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a b s t r a c t

When applied to stiff problems, the effective order of convergence of general linear
methods is governed by their stage order, which is less than or equal to the classical
order of the method. This produces an order reduction phenomenon, present in all
general linear methods except those with high stage order, in a manner similar to that
observed in other time integrators with internal stages.

In this paper, we investigate the order reduction which arises when general linear
methods are used as time integrators when using the method of lines for solving
numerically initial boundary value problems with time dependent boundary values.

We propose a technique, based on making an appropriate choice of the boundary
values for the internal stages, with which it is possible to recover one unit of order, as we
prove in this work. As expected, this implies a considerable improvement for the general
linear methods suffering order reduction. Moreover, numerical experiments show that
the improvement is not only in these cases, but that, even when the order reduction
is not expected, the size of the errors is drastically reduced by using the technique
proposed in this paper.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

General linear methods (GLMs), introduced by Burrage and Butcher in [1], are a class of multistep-multistage methods
sed for the time integration of systems of ordinary differential equations [2–7]. Many of the time integrators most
ommonly used in practice for numerically solving ordinary differential equations are particular cases of GLM, including
unge–Kutta methods and linear multistep methods (see e.g. [8,9]).
When a GLM is used for the time discretization of a stiff system of ordinary differential equations, the order observed

n practice can be lower than the classical order of the GLM. This order reduction phenomenon is ubiquitous, and it has
een observed for many schemes with internal stages [10–13], and also for exponential schemes [14–16].
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The order reduction suffered by GLMs has been studied in [9] for the particular case when they are applied to
rothero–Robinson test problems [17]

u′(t) = λ(u(t) − φ(t)) + φ′(t), t ∈ [t0, T ],

u(t0) = φ(t0).

ore precisely, in [9], it is shown that the effective global order of a GLM is equal to its stage order q and, for GLMs
ith Runge–Kutta stability which are A(0)-stable, it is equal to q + 1 when the stability function R(z) of the underlying
unge–Kutta method is such that R(+∞) ̸= 1. Therefore, for GLMs with these stability properties, the order reduction
henomenon is observed when q+1 is less than the classical order p, and, for general GLMs, order reduction is observed if
< p. It follows that only with GLMs with high stage order, i.e., q = p or q = p−1, the order reduction phenomenon will
ot appear. Consequently, recent literature on general linear methods applied to stiff problems has dealt with methods
hat have high stage order, such as Diagonally Implicit Multistage Integration methods (DIMSIMs) [18–20] and also
mplicit-explicit methods (IMEX) [21].

An important case of very stiff high dimensional systems of ordinary differential equations arises when a time evolution
artial differential equation is discretized in space with the idea of using the method of lines to obtain a full discretization
see e.g. [22,23], where GLMs are used for the time integration). Although the order reduction is not observed in the special
ase when the solution and its derivatives vanish sufficiently at the boundary of the spatial domain where the solutions
re defined (see [24] for the case in which Runge–Kutta methods are used as integrators in time), order reduction arises in
he more general and interesting case of time dependent boundary conditions. Due to the importance of this phenomenon,
e can find in the literature the proposal of different techniques that allow to avoid the order reduction, when a initial
oundary value problem (IBVP) is full discretized in time and space, for the case of some schemes with internal stages, such
s Runge–Kutta [10,12], Rosenbrock methods [11], Spectral-fractional step Runge–Kutta [12], as well as for exponential
plitting schemes [14–16].
The aim of this paper is, on the one hand, to study the order reduction that GLMs suffer when they are used to solve

ell posed linear abstract IBVP (see [24,25] for a detailed description of this type of problems). Since it is assumed that the
ifferential operator of the problem is the infinitesimal generator of a C0−semigroup when the boundary values vanish,
oth hyperbolic and parabolic cases are included. We prove that the effective local order is q + 1; then the effective
lobal order is also q+1 when the stability function R(z) of the underlying Runge–Kutta method is such that R(+∞) ̸= 1,
imilarly to the conclusions in [9] for Prothero–Robinson test problems. The numerical experiments that we show in this
aper confirm this results.
On the other hand, we also prove that, in the general case of time dependent boundary values, a unit of order can

e recovered by an appropriate choice of the boundary values of the GLM stages. In this way, with the technique we
ropose, we prove that the local order is min(q+ 2, p+ 1) instead of order q+ 1 that would be obtained with a standard
mplementation. Then, for GLMs that present order reduction, one unit of order is gained, with the improvement that
his entails. But, as we will shown in the numerical experiments, even in the particular case of GLMs for which no order
eduction is expected, the size of the errors is much smaller with our technique, also providing an improvement to the
tandard implementation. Furthermore, we note that the computational cost of the technique we propose is negligible
ompared to that of the method itself.
The organization of the paper is as follows. Section 2 is devoted to present in an abstract way the IBVP which we want

o solve numerically, and the GLMs that we will use for this. In Section 3, we prove the order reduction that GLMs suffer
hen using a standard implementation We also propose the boundary values for the stages that must be used to avoid
he order reduction at least in one unit. The numerical experiments, which confirm the previous results, are included in
ection 4.

. Discretization of an IBVP by means of a GLM

Let X and Y be two Banach spaces, D(A) ⊂ X a dense subspace of X , and let A : D(A) ⊂ X → X , B : D(A) ⊂ X → Y , be
two linear operators.

We consider an abstract non homogeneous linear IBVP

u′(t) = Au(t) + f (t), t ∈ [0, T ],

u(0) = u0,

Bu(t) = g(t) ∈ Y .
(1)

here A and B are operators for which we assume, as in [24,25], the following hypothesis:

(A1) The operator B is onto.
(A2) Ker(B) = D(A0) is a dense subspace of X and A0 = A|D(A0) is the infinitesimal generator of a C0 semigroup {S(t)}t≥0

in X with type ω.
(A3) Let If z > ω, the steady state problem

Ax = zx,
2
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D

Bx = v ∈ Y ,

possesses a unique solution denoted by x = K (z)v and there exists a constant C such that the linear operator
K (z) : Y → D(A) satisfies, for any z ≥ ω0 > ω,

∥K (z)v∥X ≤ C∥v∥Y .

(A4) The solution u in (1) satisfies u(t) ∈ D(A) for t ∈ [0, T ] and it is smooth enough in time.

We will consider a GLM for the numerical time integration of the IBVP (1). For this, let N be a natural number and
k = T/N will denote the time step and tn = nk, n = 0, . . . ,N . A GLM of s stages and r steps applied to (1) is given by the
equations

U [n]
i = k

s∑
j=1

aij[AU
[n]
j + f (tn + cjk)] +

r∑
j=1

uiju
[n]
j , i = 1, 2, . . . , s, (2)

u[n+1]
i = k

s∑
j=1

bij[AU
[n]
j + f (tn + cjk)] +

r∑
j=1

viju
[n]
j , i = 1, 2, . . . , r, (3)

where the stages U [n]
i are approximations to the values u(tn + cik) of order q of the solution,

U [n]
i = u(tn + cik) + O(kq+1), i = 1, 2, . . . , s

and u[n]
i are approximations of order p to certain linear combinations of derivatives of the solution at the point tn,

u[n]
i =

p∑
l=0

qilklu(l)(tn) + O(kp+1), i = 1, 2, . . . , r. (4)

The values p and q, which are the classical order and the stage order (see Definition 2.1) of the GLM, will be important
throughout this work.

These equations of a GLM can be rewritten by means of the abscissa vector c = [c1, . . . , cs]T , the vectors q0 =

[q1,0, . . . , qr,0]T , q1 = [q1,1, . . . , qr,1]T , . . . , qp = [q1,p, . . . , qr,p]T , and the matrices A = [aij] ∈ Rs×s, U = [uij] ∈ Rs×r ,
B = [bij] ∈ Rr×s, V = [vij] ∈ Rr×r and C = diag(c1, . . . , cs) ∈ Rs×s.

Next, we are going to mention some definitions and properties of GLMs that will be of interest for the study we will
carry out next.

The GLM is strictly zero-stable when all the eigenvalues of the coefficient matrix V are inside of the unit circle an it
has a unique eigenvalue on the unit circle. As a consequence of the strict zero-stability, we can assure that there exists

lim
n→∞

Vn
= Ṽ = uvT

where u, v ∈ Rr are vectors satisfying Ṽu = u, vT Ṽ = vT , and vTu = 1 (cf. [8]).
We use the notation e = [1, . . . , 1]T and cl = [c l1, . . . , c

l
s]

T and we consider the following values:

γ0 = e − Uq0

γk =
ck

k!
−

Ack−1

(k − 1)!
− Uqk, k = 1, . . . , p.

⎫⎬⎭
hen, a way to define the stage order is as follows.

efinition 2.1. The maximum number q ≤ p such that γk = 0, k = 0, 1, . . . , q, is the stage order of the GLM method.

In the rest of this work, we assume the stage consistency conditions

γ0 = 0 ⇔ Uq0 = e,
γ1 = 0 ⇔ Ae + Uq1 = c,

}
(5)

or, equivalently, we assume that q ≥ 1.
Also, we will make the hypothesis that, for the GLM that is being used, the stage order q < p, so that the order

reduction phenomenon will appear for the local error (see Theorem 3.1).
On the other hand, we also consider the values

γ̂0 = q0 − Vq0

γ̂k =

k∑ ql

(k − l)!
−

Bck−1

(k − 1)!
− Vqk, k = 1, . . . , p.

⎫⎪⎬⎪⎭

l=0

3
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Table 1
Order conditions for GLMs of order p ≤ 4.
Order p order condition

0 γ̂0 = 0, γ0 = 0

1 γ̂1 = 0, γ1 = 0

2 γ̂2 = 0

3 γ̂3 = 0

ṼBγ2 = 0 or Bγ2 = 0

4 γ̂4 = 0

ṼBγ3 = 0

ṼBAγ2 = 0

ṼBCγ2 = 0

Then, the conditions

γ̂k = 0, k = 0, 1, . . . , p, (6)

are necessary (but not sufficient) for the GLM to have order p. In the rest of this work, we also assume the consistency
conditions

γ̂0 = 0 ⇔ Vq0 = q0,

γ̂1 = 0 ⇔ Be + Vq1 = q0 + q1,

which imply, along with (5), that the GLM has classical order p ≥ 1.
Order conditions can be deduced in order to obtain a GLM of any desired order. See for example [8], where they are

displayed up to order p = 6. We have listed in Table 1 these conditions up to the order p = 4.
To approximate the solution of (1) by means of a GLM, the first step is to solve the equation for the internal stages

(2), which can be rewritten as

(I ⊗ I − A ⊗ kA)U [n]
= (U ⊗ I)u[n]

+ k(A ⊗ I)F [n+c] (7)

where U [n]
= [U [n]

1 , . . . ,U [n]
s ]

T is the vector of internal stages, u[n]
= [u[n]

1 , . . . , u[n]
r ]

T is the approximation at t = tn and
[n+c]

= [f (tn + c1k), . . . , f (tn + csk)]T .
When the internal stages have been computed, the approximation u[n+1] is obtained with (3), which can be rewritten

as

u[n+1]
= (B ⊗ kA)U [n]

+ k(B ⊗ I)F [n+c]
+ (V ⊗ I)u[n]. (8)

To obtain a unique solution of the Eqs. (7), it is necessary to incorporate the boundary values of the internal stages. If
we choose the boundary values G[n]

= [G[n]
1 , . . . ,G[n]

s ]
T , we obtain the following equations for the stages,

(I ⊗ I − A ⊗ kA)U [n]
= (U ⊗ I)u[n]

+ k(A ⊗ I)F [n+c],

BU [n]
= G[n].

}
(9)

In order to see that (9) has a unique solution, it suffices to consider the problems

(I ⊗ I − A ⊗ kA0)U [n,0]
= (U ⊗ I)u[n]

+ k(A ⊗ I)F [n+c],

BU [n,0]
= 0,

}
(10)

and

(I ⊗ I − A ⊗ kA)U [n,b]
= 0,

BU [n,b]
= G[n].

}
(11)

We endow the space X s with the usual norm product. Then, the solvability of (10) and (11) comes from the following
two lemmas (see [10]).

Lemma 2.2. There exists a constant C > 0 such that the operator (I⊗ I − A⊗ kA0)−1
: X s

→ X s is boundedly invertible and

∥(I ⊗ I − A ⊗ kA0) : D(As
0) ⊂ X s

→ X s
∥ ≤ C

for k > 0 small enough.

Lemma 2.3. For k > 0 small enough and W = [W1, . . . ,Ws]
T

∈ Y s, the problem,

(I ⊗ I − A ⊗ kA)V = 0,
}

BV = W .

4
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possesses a unique solution V := K ((kA)−1)W ∈ X s. Moreover, there exists a constant C > 0 such that,

∥K ((kA)−1)W∥ ≤ C∥W∥.

3. Local error analysis of the time semidiscrete problem

In order to define the time semidiscrete local error, we consider U [n+c]
= [u(tn + c1k), . . . , u(tn + csk)]T , and we use

he following notation

G[n+c]
= BU [n+c]

= [Bu(tn + c1k), . . . , Bu(tn + csk)]T

= [g(tn + c1k), . . . , g(tn + csk)]T . (12)

hese boundary values are the ones used for the stages in the standard method of lines.
Using the boundary values (12), we define U

[n+c]
= [U

[n+c]
1 , . . . ,U

[n+c]
s ]

T as the solution of

(I ⊗ I − A ⊗ kA)U
[n+c]

= (U ⊗ I )̃u(tn) + k(A ⊗ I)F [n+c],

BU
[n+c]

= G[n+c],

}
(13)

where ũ(tn) = [̃u1(tn), . . . , ũr (tn)]T , is given taking into account (4) with exact values of the solution and its derivatives,
that is

ũi(tn) =

p∑
l=0

qilklu(l)(tn), i = 1, . . . , r. (14)

otice that we can consider ũ(tn) as the optimal approximation of the exact solution at t = tn that we expect to obtain
with the GLM.

Then, let u[n+1] be given by

u[n+1]
= (B ⊗ kA)U

[n+c]
+ k(B ⊗ I)F [n+c]

+ (V ⊗ I )̃u(tn), (15)

Then, we define the time semidiscrete local error at tn+1 as follows.

ρn+1 = ũ(tn+1) − u[n+1]
.

heorem 3.1. Let u be the solution of (1) and let us assume the hypotheses (A1)–(A4). We consider the GLM given by the
tages Eq. (13), with the boundary values G[n+c] defined in (12), and the final step (15). We assume that q, the stage order of
he GLM, is smaller that p, the classical order. Then the time semidiscrete local errors ρn = ũ(tn) − u[n], 1 ≤ n ≤ N, satisfy

∥ρn∥ ≤ Ckq+1, for k > 0, (16)

here the constant C depends only on the derivatives of u, the GLM method and the differential operator A.

roof. Let εn,k be the value satisfying

(I ⊗ I − A ⊗ kA)U [n+c]
= (U ⊗ I )̃u(tn) + k(A ⊗ I)F [n+c]

+ εn,k. (17)

Then,

εn,k = U [n+c]
− (A ⊗ kI)(AU [n+c]

+ F [n+c]) − (U ⊗ I )̃u(tn)
= U [n+c]

− (A ⊗ kI)U ′[n+c]
− (U ⊗ I )̃u(tn)

where we have used the notation U ′[n+c]
= [u′(tn + c1k), . . . , u′(tn + csk)]T .

Expanding U [n+c] and U ′[n+c] into Taylor’s series around tn, we obtain

εn,k = γ0 +

p∑
l=0

γlklu(l)(tn) + O(kp+1)

=

p∑
l=q+1

γlklu(l)(tn) + O(kp+1), (18)

here q is the stage order of the GLM and we have assumed that q < p.
Denoting En,k = U [n+c]

− U
[n+c]

, we subtract (17) from (13) and, taking into account that U [n+c] and U
[n+c]

share the
same boundary values, we deduce that

(I ⊗ I − A ⊗ kA)En,k = εn,k
}

BEn,k = 0

5
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and, using Lemma 2.2,

En,k = (I ⊗ I − A ⊗ kA0)−1εn,k.

On the other hand,

u[n+1]
= (V ⊗ I )̃u(tn) + (B ⊗ kA)U [n+c]

+ k(B ⊗ I)F [n+c]

= (V ⊗ I )̃u(tn) + (B ⊗ kA)U ′[n+c]

= ũ(tn+1) − ũ(tn+1) + (V ⊗ I )̃u(tn) + (B ⊗ kA)U ′[n+c]

= ũ(tn+1) − γ̂0 −

p∑
l=0

γ̂lklu(l)(tn) + O(kp+1)

= ũ(tn+1) + O(kp+1), (19)

where, as for the stages equation, we have expanded ũ(tn+1) and U ′[n+c] into Taylor’s series around tn and we have used
the order conditions (6).

Finally, we subtract (15) from (19),

ρn+1 = ũ(tn+1) − u[n+1]

= (B ⊗ kA0)(I ⊗ I − A ⊗ kA0)−1εn,k

and, from (18) and using that (B ⊗ kA0)(I ⊗ I − A ⊗ kA0)−1 are well-defined and bounded for k > 0, we deduce that

ρn+1 = O(kq+1).

We will now propose a technique to increase the order by one unit in cases where order reduction is present. The key
s to choose properly the boundary values for the stages. For this, we consider the following vector

U [n+c,1]
= (U ⊗ I )̃u(tn) + (A ⊗ kA)U [n+c]

+ k(A ⊗ I)F [n+c]

= (U ⊗ I )̃u(tn) + (A ⊗ kA)U ′[n+c] (20)

and we denote

G[n+c,1]
= BU [n+c,1]

= (U ⊗ I)B̃u(tn) + (A ⊗ kA)BU ′[n+c]

= (U ⊗ I )̃G(tn) + (A ⊗ kA)G′[n+c], (21)

here

G′[n+c]
= [g ′(tn + c1k), . . . , g ′(tn + csk)]T ,

nd

G̃(tn) = [B̃u1(tn), . . . , B̃ur (tn)]T ,

with

B̃u1(tn) =

p∑
l=0

qilklg (l)(tn), i = 1, . . . , r.

Using these boundary values, we define the s-dimensional vector U
[n+c,1]

as the solution of

(I ⊗ I − A ⊗ kA)U
[n+c,1]

= (U ⊗ I )̃u(tn) + k(A ⊗ I)F [n+c]

BU
[n+c,1]

= G[n+c,1]

}
(22)

and the second step of the GLM is given by

u[n+1,1]
= (V ⊗ I )̃u(tn) + (B ⊗ kA)U

[n+c,1]
+ k(B ⊗ I)F [n+c]. (23)

hen, we define the time semidiscrete local error at tn+1

ρn+1,1 = ũ(tn+1) − u[n+1,1]
.

Theorem 3.2. Let u be the solution of (1) and let us assume the hypotheses (A1)–(A4). We use (13) with the boundary values
G[n+c,1] defined in (21) and the final step (23). Then the time semidiscrete local error ρn,1 = ũ(tn) − u[n,1], 1 ≤ n ≤ N, satisfy

∥ρn,1∥ ≤ Ckmin(q+2,p+1), for k > 0, (24)

here q and p are, respectively, the stage order and the classical order of the GLM, and the constant C depends only on the
erivatives of u, the GLM method and the differential operator A.
6
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Proof. We subtract (20) from (17) and we deduce that

εn,k = U [n+c]
− U [n+c,1]. (25)

Let εn,k,1 be the value satisfying

U [n+c,1]
= (U ⊗ I )̃u(tn) + (A ⊗ kA)U [n+c,1]

+ k(A ⊗ I)F [n+c]
+ εn,k,1. (26)

Now, we subtract (20) from (26) and we have

0 = (A ⊗ kA)(U [n+c,1]
− U [n+c]) + εn,k,1 (27)

and, using (18),

εn,k,1 = (A ⊗ kA)(U [n+c]
− U [n+c,1])

= (A ⊗ kA)εn,k

=

p∑
l=q+1

Aγlkl+1Au(l)(tn) + O(kp+1)

= O(kq+2) + O(kp+1).

On the order hand, we define

u[n+1,1]
= (V ⊗ I )̃u(tn) + (B ⊗ kA)U [n+c,1]

+ k(B ⊗ I)F [n+c]

= (V ⊗ I )̃u(tn) + (B ⊗ kA)U [n+c]
+ k(B ⊗ I)F [n+c]

+ (B ⊗ kA)(U [n+c,1]
− U [n+c])

= u[n+1]
+ (B ⊗ kA)εn,k = ũ(tn+1) + O(kp+1) + O(kq+2). (28)

where we have used (19).
Now, we use the notation En,k,1 = U [n+c,1]

− U
[n+c,1]

. Then, from (20), (25) and (26),

En,k,1 = (I ⊗ I − A ⊗ kA0)−1εn,k,1.

Finally, from (28)

ρn+1,1 = ũ(tn+1) − u[n+1,1]
+ u[n+1,1]

− u[n+1,1]

= O(kp+1) + O(kq+2) + (B ⊗ kA)(U [n+c,1]
− U

[n+c,1]
)

= O(kp+1) + O(kq+2) + (B ⊗ kA0)(I ⊗ I − A ⊗ kA0)−1εn,k,1

= O(kp+1) + O(kq+2).

4. Numerical experiments

In the previous section, Theorem 3.1 and 3.2 show that the technique we propose, based on using appropriate boundary
conditions for the stages (20), allows us to increase the local order by one unit in the general case in which there is order
reduction.

In this section we show numerical experiments that support these theoretical results. Moreover, we show that also in
the case of GLMs for which order reduction is not expected, our technique provides an improvement because, also in this
case, it allows to obtain much smaller errors than with a standard implementation.

In this section we are going to solve numerically the initial boundary value problem

ut (x, t) = uxx(x, t) + f (x, t), x ∈ [0, 1]
u(x, 0) = u0(x)
u(0, t) = g0(t), u(1, t) = g1(t)

(29)

with f (x, t) = et (x2 − 1), u0(x) = x2 + 1, g0(t) = et and g1(t) = 2et , whose exact solution is u(x, t) = et (x2 + 1).
This problem fits into the abstract IBVPs theory developed in [25], taking the spaces X = L2(0, 1), Y = R2 and defining,

for u ∈ D(A) = H2(0, 1), Au = uxx and Bu = [g0(0), g1(0)]T .
For the spatial discretization of (29) we will consider the second-order symmetric difference scheme. We take J ∈ N,

J ≥ 3, and h = 1/J and we consider the nodes xj = jh, j = 0, . . . , J − 1. We denote

Ah,0 =
1
h2 tridiag(1, −2, 1), Chg(t) =

1
h2 [g0(t), 0, . . . , 0, g1(t)]T .

Notice that, since the solution of (29) is a second degree polynomial in space, the error in space vanishes since we are using
second-order symmetric differences. In this way, we can better study the error in time, which is what we are interested
in.
7
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Table 2
Local and global error when integrating problem (29) with GLM31 with a standard implementation. For the
discretization in space h = 4 × 10−3 has been considered.

k = 4 × 10−2 k = 2 × 10−2 k = 10−2 k = 5 × 10−3 k = 2.5 × 10−3

L2-local error 1.2931e−01 2.7007e−02 5.6031e−3 1.1553e−3 2.3611e−4
Order 2.26 2.27 2.28 2.29
L-global error 5.6650e−02 1.2217e−02 2.5743e−3 5.3406e−4 1.0924e−4
Order 2.21 2.25 2.27 2.29

Table 3
Local and global error when integrating problem (29) with GLM31 avoiding order reduction. For the discretization in
space h = 4 × 10−3 has been considered.

k = 4 × 10−2 k = 2 × 10−2 k = 10−2 k = 5 × 10−3 k = 2.5 × 10−3

L2-local error 1.5281e−03 1.5434e−04 1.6616e−5 1.9643e−6 2.5371e−7
Order 3.31 3.22 3.10 3.00
L2-global error 9.8820e−04 1.2439e−04 1.5806e−5 2.0039e−6 2.5335e−7
Order 2.99 2.98 2.98 2.98

After applying this spatial discretization, we obtain the semidiscrete problem

U ′

h(t) = Ah,0Uh(t) + fh(t) + Chg(t) (30)

here Uh(t) = [U1(t), . . . ,UJ−1(t)]T and fh(t) = [f (x1, t), . . . , f (xJ−1, t)]T .
We are going to carry out the numerical integration of (30) with two different GLM studying in each case the order in

time that is observed.
First, we use the method GLM31, deduced in [9] that has classical order p = 3 and stage order q = 1. For this method,

V is a rank one matrix such that V = e1vT , where e1 = [1, 0, . . . , 0]T is the first vector of the canonical basis of Rp+1

and vTe1 = 1. In this way, Vn
= e1vT = V and we deduce that Ṽ = V. Then, the condition for order three is given by

VBγ2 = VBγ2 = 0. We include here the coefficients of the GLM because there is a small error in [9]:

A =

[ 0.5 0 0
0.6114715765267838 0.5 0
34.95200172589030 −1.545721169870557 0.5

]
,

U =

⎡⎣ 1 −0.5 −0.2509325024749301 0
1 −0.6114715765267838 −

1
4

1
3

1 −32.90628055601974 1
2 −

1
8

⎤⎦ ,

B =

⎡⎢⎣ 36.20771429329408 −2.724800143643149 1.340965575511875
0 0 1
1 −4 3
4 −8 4

⎤⎥⎦ ,

v =
[

1 −33.82387972516280 0.5214344963096989 −0.1632161031338774
]T

We can observe in Table 2 that, when we solve numerically the problem (29) with the spatial discretization previously
explained and the scheme GLM31 for the time integration, with its standard implementation, local and global orders in
time q+1 = 2 are obtained. This local order is expected from Theorem 3.1. Although in the general case the global order
is expected to be 1, we get again the value 2 due to the summation by parts.

The numerical results observed in Table 2 show that order reduction is taking place when we use the standard
implementation of GLM31. In order to avoid this order reduction effect, now we are going to carry out the same
numerical experiment, but using the implementation (22) that we propose in this work for avoiding the order reduction
phenomenon. In Table 3, we display the local and global orders in time, observing that now, both of them are q+1+1 = 3,
o the order reduction is completely avoided. These numerical results are in agreement with Theorem 3.2. Note that, when
e use the boundary values proposed in Theorem 3.2 to avoid order reduction, we get the added advantage that the errors
re much smaller (compare the errors in Table 3 with those in Table 2). This is clearly seen in Fig. 1.
Now, we are going to consider the method GLM32 deduced in [9] with p = 3 and q = 2. The coefficients of such a

ethod, are as follows

A =

[ 0.5 0 0
19.03844038247158 0.5 0

−3.961809715877235 −0.1911525347850310 0.5

]
,

U =

[ 1 −0.5 0 0
1 −19.03844038247158 −0.125 0.333333333333333

]
,

1 4.652962250662266 0.09557626739251550 −0.125
8
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Fig. 1. Global errors when integrating problem (29) with GLM31.

Table 4
Local and global error when integrating problem (29) with GLM32 with a standard implementation. For the
discretization in space h = 4 × 10−3 has been considered.

k = 4 × 10−2 k = 2 × 10−2 k = 10−2 k = 5 × 10−3 k = 2.5 × 10−3

L2-local error 2.3028e−04 2.43442e−05 2.5611e−06 2.6760e−07 2.7773e−08
Order 3.24 3.25 3.26 3.27
L2-global error 7.0327e−04 7.6149e−05 8.0456e−06 8.3339e−07 8.4674e−08
Order 3.21 3.24 3.27 3.30

Table 5
Local and global error when integrating problem (29) with GLM32 avoiding order reduction. For the discretization in
space h = 4 × 10−3 has been considered.

k = 4 × 10−2 k = 2 × 10−2 k = 10−2 k = 5 × 10−3 k = 2.5 × 10−3

L2-local error 1.5405e−05 1.0631e−06 7.0663e−08 4.5948e−09 2.9492e−10
Order 3.86 3.91 3.94 3.96
L2-global error 1.4321e−04 7.9134e−06 4.3307e−07 2.3743e−08 1.3305e−09
Order 4.18 4.19 4.19 4.16

B =

⎡⎢⎣ −1.624407520530026 −0.1715153809360207 0.5228985152929018
0 0 1
1 −4 3
4 −8 4

⎤⎥⎦ ,

v =
[

1 2.273024386173144 0.06285917517510861 −0.07334316836278161
]T

We can observe in Table 4 that when we integrate problem (29) considering the method GLM32 for the time
ntegration, with its standard implementation, local and global order q + 1 = 3 are obtained. The global order is 3,
nd it seems that there is no order reduction. However, if there were no order reduction, local order p+ 1 = 4 would be
xpected and this is not the case in Table 4. Therefore, we have used the implementation of the GLM32 that we propose
n order to avoid order reduction and that is based in the boundary values of Theorem 3.2. The local and global errors
isplayed in Table 5 show that the local order predicted by Theorem 3.2, q + 2 = 4, is reached. In addition, the global
rror sizes are much smaller than when using the standard implementation, which justifies the use of the new boundary
alues even when q+1=p, in which case no order reduction is expected (see Fig. 2).
9
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Fig. 2. Global errors when integrating problem (29) with GLM32.

Data availability

No data was used for the research described in the article.
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