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SUMMARY
Hemagglutination-inhibitory antibodies are usually highly strain specific with little effect on infection with
drifted or shifted strains. The significance of broadly cross-reactive non-HAI anti-influenza antibodies against
conserved domains of virus glycoproteins, such as the hemagglutinin (HA) stalk, is of great interest. We char-
acterize a cohort of 40 H1N1pmd09 influenza-infected patients and identify lower respiratory symptoms
(LRSs) as a predictor for development of pneumonia. A binomial logistic regression of log10 pre-existing anti-
body values shows that the probability of LRS occurrence decreased with increased anti-HA full-length and
stalk antibody ELISA titers. However, a multilevel logistic regression model adjusted by other potential sero-
correlates demonstrates that only antibodies directed against the stalk of HA correlate with protection from
lower respiratory infection, limiting disease progression. Our predictive model indicates that a threshold of
protective immunity based on broadly cross-reactive HA stalk antibodies could be feasible.
INTRODUCTION

The effect of influenza epidemics on society, includingmorbidity,

mortality, and economical consequences, is still a major chal-

lenge and a public health concern.1,2 The World Health Organi-

zation (WHO) estimates that about 3–5 million cases of severe

disease and 290,000–650,000 deaths annually are caused by

influenza disease. Vulnerable populations, such as solid organ

transplant recipients (SOTRs), are at high risk of severe out-

comes with mortality rates from 5%–8% and complications in

5%–20% of cases.3,4 Although annual influenza vaccination

can help reduce the burden of influenza disease,4,5 its efficacy
Cell Repor
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varies widely.6–8 Currently licensed influenza vaccines are

formulated to mainly induce strain-specific antibody responses

against themajor surface glycoprotein of influenza virus, hemag-

glutinin (HA). However, influenza viruses have the ability to accu-

mulate yearly mutations in HA, favoring emergence of antigenic

variants in a phenomenon known as antigenic drift. This leads to

the regular need to update influenza vaccines according to the

circulating viruses in humans.9 Although cross-reactivity be-

tween antigenically related influenza viruses can happen, no pro-

tection would be provided by seasonal influenza vaccines in the

case of emergence of a shifted pandemic strain, like what

happened in 2009.10,11 Although the globular HA head domain
ts Medicine 1, 100130, November 17, 2020 ª 2020 The Authors. 1
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is immunodominant, eliciting potent neutralizing antibodies that

can be measured by a hemagglutination inhibition (HAI) assay,12

it is rather tolerant and permissive to mutations,13 enabling sea-

sonal influenza viruses to escape pre-existing immunity in hu-

mans. Paradoxically, the HA head is the main target of influenza

vaccines, and HAI titers in serum are traditionally used as a

correlate of influenza vaccine-induced protection; a HAI titer of

more than 40 is considered to provide protection in humans.14

In contrast, antibodies targeting other conserved regions of the

HA surface protein, such as the stalk domain, can bind to a va-

riety of influenza subtypes.12,15 In addition to being cross-reac-

tive, HA stalk antibodies can also mediate Fc-Fc receptor

(FcR) effector functions, such as antibody-dependent cell cyto-

toxicity (ADCC), potentially contributing to protection from

disease through Fc-FcR interactions and engagement that

results in apoptosis of infected cells and secretion of antiviral

cytokines and chemokines.16,17 Antibodies targeting neuramini-

dase (NA), the second surface glycoprotein of influenza viruses,

might also be more cross-protective than traditional HAI

antibodies.18,19

A growing interest regarding development of a universal influ-

enza vaccine capable to provide long-term protection in humans

against multiple strains and subtypes of the virus, including po-

tential emerging pandemic strains, is guiding intense research

efforts to identify new vaccine candidates and, therefore,

new correlates of protection for influenza infection and dis-

ease.9,20–22 Several approaches have been proposed, including

targeting conserved regions of the HA surface protein, such as

the stalk domain.15,21,23 Although a few human studies have sug-

gested that HA stalk and NA antibodies are additional indepen-

dent correlates of protection from influenza infection, different

from HAI antibodies,18,22,24 more clinical and epidemiological

data are needed to demonstrate antibody association with se-

vere/mild disease versus infection and transmission. Studies in

SOTRs might provide valid information regarding correlates of

immune protection against influenza disease. First, severe dis-

ease outcomes are more frequent in such patients,3,4 which re-

duces the number of individuals in the cohort required to identify

a significant number of cases with different disease outcomes.

Second, the need to constantly monitor the health status of

SOTRs allows frequent clinical assessment of infectious dis-

eases, including influenza virus infection, and monitoring of im-

mune responses to influenza vaccine and/or infection at baseline

and post-vaccination/infection.

Baseline antibody responses in humans depend on the first

encounter with influenza virus antigens, usually at an early age,

and on repeated exposure during the lifetime through repeated

infection and vaccination.25,26 Because of the age of SOTRs,

one expects diverse antibody responses in these individuals

against different viral strains because of their differences

regarding virus and vaccine exposure. Antibody responses

induced by natural infection compared with vaccination can

differ, with induction of broader and longer-lived antibody re-

sponses in the first. Herewe aimed to identify whether antibodies

against conserved or non-conserved antigens of influenza virus

glycoproteins (HA head, HA stalk, and NA) correlate with the

burden of influenza H1N1pdm09 disease in a clinical cohort of

naturally influenza virus-infected SOTRs. We sought to identify
2 Cell Reports Medicine 1, 100130, November 17, 2020
anti-influenza antibody levels of protection by characterizing

risk factors of severe outcomes, such as development of lower

respiratory infection in SOTRs and determining how broadly

and non-broadly pre-existing specific influenza antibodies

correlate with clinical outcome. Last, we investigated which anti-

body levels can predict protection from severe clinical outcomes

after adjustment for confounders, including other potential

serocorrelates.

RESULTS

SOTRs Show High Levels of Pre-existing Anti-HA
Antibodies
A total of 127 SOTRs were included in the naturally influenza in-

fected cohort between 2010 and 2013 (Figure S1A). Of the 127

SOTRs, 118 had a positive RT-PCR for influenza virus, and a

total of 74 (62.7%) had paired serum samples at enrollment

(baseline) and convalescent time points. Of those, 40 (54%)

were H1N1pdm09, 23 (30%) were H3N2, and 11 (16%) were

influenza B virus infections. The levels of pre-existing HAI active

antibodies at onset of the infection in the influenza A cases

were 14 (35%) and 12 (53%) for H1N1pdm09 and H3N2,

respectively. For this report, only H1N1pdm09-infected SOTRs

with a full set of serum samples were considered. High levels of

HAI antibodies in SOTRs with H3N2 infection limited assess-

ment of the potential role of non-HAI and NA antibodies; low

levels of HAI in H1 influenza cases allowed us to investigate

the effect of other potential serocorrelates. No influenza B

cases were included because of the limited sample size and

change of predominantly circulating influenza B virus strains

between seasons. Serum samples from 9 SOTRs with sus-

pected influenza virus infection (but who tested negative by

RT-PCR) were included for comparison. No follow-up samples

were collected from these patients. Most of the H1N1pdm09-

infected cohort represented individuals enrolled in the 2010–

2011 post-pandemic season (34, 85%); four (10%) and two

(5%) patients were enrolled in the 2011–2012 and 2012–2013

influenza seasons, respectively.

More SOTRs were men (57.7%), and the median age was 57

years (interquartile range, 27–77 years). The type of transplant

was kidney in 22 cases (55%), liver in 10 (25%), and heart in 6

(15%). Only 2 (5%) had a lung transplantation. Comorbidities

such as diabetes or other chronic diseases were present in

72.5% of cases (Figure S1B). Baseline antibody titers (Figure 1A)

demonstrated high levels of pre-existing anti-influenza stalk and

full-length HA; only a few SOTRs (9, 22.5%) had HAI titers of 40

or higher. Interestingly, pre-existing antibody titers against the

HA and NA protein showed high associated ADCC activity

(Figure 1B).

HA Stalk Antibodies Correlate with Protection against
LRSs in Influenza Virus-Infected SOTRs
Twenty-five (62.5%) SOTRs required hospitalization. All naturally

influenza-infected SOTRs received antiviral therapy with oselta-

mivir. Most of them (33, 82.5%) started treatment within 48 h of

onset of symptoms (mean; 95% confidence interval [CI], 1.7;

0.2–3.1 days). A high proportion of patients reported upper res-

piratory and systemic symptoms, such as headache, fever, or
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Figure 1. Immunological Features in the H1N1 Influenza-Infected SOTR Cohort

(A and B) Pre-existing antibody titers in SOTRs with H1N1pdm09 influenza virus infection (n = 40) compared with non-infected matched SOTRs controls (n = 9).

The antibody level for each patient, GMT, and 95%CI are shown (A) for the indicated ELISA assay on the left y axis (full-length HA, stalk HA, and NA recombinant

proteins as antigen) and HA-inhibiting (HAI) antibody titers on the right y axis. The HAI assay was performed using the whole H1N1pdm09 reference strain virus.

(B) shows antibody-dependent cellular cytotoxicity (ADCC), measured by a reporter assay for full-length HA, stalk HA, and NA.

(C–F) Pre-existing antibody responses in SOTRs with LRSs at baseline. The antibody level for each patient and time point, GMT, and 95%CI are shown for (C) full-

length HA ELISA, (D) stalk HA ELISA, (E) HAI, and (F) NA ELISA (ns, not significant; ***p = 0.01; **p = 0.006; *p = 0.03).

Experiments were performed in triplicates.
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myalgia (26, 65% and 25, 62.5%, respectively) at enrollment.

Acute lower respiratory symptoms, such as dyspnea or tachyp-

nea, were noted in 18 (45%) SOTRs. Twelve (30%) patients

developed pneumonia. Of those, four (33.3%) required admis-

sion to an intensive care unit (ICU), and two (16.6%) died. Co-

infection was detected in one patient with pneumonia and one

without: Streptococcus pneumoniae and Pseudomonas aerugi-

nosa, respectively. Clinical characteristics, treatment, and out-

comes of the naturally influenza virus-infected SOTRs are shown

in Figure S2A. The presence of upper respiratory and systemic

symptoms was less common in pneumonia influenza virus-in-

fected SOTRs. Conversely, SOTRs with acute LRSs had a higher

risk of worsening influenza virus infection and pneumonia devel-

opment; 50% (9 of 18) SOTRs with LRSs had pneumonia, and

only 13.6% (3 of 22) of SOTRs without LRSs developed viral

pneumonia (odds ratio [OR] 95% CI, 6.3; 1.3–29.2; p = 0.01).

No other risk factors for development of pneumonia were found
(Figure S2B). Bivariate analysis of the multiple serological surro-

gates demonstrated no statistical differences in levels of circu-

lating pre-existing antibodies at baseline in SOTRs with upper

respiratory or systemic symptoms, but an inverse correlation

was found when we compared geometric mean titers (GMTs)

in SOTRswith LRSs. As shown in Figures 1C–1F and Table 1, pa-

tients with LRSs had lower GMTs against the full-length (6,170

versus 15,746; p = 0.006) and stalk (12,834 versus 21,558; p =

0.03) HA protein, as measured by ELISA. More importantly, the

currently accepted correlate of protection, HAI titer, was similar

in patients regardless of symptomatology. Although 25 patients

(62.5%) received the corresponding season-matched influenza

vaccine at least 6 weeks before the episode of influenza virus

infection, only 14 (56%) of the influenza vaccinated SOTRs had

pre-existing detectable levels of HAI antibodies, and only 9

(36%) of them were scored as seroprotected (HAI titers R 40)

(Figure 1A).
Cell Reports Medicine 1, 100130, November 17, 2020 3



Table 1. Pre-existing Antibody Levels in SOTRs According to Symptomatology

Yes GMT (95% CI) No GMT (95% CI) p Value

Upper Respiratory Symptoms

HAI 10 (6–16) 15 (6–40) 0.62

HA hull length ELISA 8,918 (5,598–14,208) 13,568 (6,759–27,238) 0.45

HA stalk ELISA 16,325 (11,729–22,724) 18,545 (13,575–25,334) 0.68

NA ELISA 134 (48–368) 37 (7–196) 0.22

Systemic Symptoms

HAI 12 (7–20) 12 (6–25) 0.9

HA full length ELISA 10,136 (5,700–18,023) 10,571 (63,04–17,725) 0.84

HA stalk ELISA 14,713 (10,371–20,873) 20,470 (15,030–27,877) 0.14

NA ELISA 109 (45–263) 63 (12–340) 0.77

Lower Respiratory Symptoms

HAI 8 (5–15) 15 (7–29) 0.21

HA full length ELISA 6,170 (3,327–11,440) 15,746 (10,341–23,974) 0.006

HA stalk ELISA 12,834 (8,380–19,655) 21,558 (17,165–27,075) 0.03

NA ELISA 106 (27–408) 70 (21–237) 0.67
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We then selected presence of LRSs at baseline as a predictor

of disease outcome in SOTRs to discriminate HA full length and

stalk cutoff points correlating with protection from lower respira-

tory tract influenza virus infection. The plotted predicted proba-

bility curve for HA full length and stalk (OR, 0.13; 95% CI, 0.02–

0.74; p = 0.02 and OR, 0.06; 95% CI, 0.004–0.85; p = 0.03,

respectively) demonstrated that the probability of developing

LRSs decreased with increasing log10 values for titers, and

�104 full-length and stalk antibodies showed �50% predicted

protection in SOTRs (Figures 2A and 2B). The fitted curves of

the relationship between log10 assay values and the probability

of protection were next used to estimate protective thresholds

and intervals of antibody titers for HA full length and stalk as 0–

10,000, 10,000–25,000, and more than 25,000. We then defined

intervals of protection according to the proportion of patients

with LRSs in those selected cutoffs. As shown in Figures 2C

and 2D, only 25% of SOTRs (3 of 12) with HA stalk antibodies

higher than 25,000 had LRSs; most SOTRs (80%, 8 of 10) with

antibodies against the HA stalk lower than 10,000 presented

LRSs at onset of the influenza episode. This was similar for anti-

bodies against HA full length higher than 25,000. Receiver oper-

ating characteristic (ROC) curve analysis was also performed to

estimate the sensitivity and specificity of HA full length and stalk

ELISA titers for predicting LRSs. The results showed an area un-

der the curve (AUC) of 77% and 76% for HA full length and stalk,

with a sensitivity and specificity of predicting LRS of 60% and

70%, respectively (p < 0.005).

We next performed a multivariate logistic regression analysis

including our potential serological predictors (HA full length

and stalk antibody titers) and adjusted by HAI and NA ELISA ti-

ters to assess the balance of the antibody responses that corre-

lated independently with the protection afforded. Age, type of

transplant, and influenza vaccination status were also included

in the model to control variability between SOTRs (Figure S3).

Immunosuppressive drugs were included in an alternative

model, but no predictive value was found (data not shown). In
4 Cell Reports Medicine 1, 100130, November 17, 2020
this multilevel analysis, we categorized antibodies for HA full

length and stalk antibody titers in the levels of protection

observed (0–10,000; 10,000–25,000, and >25,000). Because

mean NA antibody levels were 10 times lower than those for

the HA protein at baseline (Figure 1A), we defined the intervals

as 0–1,000, 1,000–2,500, and more than 2,500. HAI titer was

categorized at two levels: less than 40 (no seroprotection) and

40 or more (seroprotection). The adjusted model shown in Fig-

ure 2D demonstrates that anti-HA stalk antibodies were associ-

ated independently with protection from development of acute

LRSs (10,000–25,000; OR, 0.03; 95% CI, 0.01–0.83; p = 0.03

and >25,000; OR, 0.005; 95% CI, 0.00–0.62); no protection

was observed for stalk titers lower than 10,000. Likewise, HA

full length pre-existing titers showed no significant protection

when adjusted by levels of stalk titers. A previous history of

vaccination was also associated with lower risk of LRSs (OR,

0.02; 95%CI, 0.001–0.52; p = 0.01). Remarkably, a linear regres-

sion analysis demonstrated good correlation between values of

anti-HA stalk antibodies measured by ELISA and stalk-mediated

ADCC activity (Figure 2E; p < 0.0001), an important mechanism

of antibody-mediated protection in humans.27 Despite the fact

that whole HA- and HA stalk-binding antibodies at baseline

correlated inversely with LRSs and that LRS symptoms at onset

were the best predictors of pneumonia, when the analysis of se-

rocorrelates was restricted to prevention of development of

pneumonia during the course of influenza virus infection, we

found no direct association of any of the potential serological

surrogates, suggesting that some other events, such as coloni-

zation with pathogenic bacteria, might also influence the

outcome of pneumonia. Alternatively, our study did not have

enough power to find correlations associated with development

of pneumonia. Nevertheless, there was a clear correlation be-

tween HA stalk antibody titers and lack of LRSs. To determine

whether influenza vaccination can also induce HA stalk anti-

bodies in SOTRs, we compared the effect of vaccination versus

infection in a second cohort of seasonal influenza-vaccinated
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B Figure 2. Anti-Stalk HA Antibodies as an

Independent Correlate of Protection

against Development of LRSs

(A and B) Binomial logistic regression of log10-

transformed values of full-length and stalk HA:

fitted curves of the relationship between log10

assay values and the probability of protection. A

red dot indicates predicted protection of ~50%.

(C and D) Bars shows the proportion of SOTRs

with LRSs according to defined antibody cutoffs.

Each bar shows the number and percentage of

SOTRs with LRSs among the total number of

SOTRs with each antibody interval. **p = 0.02.

(E) Multivariate logistic regression model of fac-

tors correlated with LRSs at baseline on SOTRs

with influenza infection. The model is adjusted by

potential confounding factors to estimate the in-

dependent effect of antibody titers on disease

progression and the serological predictors (Fig-

ure S3). The adjusted odds ratio (OR; 95% CI) for

each assay and each level are shown.

(F) Linear regression of log10-values of anti-

stalk antibodies measured by ELISA and anti-

stalk antibodies with mediated ADCC activity

measured in a bioreporter assay. ADCC experi-

ments were performed in triplicate.
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SOTRs enrolled during the 2010–2011 and 2011–2012 influenza

seasons and randomly selected 20 seasonal influenza-vacci-

nated SOTRs for both influenza seasons (10 each). Both cohorts

matched in age, type of transplant, comorbidities, immunosup-

pressive drug regimen, and time from transplantation. Overall,

the humoral immune responsewas greater after natural influenza

virus infection compared with vaccination (Figure S4). Although

infection induced HAI activity, full-length HA and stalk binding,

NA binding, and ADCC responses against influenza virus anti-

gens, vaccination failed to significantly induce stalk- and NA-

specific antibodies.

SOTRs Show a Significant Increase of Anti-Influenza
Antibodies after Infection
To characterize the immune response after influenza disease, we

also measured HAI and non-HAI antibody levels and associated

ADCC activity in convalescent sera of SOTRs. As expected, a

significant increase compared with baseline levels was shown

after influenza infection for all potential serocorrelates (Fig-

ure 3A). To quantify induction of de novo antibody response ac-

cording to disease outcome, we calculated fold induction log10

values in SOTRs. Overall, patients with LRSs, and likely lower

respiratory infection, at hospital admission had higher induction

of anti-influenza antibodies (Figures 3B–3E), although this was

only statistically significant for de novo NA antibodies produced

after influenza virus infection (Figure 3E). These antibodies

showed a good correlation with NA-mediated ADCC activity

(Figure 3F). In contrast, SOTRs that had HAI titers of 40 or higher
Cell Reports M
at baseline had lower levels of de novo

antibodies against the HA and NA pro-

tein of influenza virus. Unexpectedly, a

negative correlation between pre-exist-
ing antibodies against the HA head with HAI activity and induc-

tion of full-length and stalk HA and NA titers after influenza virus

infection was found (Figures 4A and 4B). Although HAI titers

higher than 40 at hospital admission did not prevent severe dis-

ease in SOTRs, we found that SOTRs scored as seroprotected

(HAI R 40) at baseline had lower induction of HA (full length

and stalk) and NA antibodies, measured by ELISA (Figures 4C

and 4D) after the influenza episode.

DISCUSSION

Influenza virus HA-inhibitory activity has been traditionally

acknowledged as a correlate of protection for influenza vaccine

efficacy. However, head-specific HA-neutralizing antibodies

have been only modestly associated with protection against

infection with drifted and shifted influenza viruses in humans,

and the role of heterosubtypic antibodies capable of inducing

additional immune functions is not clear. Although the influenza

virus continues to evolve every year because of antigenic drift,

humans face new exposure to the influenza virus through infec-

tion and repeated vaccination, making immune responses com-

plex andmultifaceted. Here we present a detailed analysis of hu-

moral immunological correlates associated with protection from

disease progression in a clinically characterized cohort of 40

SOTRs naturally infected with the H1N1 influenza virus. We

analyzed the levels of anti-influenza virus antibodies targeting

the two surface glycoproteins HA and NA and the HA stalk

domain in patient sera and their associated ADCC activity. Our
edicine 1, 100130, November 17, 2020 5
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Figure 3. Antibody Responses after Influenza Infection in SOTRs

(A) Paired antibody levels for each patient, GMT, and 95%CI are shown at baseline and convalescence for the indicated ELISA assay on the left y axis (full-length

HA, stalk HA, and NA) and hemagglutination inhibition (HAI) antibody titers on the right y axis.

(B–E) Fold induction log values after influenza virus infection according to presence of lower respiratory symptoms (LRSs; yes or no), GMT, and 95%CI are shown

for (B) stalk HA, (C) full-length HA, (D) HAI, and (E) NA.

(F) Linear regression of log fold induction values of anti-NA antibodies measured by ELISA and anti-NA antibodies with ADCC activity.

Experiments were performed in triplicate.
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results showed that pre-existing HA-binding antibodies (ELISA)

were associated with a lower risk of development of LRSs in

the setting of influenza virus infection; as the antibody titer

increased, the frequency of symptoms decreased (Figures 2B

and 2C). Indeed, our predictive model suggests that, among

non-HAI antibodies, a stalk antibody titer higher than 104, as

measured by ELISA, would suffice to protect at least 50% of pa-

tients (as shown in the predicted probability curve in Figures 2A

and 2B). Even though the presence of LRSs at hospital admis-

sion was a potent predictor of development of pneumonia during

the influenza episode, no differences in antibody titers were

found when comparing pneumonia and SOTRs without pneu-

monia. It is likely that progression to pneumonia, especially in

SOTRs with substantial morbidity and chronic immunosuppres-

sion, involves other immunological or predisposing factors that

are not accounted for in our study, such as T cell immunity or

bacterial coinfection. In fact, 3 patients (13.6%) developed pneu-

monia regardless of the absence of LRSs at the enrollment. Like-

wise, the rate of previous influenza vaccination was more than

60% among SOTRs, but we found no evidence that HAI anti-

bodies protected from disease burden, perhaps in part because

of the titers being in the low range, suggesting that, when HAI an-

tibodies fail to confer protection from symptomatic influenza

infection, pre-existing HA stalk antibodies protect against severe

disease in SOTRs. Our results agree with recent data where HA

stem antibodies correlatedwith protection from infection in natu-
6 Cell Reports Medicine 1, 100130, November 17, 2020
rally exposed individuals and experimental human challenges in-

dependent of HAI antibodies.24,28–31

In addition to direct antiviral activity, some broadly influenza

cross-reactive antibodies can mediate FcR functions against in-

fected cells. Our data showed a good correlation (Spearman cor-

relation coefficient, r2 = 0.64; Figure 2F) between levels of anti-

HA stalk antibodies and stalk ADCC activity, measured by a

bioluminescence reporter assay,27 suggesting that the ability

to recruit cell-mediated functions can also contribute to protec-

tion from LRSs and, therefore, disease progression. A higher in-

crease in HA and NA antibodies with ADCC activity was also

noted after influenza virus infection comparedwith after vaccina-

tion (Figures 3C–3E), whichwas expected because natural infec-

tion is known to induce anti-stalk antibodies whereas vaccina-

tion with currently licensed vaccines does not.12 Although

current influenza vaccinations are potent inducers of anti-HA

head antibodies9 with anti-agglutinating function, our data

show limited induction of antibodies with other specificities by

the seasonal influenza vaccine (Figure S4). This is not necessarily

surprising because influenza vaccines are optimized for HA con-

tent, and the HA head is immunodominant. Nonetheless, a pre-

vious history of vaccination was associated independently with a

lower incidence of LRSs in multivariate logistic regression (Fig-

ure S3); however, no differences were found in antibody titers

between patients with influenza vaccination compared with un-

vaccinated ones (Figure S5). Whether this is due to the need
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Figure 4. Influence of Pre-existing Immunity on Subsequent Immune Response in Influenza-Infected SOTRs

(A and B) Correlation matrix showing Spearman’s correlation coefficient between levels of HAI antibodies at onset and fold induction ELISA titers and ADCC

activity, respectively, at convalescence after influenza infection. Strength of the association of HAI at the onset with ELISA full-length HA (p = 0.02), ELISA stalk HA

(p = 0.01), ELISA NA (p = 0.002), ADCC full-length HA (p = 0.009), ADCC stalk HA (p = 0.02), and ADCC NA (p = 0.002). *p = 0.04.

(C) Fold induction log10 values after influenza infection. GMT and 95% CI are shown for patients with a pre-existing HAI titer of 40 or higher (seroprotection) in

comparison with those with an HAI titer of less than 40 (no seroprotection).

Experiments were performed in triplicate.
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for additional immunological assays to further characterize the

correlates of protection associated with the seasonal influenza

vaccine or due to the sample size of our study, which might be

underpowered to address this question, remains unanswered.

In summary, our results have significant implications for pre-

vention and control of influenza virus infection. We provide a

more granular characterization of the specificity of antibodies af-

ter natural influenza virus infection and vaccination in SOTRs. In

addition, we provide evidence that supports the ability of cross-

reactive antibodies in limiting clinical disease progression in

naturally influenza virus-infected individuals. We also confirmed

that natural infection is a better inducer of cross-reactive protec-

tive antibodies than seasonal vaccination, underscoring the

need for improved influenza vaccines. This study contributes

to a better understanding of the mechanisms that mediate the

pathogenesis of influenza disease and induction of broad hu-

moral immune responses, which will aid the design of better,

perhaps even universal influenza vaccines. Our data indicate

that a threshold of protective immunity based on broadly

cross-reactive anti HA-stalk antibodies could be feasible.

Limitations of Study
Some limitations of our study need to be acknowledged. First,

the number of subjects with available paired serum samples at

the end of the enrollment period is relatively small compared

with the total SOTR cohort included in the study. Different influ-

enza virus strains circulated during three consecutive seasons:

pandemic H1N1pdm09 and seasonal H3N2 and influenza B.
As expected, the levels of pre-existing HAI active antibodies

against the H1 pandemic strain were low comparedwith the sea-

sonal H3 strain. Indeed, only 35%of SOTRs with pandemic influ-

enza infection had some detectable levels of HAI active anti-

bodies, which allows assessment of the protective role of other

non-HAI cross-reactive antibodies in disease burden. On the

other hand, the numbers of H3N2 and influenza B cases were

low compared with H1N1pdm09, limiting conclusions regarding

the role of influenza A group 2 and influenza B stalk antibodies.

Our study shows that the presence of stalk antibodies against

H1N1pdm09 group 1 HA correlated with lack of LRSs in SOTRs

with influenza infection. Whether group 2 HA or influenza B stalk

antibodies have a protective effect on influenza disease outcome

is still not clear. Second, we defined stalk antibodies levels of

protection in a complex population of SOTRs with different

ages, types of transplants, and immunosuppressive drug thera-

pies. Although immunosuppression has been associated with a

lower immune response after influenza infection and vaccination

in SOTRs,3,7,32 no correlation was found among the different

combinations of drug therapies or individual treatments and dis-

ease outcome. It is likely that the complexity of treatment, with

concomitant drugs according to time from transplantation, vari-

ability of combinations, and different drug doses, limits possibil-

ities to assess the influence of specific therapies (e.g., mamma-

lian target of rapamycin [m-TOR] inhibitors). Although our results

cannot be fully translated to other populations, such as healthy

adults, they provide a better understanding of new serocorre-

lates that can mediate influenza disease protection in
Cell Reports Medicine 1, 100130, November 17, 2020 7
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immunosuppressed subjects, especially important because of

the high frequency of severe outcomes. Last, it is likely that

some SOTRs with very mild or asymptomatic influenza infection

did not go to the hospital despite having been advised to seek

care in the case of influenza-compatible respiratory symptoms.

Cases of influenza infection that required hospital admission

were included in this study, allowing characterization of the im-

mune response and risk factors of severe outcome in SOTRs

with influenza infection.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Peroxidase-conjugated anti-human IgG (Fc-specific)

monoclonal antibody

Sigma Cat# A0170, RRID:AB_257868

Human monoclonal antibody CR9114 Florian Krammer’s laboratory stock N/A

Human monoclonal antibody 1000-3C05 Florian Krammer’s laboratory stock N/A

Bacterial and Virus Strains

A/California/7/2009-H1N1 Adolfo Garcı́a-Sastre’s laboratory stock ATCC, Cat# VR-1894

Biological Samples

Human Sera This study N/A

Chemicals, Peptides, and Recombinant Proteins

cH6/1 HA Florian Krammer’s laboratory stock N/A

H1N1 A/California/4/2009 NA Florian Krammer’s laboratory stock N/A

A/California/4/2009 HA Florian Krammer’s laboratory stock N/A

Receptor-destroying enzyme Denka Seiken Cat#370013

Fluorescent Treponemal Antibody hemagglutination buffer BD Biosciences Cat# 211248

Phosphate Buffered Saline GIBCO Cat# 10010023

Turkey red blood cells Lampire Biologicals Cat#7209403

Tween-20 Fisher Scientific Cat#BP337-100

Goat serum GIBCO Cat#16210072

Peroxidase-conjugated anti-human IgG (Fc-specific) Sigma Cat# A0170

Sulfuric acid solution Fisher Science Cat#S25898

3,30,5,50-Tetramethylbenzidine Rockland Cat# TMBM-100

Non-fat powdered milk Boston Bioproducts Cat#P-1400

Opti-MEM (Minimal Essential Medium) Reduced Serum

Medium

GIBCO Cat# 31985062

Roswell Park Memorial Institute (RPMI) 1640 medium GIBCO Cat# 11875093

Critical Commercial Assays

ADCC Reporter Bioassay Promega Cat# TM387

Experimental Models: Cell Lines

MDCK ATCC Cat#CCL-34

Recombinant DNA

pCAGGS Adolfo Garcı́a-Sastre’s laboratory stock N/A

Software and Algorithms

GraphPad Prism v8.3.1 Graph Pad Software N/A

IBM SPSS Statistics (version 21) IBM N/A
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Adolfo

Garcı́a-Sastre (adolfo.garcia-sastre@mssm.edu).

Materials Availability
MDCK cell lines expressing cH6/1 HA, Cal09 HA and Cal09 NA generated in this study can be distributed upon request.
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Data and Code Availability
The published article includes all datasets generated or analyzed during this study.

EXPERIMENTAL MODEL AND SUBJECTS DETAILS

A multicenter prospective human cohort study was carried out by the Spanish Network for Research on Infectious Diseases (REIPI,

Spain) during three consecutive influenza seasons (2010-2013). This study was designed with two primary objectives, to evaluate the

clinical characteristics, outcomes and immune responses after natural influenza virus infection3,4 and to evaluate the immunological

response to seasonal influenza vaccination in SOTRs.32 For this all suspected SOTRsR 16 years admitted to the hospitals with influ-

enza-like syndrome, fever, exacerbation of pulmonary disease and/or pneumonia (new pulmonary infiltrate in the chest X-ray),

without known cause were evaluated by infectious diseases medical staff. Symptomatic SOTRs that seek care in emergency

room or had other consultations at the hospital as a part of the transplantation routine care were also screened. A positive case

was defined as the presence of influenza-like illness with laboratory-confirmed influenza infection by reverse-transcription polymer-

ase chain reaction (RT-PCR). A second cohort of SOTRs (R16 years old) who received the seasonal influenza vaccine was enrolled

during two consecutive influenza vaccine campaigns (2010-2012). In this cohort, SOTRs were excluded if they received the trans-

plant less than one month prior immunization, if allergic to chicken egg proteins or any vaccine component, and if pregnant. Collec-

tion of data on both cohorts included demographics, (age and gender), co-morbidities (chronic obstructive pulmonary disease

(COPD), diabetes mellitus, chronic heart, liver or kidney disease), history of influenza vaccination, type of transplant, time from trans-

plantation and immunosuppressive drug regimen. Clinical signs and symptoms (lower respiratory (LRS): dyspnea, tachypnea; upper

respiratory (URS): rhinorrhea, throat ache; and systemic: headache, fever, myalgia), chest X-ray findings, concomitant and second-

ary bacterial-fungal infections (if isolated from sputum, bronchoalveolar lavage and/or blood), and/or positive urinary antigen detec-

tion, and outcomes, including mortality were recorded in the naturally infected SOTR. Adverse effects after influenza vaccination,

including graft rejections and mortality, were recorded in the vaccinee cohort. Serum samples were collected at enrollment and

approximately 28 days post-enrollment and cryopreserved. In the case of naturally influenza virus-infected patients, an initial sample

was collected within the inclusion in the study (baseline). A pre-vaccination (pre-TIV) sample was collected before influenza vacci-

nation in the SOTR vaccination cohort. A subsequent visit took place in both cohorts and samples were collected for each participant

28 days after inclusion (convalescence and post-TIV, respectively). All patients or their legally authorized representatives provided

informed consent. The study protocol was approved by the institutional review board of University Hospital Virgen del Rocio, Seville,

Spain and related participant hospitals and by the Icahn School of Medicine at Mount Sinai, New York. This study was carried out

strictly following ethical regulations of the Helsinki Declaration and the guidelines on good clinical laboratory practice. Vaccinated

SOTRs received the trivalent non-adjuvant inactivated vaccine recommended for each influenza seasons (2010-2011 and 2011-

2012; Gripavac, Sanofi-Pasteur MSD, Madrid, Spain) as part of the standard of care on immunosuppressed patients.33 A summary

of demographic parameters and clinical characteristics of SOTR with influenza infection is included in Figures S1 and S2.

METHOD DETAILS

Hemagglutination Inhibition (HAI) Assay
SOTRs serum samples were incubated overnight with receptor-destroying enzyme (RDE; Denka Seiken) for 16-18 h in a 37�C water

bath. Three volumes (relative to serum) of 2.5% sodium citrate solution was added and RDE were heat inactivated at 56�C in a water

bath (30minutes). Final serum dilutions were adjusted to 1:10 in PBS. Reference virus strain A/California/7/2009-H1N1 was diluted to

a final concentration of 8 HA units/50 mL in Fluorescent Treponemal Antibody (FTA) hemagglutination (HA) buffer (BD Biosciences).

Two-fold dilutions of RDE treated serum (25 mL) were incubated with equal amount of the virus at 8 HA units/50 mL (30 minutes, room

temperature). Turkey red blood cells (RBCs) (Lampire Biological) at 0.5% inHA buffer (50 mL) were added and incubated 45minutes at

4�C. The HAI titer was determined by taking the reciprocal dilution of the last well in which serum inhibited the hemagglutination of

RBCs. Sera were considered positive based on international criteria of seroprotection if neutralizing titers measured were R 40.7,22

Enzyme-linked Immunosorbent Assay (ELISA)
The recombinant proteins cH6/134 HA [containing an H6 head domain (H6N1 virus A/mallard/Sweden/ 81/02) from wild bird origin,

and hence no specific antibodies should be present in the SOTRs sera, in combination with an H1 stalk domain (H1N1 A/California/4/

2009)], full length H1 HA and N1 NA (H1N1 A/California/4/2009) were generated in insect cells by using a baculovirus expression sys-

tem using a previously described protocol.35,36 Flat-bottom 96-well plates (Immulon 4 HBX; Thermo Fisher Scientific) were coated

with 6 mg/ml of cH6/1 HA, full length H1 HA or N1 NA proteins in PBS (GIBCO) and incubated at 4�C overnight. Next, plates were

washed 3 times with washing buffer (PBS containing 0.1% Tween-20; Fisher Scientific). Plates were incubated 1.5 hours at room

temperature with blocking solution (washing buffer containing 0.5% non-fat powdered milk, Boston BioProducts, and 3% goat

serum, GIBCO). Blocking solution was removed and two-fold dilutions of serum (starting 1:800) were added to each well and incu-

bated for 1.5 hours at room temperature. Plates were then washed 3 times with washing buffer and a peroxidase-conjugated anti-

human IgG (Fc-specific) monoclonal antibody (Sigma) was added at a final concentration of 1:20,000 in blocking solution.

After washing, 100 mL of peroxidase substrate (3,30,5,50-Tetramethylbenzidine, TMB, Rockland) was added and incubated at
Cell Reports Medicine 1, 100130, November 17, 2020 e2
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room temperature for 30 min. The reaction was stopped with 1 N sulfuric acid solution (Fisher Science). The absorbance was

measured at 450 nm with a plate spectrophotometer (Synergy H1 hybrid multimode microplate reader, Biotek). Optical density

(OD) for each well was calculated by subtracting the average background plus three standard deviations. Area under the curve

(AUC) was computed using GraphPad Prism software.

Antibody-dependent Cell Cytotoxicity (ADCC) Bioassay27.
Madin-Darby canine kidney (MDCK) stably expressing cH6/1 chimeric HA,34 full length A/California/4/2009 (Cal09) HA and Cal09 NA

were generated. For this the open reading frames of cH6/1, Cal09 HA and Cal09 NAwere cloned into a pCAGGSmammalian expres-

sion vector.37 A stable cell line was then generated as described before38,39 and chosen based on immunofluorescence with human

monoclonal antibodyCR911415 for HA and 1000-3C0540 for NA. Antigen-specificMDCK cells were seeded in sterile white flat bottom

polystyrene tissue culture-treated 96-well plates (Corning) at a density of 35,000 cells/well. Twenty-four hours later, cells were

washed with Opti-MEM (Minimal Essential Medium) Reduced Serum Medium (GIBCO) and 25ul of Roswell Park Memorial Institute

(RPMI) 1640 medium (GIBCO) was added to each well. Three-fold dilutions of sera (starting 1:75) and ADCC effector cells (Jurkat

T cells stably expressing Nuclear factor of activated T cells (NFAT)-luciferase reporter and human FcgRIIIa, Promega) adjusted at

7x104 cells in RPMI 1640 medium were added to each well and incubated 6 h at 37�C. Bio-Glo Luciferase assay reagent (Promega)

was added, and luminescence was measured using a Synergy H1 hybrid multimode microplate reader (Biotek). The average back-

ground plus two standard deviations was used to discriminate between positive and negative values. Data were plotted in GraphPad

Prism software to calculate AUC.

QUANTIFICATION AND STATISTICAL ANALYSIS

Demographics and clinical characteristics were compared using the chi-square test or Fisher exact test for categorical variables, and

the t test, Mann-Whitney U test or Kruskal Wallis, for continuous variables, when appropriate. All immune assay values were log10-

transformed to improve linearity. Geometric mean titers (GMT) and 95% confidence intervals (CI) were computed by taking the expo-

nent of the mean and the 95% CI of the log10-transformed values.7 Paired samples across time points were compared using the

Wilcoxon signed rank test to assess the immunological response after infection and vaccination. A scaled logit model41,42 modeling

disease outcome among SOTRs was performed, with modifications. Briefly, a binomial logistic regression of log10-transformed

values was used to model a parametric protection curve against acute lower respiratory symptoms at the inclusion and hospital

admission. The fitted curves of the relationship between log10-assay values and the probability of protection was used to estimate

protective thresholds of antibody titers. Number and proportion of SOTRs who developed LRS in each interval was calculated to

quantify the protection fromdisease amongSOTRs.We used amultivariate logistic regressionmodel adjusted by potential co-found-

ing factors to estimate the independent effect of antibody titers on disease progression. ELISA HA values were included as categor-

ical variables of protection defined by the calculated protection curve. Contrasts among the levels of the serological predictors and

type of transplant were performed as a set of K-1 variables internally to avoid co-linearity between groups. HAI titers were dichoto-

mized according to international criteria for seroprotection7. Goodness of fit of the model was assessed by using the Hosmer and

Lemeshow test. The seroconversion ratio was calculated as log10-assay values at convalescence normalized by the log10-assay

values at the onset of the infection. The Spearman’s rank correlation coefficient was calculated to measure the association between

different assay readouts in their original scale. All the analysis was performed with IBM SPSS Statistics (version 21). Statistical sig-

nificance was established at p < 0.05. All reported p values are based on two-tailed tests.
e3 Cell Reports Medicine 1, 100130, November 17, 2020
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