitting methods. In particular, the authors assume that the operators A0, B0 and
L0 generate analytic semigroups on X. In this way, they are able to prove the stability for dimensional
splitting for second order strongly elliptic operator and its splitting in Lp.

7. Full discretization: exponential Strang splitting

7.1 Final formula for the implementation

First, we consider the spatial discretization of the problems (4.1), (4.3), (4.5) and (4.7), which is given by

V ′
h,n(s) = Ah(Vh,n(s) + Qh,A∂Âvn(s)),

Vh,n(0) = Uh,n,
(7.1)

W ′
h,n(s) = Bh(Wh,n(s) + Qh,B∂Bŵn(s)),

Wh,n(0) = Vh,n

(
k
2

)
,

(7.2)

R′
h,n(s) = Bh(Rh,n(s) + Qh,B∂B̂rn(s)),

Rh,n(0) = Wh,n

(
k
2

) + kPhf
(
tn + k

2

)
,

(7.3)

1310 ALONSO-MALLO ET AL.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/38/3/1294/4085564 by U
niversidad de Burgos user on 09 N

ovem
ber 2023



Z ′
h,n(s) = Ah(Zh,n(s) + Qh,A∂Âzn(s)),

Zh,n(0) = Rh,n

(
k
2

)
.

(7.4)

Then, we obtain recursively the exact solution of these full discrete problems at s = k
2 :

Vh,n

(
k

2

)
= e

k
2 Ah,0 Uh,n +

∫ k
2

0
e

(
k
2 −τ

)
Ah,0 AhQh,A∂Âvn(τ ) dτ ,

Wh,n

(
k

2

)
= e

k
2 Bh,0 Vh,n

(
k

2

)
+

∫ k
2

0
e

(
k
2 −τ

)
Bh,0 BhQh,B∂Bŵn(τ ) dτ ,

Rh,n

(
k

2

)
= e

k
2 Bh,0

(
Wh,n

(
k

2

)
+ kPhf

(
tn + k

2

))
+

∫ k
2

0
e

(
k
2 −τ

)
Bh,0 BhQh,B∂B̂rn(τ ) dτ ,

Zh,n

(
k

2

)
= e

k
2 Ah,0 Rh,n

(
k

2

)
+

∫ k
2

0
e

(
k
2 −τ

)
Ah,0 AhQh,A∂Âzn(τ ) dτ .

If we use the values (4.2), (4.4), (4.6) and (4.8) to reach local order 3, in terms of ϕ1 and ϕ2, this can be
written as

Vh,n

(
k

2

)
= e

k
2 Ah,0 Uh,n + k

2
ϕ1

(
k

2
Ah,0

)
AhQh,A∂Au(tn) (7.5)

+ k2

4
ϕ2

(
k

2
Ah,0

)
AhQh,A∂AAu(tn) + k3

8
ϕ3

(
k

2
Ah,0

)
AhQh,A∂AA2u(tn),

Wh,n

(
k

2

)
= e

k
2 Bh,0 Vh,n

(
k

2

)
(7.6)

+ k

2
ϕ1

(
k

2
Bh,0

)
BhQh,B∂B

(
u(tn) + k

2
Au(tn) + k2

8
A2u(tn)

)

+ k2

4
ϕ2

(
k

2
Bh,0

)
BhQh,B∂B

(
Bu(tn) + k

2
BAu(tn)

)

+ k3

8
ϕ3

(
k

2
Bh,0

)
BhQh,B∂BB2u(tn),

Rh,n

(
k

2

)
= e

k
2 Bh,0

(
Wh,n

(
k

2

)
+ kPhf

(
tn + k

2

))
(7.7)

+ k

2
ϕ1

(
k

2
Bh,0

)
BhQh,B∂B

(
u(tn) + k

2
(A + B)u(tn)

+k2

8
(A2 + 2AB + B2)u(tn) + kf

(
tn + k

2

))

+ k2

4
ϕ2

(
k

2
Bh,0

)
BhQh,B∂B

(
Bu(tn) + k

2
(BA + B2)u(tn) + kBf

(
tn + k

2

))

+ k3

8
ϕ3

(
k

2
Bh,0

)
BhQh,B∂BB2u(tn),
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Zh,n

(
k

2

)
= e

k
2 Ah,0 Rh,n

(
k

2

)
(7.8)

+ k

2
ϕ1

(
k

2
Ah,0

)
AhQh,A∂A

(
u(tn) + k

((
1

2
A + B

)
u(tn) + f

(
tn + k

2

))

+ k2

2

((
1

4
A2 + BA + B2

)
u(tn) + Bf

(
tn + k

2

)) )

+ k2

4
ϕ2

(
k

2
Ah,0

)
AhQh,A∂A

(
Au(tn) + k

(
1

2
A2 + AB

)
u(tn) + kAf

(
tn + k

2

) )

+ k3

8
ϕ3

(
k

2
Ah,0

)
AhQh,A∂AA2u(tn).

Then, we take

Uh,n+1 = Zh,n

(
k

2

)
. (7.9)

Alternatively, if we use the values (4.10) to reach local order 2, we obtain with the same procedure

Vh,n

(
k

2

)
= e

k
2 Ah,0 Uh,n + k

2
ϕ1

(
k

2
Ah,0

)
AhQh,A∂Au(tn) (7.10)

+ k2

4
ϕ2

(
k

2
Ah,0

)
AhQh,A∂AAu(tn),

Wh,n

(
k

2

)
= e

k
2 Bh,0 Vh,n

(
k

2

)
+ k

2
ϕ1

(
k

2
Bh,0

)
BhQh,B∂B

(
u(tn) + k

2
Au(tn)

)
(7.11)

+ k2

4
ϕ2

(
k

2
Bh,0

)
BhQh,B∂BBu(tn),

Rh,n

(
k

2

)
= e

k
2 Bh,0

(
Wh,n

(
k

2

)
+ kPhf

(
tn + k

2

))
(7.12)

+ k

2
ϕ1

(
k

2
Bh,0

)
BhQh,B∂B

(
u(tn) + k

2
Au(tn) + k

2
Bu(tn) + kf

(
tn + k

2

))

+ k2

4
ϕ2

(
k

2
Bh,0

)
BhQh,B∂B (Bu(tn)),

Zh,n

(
k

2

)
= e

k
2 Ah,0 Rh,n

(
k

2

)
(7.13)

+ k

2
ϕ1

(
k

2
Ah,0

)
AhQh,A∂A

(
u(tn) + k

2
Au(tn) + kBu(tn) + kf

(
tn + k

2

))

+ k2

4
ϕ2

(
k

2
Ah,0

)
AhQh,A∂AAu(tn).
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7.2 Local errors

To define the local error, we consider V h,n, Wh,n, Rh,n and Zh,n the solutions of (7.1)–(7.4) starting from
Uh,n = Phu(tn). Then, Uh,n+1 = Zh,n

(
k
2

)
and the behaviour of the local error

ρh,n = Phu(tn) − Uh,n,

is given in the following theorem.

Theorem 7.1 Under assumptions (A1)–(A3), (A4′), and (H1)–(H3), when integrating (2.1) along with
(2.3) with Strang method as described in (7.5)–(7.9), whenever the functions in (A4′) belong to the space
Z which is introduced in (H3),

ρh,n+1 = O(kεh,A + kεh,B + k3), (7.14)

where εh,A and εh,B are those in (H3b).

Proof. Making the same decomposition as in the proof of Theorem 6.3,

ρh,n+1 = Phρn+1 + (
Phun+1 − Uh,n+1

)
.

As distinct, using now Theorem 4.2, the first term in parenthesis is O(k3). To bound the second term, we
now have

Phun+1 − Uh,n+1 = Phzn

(
k

2

)
− Zh,n

(
k

2

)
. (7.15)

Following a similar argument as that of the proof of Theorem 6.3,

Phzn

(
k

2

)
− Zh,n

(
k

2

)
= e

k
2 Ah,0

(
Phrn

(
k

2

)
− Rh,n

(
k

2

))
(7.16)

+
∫ k

2

0
e

(
k
2 −s

)
Ah,0 Ah,0(Rh,A − Ph)zn(s) ds.

Phrn

(
k

2

)
− Rh,n

(
k

2

)
= e

k
2 Bh,0

(
Phwn

(
k

2

)
− Wh,n

(
k

2

))
(7.17)

+
∫ k

2

0
e

(
k
2 −s

)
Bh,0 Bh,0(Rh,B − Ph)rn(s) ds.

Phwn

(
k

2

)
− Wh,n

(
k

2

)
= e

k
2 Bh,0

(
Phvn

(
k

2

)
− V h,n

(
k

2

))
(7.18)

+
∫ k

2

0
e

(
k
2 −s

)
Bh,0 Bh,0(Rh,B − Ph)wn(s) ds.

Phvn

(
k

2

)
− V h,n

(
k

2

)
=

∫ k
2

0
e

(
k
2 −s

)
Ah,0 Ah,0(Rh,A − Ph)vn(s) ds.
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Now, as vn ∈ Z because of Lemma 4.1, again with the same argument as in the proof of Theorem
6.3, the last formula is O(kεh,A). Inserting this in (7.18) and using also that wn ∈ Z , that formula is
O(kεh,A + kεh,B). Doing the same with (7.17) and (7.16) and taking also into account that rn(s), zn(s) ∈ Z ,
the result follows. �

In a similar way,

Theorem 7.2 Under assumptions (A1)–(A4) and (H1)–(H3), when integrating (2.1) with Strang method
as described in (7.10)–(7.9), whenever the functions in (A4) belong to the space Z which is introduced
in (H3),

ρh,n+1 = O(kεh,A + kεh,B + k2), (7.19)

where εh,A and εh,B are those in (H3b).

7.3 Global errors

For the global errors eh,n = Phu(tn) − Uh,n, we now have the following result.

Theorem 7.3 Under the same assumptions of Theorem 7.1 and assuming also that there exists a constant
C such that, whenever nk ∈ [0, T ],

‖(e k
2 Ah,0 ekBh,0 e

k
2 Ah,0)n‖h ≤ C, (7.20)

eh,n = O(k2 + εh,A + εh,B),

where εh,A and εh,B are those in (H3b).

Proof. The only difference with the proof of Theorem 6.4 is that now

eh,n+1 = ρh,n+1 + Zh,n

(
k

2

)
− Zh,n

(
k

2

)
,

where Zh,n(
k
2 ) is that in (7.4). Considering also now (7.1)–(7.3),

Zh,n(k) − Zh,n(k) = e
k
2 Ah,0

(
Rh,n

(
k

2

)
− Rh,n

(
k

2

))
= e

k
2 Ah,0 e

k
2 Bh,0

(
Wh,n

(
k

2

)
− Wh,n

(
k

2

))

= e
k
2 Ah,0 ekBh,0

(
V h,n

(
k

2

)
− Vh,n

(
k

2

))
= e

k
2 Ah,0 ekBh,0 e

k
2 Ah,0

(
Phu(tn) − Uh,n

)
.

Then, the recursive formula for the error is

eh,n+1 = ρh,n+1 + e
k
2 Ah,0 ekBh,0 e

k
2 Ah,0 eh,n,
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which implies that

eh,n =
n∑

l=1

(e
k
2 kAh,0 ekBh,0 e

k
2 kAh,0)n−lρh,l,

and, together with (7.14) and (7.20), this proves the result. �

Remark 7.4 As for condition (6.12), (7.20) is directly deduced from (5.2) whenever Ah,0 and Bh,0 commute
and other assumptions, which imply that bound, appear in Ostermann & Schratz (2013) in the abstract
setting of exponential operator splitting methods.

On the other hand, with the same proof, if just the assumptions of Theorem 7.2 can be done:

Theorem 7.5 Under the same assumptions of Theorem 7.2 and assuming also (7.20),

eh,n = O(k + εh,A + εh,B),

where εh,A and εh,B are those in (H3b).

Remark 7.6 In spite of the previous result, the numerical experiments in Section 8.2 show that the
optimal global order 2 is reached when the values (4.10) are used. It seems that this improvement is
caused by a summation by parts argument similar to the one used in Faou et al. (2015).

8. Examples and numerical results

In this section, we corroborate the results of previous sections by integrating parabolic problems with
homogeneous and nonhomogeneous Dirichlet boundary conditions with a dimension splitting.

8.1 Dimension splitting

We assume that a and b are sufficiently smooth positive coefficients that are bounded away from zero,
and we consider the parabolic problem which is defined, for the sake of simplicity, on 0 ≤ x, y ≤ 1,
0 ≤ t ≤ T , as

ut(t, x, y) = (a(x, y)ux(t, x, y))x + (b(x, y)uy(t, x, y))y + f (t, x, y), (8.1)

u(0, x, y) = u0(x, y),

u(t, 0, y) = g1,0(t, y),

u(t, 1, y) = g1,1(t, y),

u(t, x, 0) = g2,0(t, x),

u(t, x, 1) = g2,1(t, x).

To adjust this problem to the abstract formulation (2.1) and to use the theory given in Palencia & Alonso-
Mallo (1994), we take Ω = (0, 1) × (0, 1), X = L2(Ω), Y = H3/2(∂Ω), and L the strongly elliptic
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operator defined by L = Dx(aDx) + Dy(bDy), with domain D(L) = H2(Ω). The boundary operator
∂ : D(L) → Y is the trace operator on ∂Ω . In such a way, Ker(∂) = D(L0) = H2(Ω) ∩ H1

0 (Ω) and
L0 = L|Ker(∂) is a sectorial operator, which generates an analytical semigroup on X.

With the idea of using an alternating directions scheme, we consider the splitting

A = Dx(a(x, y)Dx), B = Dy(b(x, y)Dy),

with

D(A) = {u ∈ L2(Ω) : Dxu, Dxxu ∈ L2(Ω)},
D(B) = {u ∈ L2(Ω) : Dyu, Dyyu ∈ L2(Ω)}, (8.2)

and then

D(A0) = {u ∈ L2(Ω) : Dxu, Dxxu ∈ L2(Ω), u(0, y) = u(1, y) = 0 for a.e. y ∈ (0, 1)},
D(B0) = {u ∈ L2(Ω) : Dyu, Dyyu ∈ L2(Ω), u(x, 0) = u(x, 1) = 0 for a.e. x ∈ (0, 1)}.

Notice that ∂Ω = ∂AΩ∪∂BΩ , with ∂AΩ = {0, 1}×[0, 1] and ∂BΩ = [0, 1]×{0, 1}. Besides, ∂A : D(A) →
YA and ∂B : D(B) → YB are the restrictions to ∂AΩ and ∂BΩ , respectively. In such a case, hypothesis (A1) is
satisfied. Regarding the assumption (A2), we note that a direct consequence of Theorem 6.6 in Ostermann
& Schratz (2013) is that A0 : D(A0) = Ker(∂A) ⊂ X → X and B0 : D(B0) = Ker(∂B) ⊂ X → X, are
the infinitesimal generators of analytic semigroups on X such that 0 ∈ ρ(A0), ρ(B0). Therefore, (A2) is
satisfied. We also deduce that the resolvents (A0 − λI)−1 : X → D(A0) and (B0 − λI)−1 : X → D(B0)

are well defined for each λ > 0.
We now prove that (A3) is also satisfied. We consider the operator A (the case of B is similar). For each

y ∈ (0, 1), we take Xy = {u(·, y) ∈ L2(0, 1)}, D(Ay) = {u(·, y) ∈ W 2(0, 1)}, and we define Ay : D(Ay) →
Xy by means of Ayu(·, y) = Dx(a(·, y)Dxu(·, y)). Note that, with D(A0,y) = {u(·, y) ∈ W 2(0, 1)∩W 1

0 (0, 1)},
the operator A0,y : D(A0,y) → Xy, given by the restriction of Ay to the subspace D(A0,y), generates an
analytic semigroup on Xy with negative type. Therefore, the resolvents (A0,y − λI)−1 are well defined for
λ > 0.

We take v ∈ YA and we write v0(y) = v(0, y), v1(y) = v(1, y). Then, we define KA,y(λ)(v)(·, y) ∈
D(Ay), λ > 0, as the solution of the one-dimensional elliptic problem,

Ayu = λu, u(0, y) = v0(y), u(1, y) = v1(y).

We now consider, for (x, y) ∈ Ω , wA(x, y) = v0(y) + x(v1(y) − v0(y)), which satisfies

AywA(·, y) = ax(·, y)(v1(y) − v0(y)), wA(0, y) = v0(y), wA(1, y) = v1(y),

and we deduce that

(Ay − λI)(KA,y(λ)(v)(·, y) − wA(·, y)) = λ(wA(·, y)) − ax(·, y)(v1(y) − v0(y)),

KA,y(λ)(v)(0, y) − wA(0, y) = 0,

KA,y(λ)(v)(1, y) − wA(1, y) = 0.
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Therefore,

KA,y(λ)(v)(·, y) = (A0,y − λI)−1

(
λ(wA(·, y)) − ax(·, y)(v1(y) − v0(y))

)
+ wA(·, y).

In the proof of Lemma 7.2 in Ostermann & Schratz (2013), it is proved that the resolvents (A0,y − λI)−1

depend continuously on y ∈ [0, 1]. Then, we can bound uniformly these resolvents and, from the regularity
of a, we deduce that

‖KA,y(λ)(v)(·, y)‖ ≤ C‖(v0(y), v1(y))‖,

where C is a constant which is independent of y ∈ [0, 1]. Since v0, v1 are continuous, (A3) is deduced.
We now study when the boundary values of the evolutionary problems that define the method can be

calculated in terms of the data. More particularly, the boundaries in (6.3)–(6.4) for Lie–Trotter and those
of (7.10)–(7.13) for Strang method can be obtained since

(i) ∂BAu and ∂ABu can be calculated directly from g.

(ii) ∂BBu can be calculated from (2.1) along with (2.3) just by considering that the rest of terms of the
equation can already be calculated (∂But = ∂Bgt). The same applies for ∂AAu.

In the particular case that a(x, y) = b(x, y) = 1, A and B commute and the boundaries in (7.5)–(7.8) can
be obtained since:

(i) ∂BA2u = ∂Buxxxx can be calculated directly from g and ∂BABu can also be calculated from equation

Aut = A2u + ABu + Af , (8.3)

which results from (2.1) by applying the operator A. (Notice that ∂BAut = ∂Butxx can also be calculated
from g.) In a similar way, ∂AB2u and ∂ABAu can also be calculated from the data.

(ii) ∂AA2u = ∂Auxxxx can be calculated from (8.3) just by considering that the rest of terms of the equation
can already be calculated because ABu = BAu and because differentiating (2.1) with respect to time

∂AAut = ∂A(utt − But − ft).

In a symmetric way, ∂BB2u can also be calculated from the data.

Similar to space discretization for the first derivative, we have considered the standard symmetric second-
order difference scheme. In such a way, in Section 5, we can interpret that we are considering as space Xh

any which is determined by some nodal values (xm, yl) in a uniform grid in the square with (N−1)×(N−1)

nodes and h = 1/N , Ph is just the projection onto the interior nodal values and Qh the projection onto
the nodal values of the boundary. We can consider as ‖ · ‖h the discrete L2-norm and then, (H2) is
immediately satisfied. Moreover, Ah,0 can be represented by a block-diagonal matrix whose base matrix
for each l ∈ {1, . . . , N − 1} is given by

1

h2
tridiag(a(xm− 1

2
, yl), −(a(xm− 1

2
, yl) + a(xm+ 1

2
, yl)), a(xm+ 1

2
, yl)),
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where xm− 1
2

= (xm−1 + xm)/2, and something similar happens for Bh,0. Since this matrix is irreducibly
diagonally dominant, it is invertible and, using Gerschgorin Theorem and its symmetry, its eigenvalues are
negative and therefore (H1) is satisfied. Besides, AhQh,A∂Au and BhQh,B∂Bu can be represented by vectors
with many zero values, except for the ones that come from the values of the boundary after applying the
second-order difference scheme. More precisely, AhQh,A∂Au is a block vector, where each l-block has the
form

1

h2

⎡
⎢⎢⎢⎢⎢⎢⎣

a(x 1
2
, yl)u(x0, yl)

0
...
0

a(xN− 1
2
, yl)u(xN , yl)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Moreover, hypothesis (H3) is also satisfied with Z = H4(Ω) and εh,A and εh,B of order O(h2) (Strikwerda,
1989). Notice that the technique to avoid order reduction in (6.3)–(6.4), (7.5)–(7.8) and (7.10)–(7.13) is
cheap, because the additional cost of the method just requires the first and last column of each block of
ϕj(kAh,0) and ϕj(kBh,0) (j = 1, 2) and when k is fixed, those can be calculated once and for all at the very
beginning.

8.2 Numerical results

Let us first use Lie–Trotter method to time integrate problem (8.1) with

a(x, y) = 1 + x + y, b(x, y) = 1 + 2x + 3y. (8.4)

Notice that, in this case, operators A and B do not commute.
For the first experiment we will consider

u0(x, y) = (x2 − 1/4)(y2 − 1/4), (8.5)

f (x, y, t) = e−t

16
(15 + 56y − 28y2 − 32y3 + x(32 − 64y2) − 4x2(7 + 48y + 4y2) − 64x3),

in which case, the exact solution is u(x, y, t) = e−t(x2 − 1/4)(y2 − 1/4). According to (8.2), hypotheses
(A4) and (A4′) are satisfied. In Fig. 1, we can see the results after integrating (5.1) till time T = 1 directly
with (2.11) considering the last three terms of (5.1) as a source term. More precisely, we have considered
in (2.11)

F = AhQh∂Ag(t) + BhQh∂Bg(t) + Phf (t),

M1 = Ah,0,

M2 = Bh,0,

with h = 10−2. Moreover, we can also observe the results after applying formulas (6.3)–(6.5) to avoid
order reduction. In the first case, we can observe that the results are very poor, whereas orders 2 and 1
are observed for the local and global errors, respectively, when applying the technique that is suggested
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Fig. 1. Local error (*) and global error (o) without avoiding (discontinuous) and avoiding (continuous) order reduction when
integrating problem (8.1) with Lie–Trotter method with noncommutable operators A and B given through (8.4) and data (8.5).
Dotted lines represent the slope for orders 1 and 2.

in this article. This corroborates Theorems 6.3 and 6.4 when h2 is negligible against k. Moreover, we
see that, not only the order increases, but also the size of the errors considerably diminishes. We also
notice that the same results are obtained with the suggested technique when h diminishes, so that no
Courant-Friedrichs-Lewy (CFL) condition is required.

Let us now consider, as a second experiment,

u0(x, y) = x(1 − x)y(1 − y) (8.6)

f (x, y, t) = e−t(−4x3 + y + y2 − 2y3 + x(−1 + 15y − 3y2) − x2(−5 + 11y + y2)).

For such a problem, the exact solution is u(x, y, t) = e−tx(1 − x)y(1 − y), which has homogeneous
boundary values. Therefore, the only correction needed is due to the inhomogeneity f which is not zero
on the boundary. In any case, (A4) and (A4′) are again satisfied.

When integrating directly (5.1) with Lie–Trotter, orders around 1.25 and 1 are observed for local and
global errors, respectively, as stated in Faou et al. (2015) for vanishing boundary conditions of the exact
solution. When applying (6.3)–(6.5), the results fit quite well with the orders 1 and 2, which are assured
by Theorems 6.3 and 6.4, respectively. In this case, although there is not a big gain in the order of the
global error, the size of the errors is about three times smaller for a same value of k, as it can be observed
in Fig. 2. As the computational cost of the technique to avoid order reduction is negligible against the
rest of the calculations of the method, the strategy that is suggested here is clearly better.

Let us now use Strang method for the same problem with data (8.5). As the operators A and B do
not commute, we have to use formulas (7.10)–(7.13). The order 2 of the local error which is given by
Theorem 7.2 is clearly seen in Fig. 3, and it seems that a summation-by-parts argument similar to that
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Fig. 2. Local error (*) and global error (o) without avoiding (discontinuos) and avoiding (continuous) order reduction when
integrating problem (8.1) with Lie–Trotter method with noncommutable operators A and B given through (8.4) and data (8.6).
Dotted lines represent the slope for orders 1 and 2.
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Fig. 3. Local error (*) and global error (o) without avoiding (discontinuous) and avoiding (continuous) order reduction when
integrating problem (8.1) with Strang method with noncommutable operators A and B given through (8.4) and data (8.5). Dotted
lines represent the slope for orders 1 and 2.

shown in Faou et al. (2015) for vanishing boundary problems is also working here since the global error
in fact behaves as O(k2) instead of O(k), as assured by Theorem 7.5. Moreover, the difference between
avoiding and not avoiding order reduction is seen to be even higher than with Lie–Trotter for the same
problem.
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Fig. 4. Local error (*) and global error (o) without avoiding (discontinuous) and avoiding (continuous) order reduction when
integrating problem (8.1) with Strang method with noncommutable operators A and B given through (8.4) and data (8.6). Dotted
lines represent the slope for orders 1 and 2.

Let us now use Strang method for solving the same problem, but with data (8.6). When not avoiding
order reduction, local and global orders are around 1.25, as stated in Faou et al. (2015). With the technique
suggested here, we achieve order near 2 for both the local and global error, as in the example before.
Figure 4 also shows that the size of the errors is much smaller with our technique at a very low additional
cost. We would also like to remark that, using more complicated functions a(x, y), b(x, y) in (8.1), we
have numerically checked that order reduction is also avoided.

Finally, let us consider problem (8.1) with the Laplacian operator. That is,

a(x, y) = b(x, y) = 1.

Clearly in this case the operators A and B commute, and therefore technique (7.5)–(7.8) can be applied
when integrating in time with Strang method. For this experiment, we will use

u0(x, y) = (x2 − 1/4)(y2 − 1/4), (8.7)

f (x, y, t) = e−t

16
(15 − 28y2 − 4x2(7 + 4y2)).

Now the exact solution of the problem is u(x, y) = (x2 − 1/4)(y2 − 1/4) e−t , which again satisfies
regularity hypotheses (A4) and (A4′), although not vanishing at the boundary. With our technique, the
local order is clearly 3 and the global one is 2, as stated by Theorems 7.1 and 7.3. However, as the solution
does not vanish on the boundary, the results without avoiding order reduction are very poor. Figure 5
confirms that even in terms of the size of the errors.
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Fig. 5. Local error (*) and global error (o) without avoiding (discontinuous) and avoiding (continuous) order reduction when
integrating problem (8.1) with Strang method with commutable operators A and B corresponding to the Laplacian and data (8.7).
Dotted lines represent the slope for orders 1, 2 and 3.
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