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Abstract 22 

The use of winery by-products, such as wine pomace, to improve human health is attracting 23 

increasing interest. The wine pomace is the mainly winery by-products consisted of seeds and 24 

skins that suppose an economic and environmental problem and their use as functional 25 

ingredient or for pharmaceutical purposes are being increasingly recognized as a good and 26 

inexpensive source of bioactive compounds. In this sense, it known the potential health 27 

properties of wine pomace products in the prevention of disorders associated with oxidative 28 

stress and inflammation such as endothelial dysfunction, hypertension, hyperglycemia, 29 

diabetes, obesity, etc. Those effects are due to the bioactive compounds of wine pomace, 30 

involved in the maintaining of the cell redox balance through the modulation of oxidative stress 31 

and inflammatory process. The mechanisms concern especially modulation of 32 

antioxidant/prooxidant activity, improvement of nitric oxide bioavailability, reduction of pro-33 

inflammatory cytokines and modulation of antioxidant/inflammatory signal pathways.  This 34 

review mainly summarizes the studies that examine the mechanisms of wine pomace products 35 

as modulators of oxidative status involved in cell pathologies as well as their potential 36 

therapeutic use for cardiovascular diseases. For this purpose, the review provides an overview 37 

of the findings related to the wine pomace bioactive compounds profile, their bioavailability and 38 

the action mechanisms through which them maintain the redox cell balance involved in health 39 

benefits. The review suggests an important role for wine pomace product in cardiovascular 40 

diseases prevention and their regular food intake may to attenuate the development and 41 

progression of comorbidities associated to cardiovascular diseases. 42 

Keywords: polyphenols, fiber, bioactive compounds, wine by-products, cardiovascular health, 43 

signaling pathways, oxidative stress, and wine pomace. 44 

 45 
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1. Introduction 47 

Food processing wastes are defined as residues or by-products derived from processing raw 48 

materials to food (Faustino et al. 2019). Winemaking processing industries generates by-49 

products in the form of peels, seeds, pomace that constitute an important source of nutrients 50 

and bioactive compounds (Faustino 2019). The main solid waste from the winemaking industry 51 

is a residue from the pressing and/or fermentation process, called wine pomace or grape 52 

pomace. The major components of wine pomace are seeds and skins, although it can also 53 

contain pulp rest and stems residues. Wine pomace contains a high number of bioactive 54 

compounds, with potential health benefits and even various applications, which are responsible 55 

of its several biological activities. In this regard, the compounds that mainly contribute to the 56 

bioactivity of wine pomace are the polyphenols, as the major bioactive compounds present in 57 

wine pomace product, and the dietary fiber. At present, most studies are focused on the use of 58 

the wine pomace products in the food industry (Kalli et al., 2018; Lavelli et al., 2016). In that 59 

regard, wine pomace can serve as a source of natural additives such as antioxidants and extracts 60 

for the preparation of functional foods and dietary supplements. In addition, the incorporation 61 

of wine pomace as source of bioactive compounds in the preparation of functional foods leads 62 

to the generation of foods with potentially beneficial effects for human health. 63 

An emerging research area is studying the health effect of winery by-products by their role in 64 

the improvement of several disorders associated with oxidative stress and inflammation 65 

implicated in the increased risk of cardiovascular diseases, aging, obesity, and other chronic 66 

diseases (D`Oria et al. 2020). Scientific evidence has supported the beneficial use of wine 67 

pomace products in the prevention of this diseases, among others (Balea et al. 2018; De Groote 68 

et al. 2012; Gerardi et al. 2020; Del Pino-García et al. 2017b). The health effects of wine pomace 69 

products depend of their intake and of the bioaccessibility and bioavailability of their bioactive 70 

compounds  (Gerardi et al. 2020a; Fraga et al. 2019; Del Pino-García et al. 2016c; Saura-Calixto, 71 

Serrano, and Goñi 2007). Thus, the bioavailability of wine pomace bioactive compounds, mainly 72 
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polyphenols, varies considerably according to their structure, to their food matrix and by the 73 

condition of the host.  74 

The dose and the bioavailability of the bioactive compounds, together with their effects after 75 

consumption, have been widely discussed within the scientific community over time. In the first 76 

place, the antioxidant compounds can act by either decreasing or by increasing oxidative stress, 77 

depending on their concentration, the cellular type, and the conditions. In second place, it is 78 

known that polyphenols and other bioactive compounds undergo modifications in the organism, 79 

as a consequence of digestion, absorption, and metabolism. Hence, an in vitro result will not 80 

necessarily correlate with the in vivo effects.  81 

The aim of this review article is to provide insights into the relevance of the wine pomace 82 

products as source of bioactive compounds, mainly polyphenols, their bioavailability and the 83 

role as modulators of cellular response to oxidative stress including signaling pathways, 84 

antioxidant implication, and their role to improve oxidative stress-related disorders. 85 

2. Winemaking by-products as source of bioactive compounds  86 

Wine pomace, also called grape pomace, is the main solid by-product from the winemaking 87 

industry, is a residue from the pressing and/or fermentation process, and is compound by seeds 88 

and skins, although it can also contain pulp rest, and stems residues. It represents about 20-30% 89 

of the original grape weight (Ferri et al. 2020).  The wine pomace is an important source of 90 

bioactive compounds -“essential and nonessential compounds that are found in nature or are 91 

created during the processing of foods or medicinal plants”-, and modulate many biological 92 

activities, providing health benefits (Biesalski et al. 2009; Martín Ortega and Segura Campos 93 

2019).  94 

The main compounds of wine pomace include water, dietary fiber, proteins, essential oils, 95 

minerals, soluble sugars, and polyphenols (Table 1). The most important bioactive compounds 96 

of wine pomace are polyphenols and fiber (Del Pino-García et al. 2017; Del Pino-García et al. 97 
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2016a; Deng, Penner, and Zhao 2011; García-Lomillo et al. 2014; Jin et al. 2018; Saura-Calixto 98 

2011). Their composition depends on the type of grape variety, environmental factors 99 

(harvesting, genetic factors, environmental conditions, degree of plant maturation), and on the 100 

winery techniques (Aditya et al. 2018; Chamorro et al. 2012; Chedea et al. 2018; De Sales et al. 101 

2018; Doshi et al. 2015; Gerardi 2020a; Gil-Sánchez et al. 2017; González-Paramás et al. 2004; 102 

Jara-Palacios et al. 2015; Jara-Palacios et al. 2016; Jara-Palacios et al. 2014; Kadouh et al. 2016; 103 

Kammerer et al. 2004; Ky et al. 2014; Lee et al. 2017; Makris, Boskou, and Andrikopoulos 2007; 104 

Negro, Tommasi, and Miceli 2003; Peixoto et al. 2018; Pérez-Navarro et al. 2019; Rockenbach et 105 

al. 2011; Ruberto et al. 2007; Teixeira 2014; Wei et al. 2017; Zhang et al. 2015; Zhu et al. 2012). 106 

These different compositions in these by-products result in products with different valorization 107 

and with different potential in vivo health effects.  108 

With regard to polyphenolic compounds, red wine pomaces have a greater content than white 109 

wine pomaces (Table 2). Nevertheless, the lower content of white wine pomace not necessarily 110 

reduce their biological activities (Gerardi 2020a; Gerardi et al. 2020b). In that sense, 111 

anthocyanins are the most abundant polyphenolic compounds of red wine pomaces, while 112 

flavanols are the main in the white wine pomace (Amico et al. 2008; Cantos, Espín, and Tomás-113 

Barberán 2002; Del Pino-García 2017; Teixeira 2014). Anthocyanin content also varies with the 114 

contact time in the winemaking process: longer contact times reduces the anthocyanin content 115 

of the wine pomaces (Yu and Ahmedna 2013a). In a study with eighteen wine pomace by-116 

products from red and white cultivars, the authors observed a flavanol content of 29-199 117 

mg/100 g of dry matter, where proanthocyanidin B2 was the most abundant among the 118 

dimmers, and catechin and epicatechin among the monomers (González-Paramás et al. 2004). 119 

As non-anthocyanic polyphenolic in red wine pomaces catechin and epigallocatechin are the 120 

most abundant (Gerardi 2020a; Rockenbach 2011). With regard to the phenolic acids, the most 121 

abundant are gallic, protocatechuic, vanillic, syringic and gentisic acids, observing some 122 
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differences between red and white wine pomaces (Gerardi 2020a; Machado and Domínguez-123 

Perles 2017).   124 

Phenolic content also differs between winery by-products obtained from different wine pomace 125 

materials (skins or seeds) (Table 2). Some authors observed a higher content of polyphenols in 126 

the seed pomaces compared with the skin pomaces (Teixeira 2014). However, other authors 127 

showed that skins have more polyphenols than seed pomaces (Del Pino-García 2017; Guaita and 128 

Bosso 2019). In general, skin pomaces are richer in phenolic acids, mainly hydroxycinnamic 129 

(Carmona-Jiménez et al. 2021; Castillo-Muñoz et al. 2009; Gerardi 2020a; Jara-Palacios 2015; 130 

Kammerer 2004; Rockenbach 2011; Teixeira 2014) and stilbenes (resveratrol and piceid) 131 

(Katalinić et al. 2010) and in anthocyanins. While flavanols are more predominant in the wine 132 

seed pomace (Del Pino-García 2017), with the exception of epigallocatechin that only has been 133 

found in the skin pomace (Gerardi 2020a; Rockenbach 2011). Del Pino-García et al. (2017) 134 

observed a different flavonols composition between skin and seeds, a higher concentration of 135 

monomers than dimmers flavanols in the skin pomace, and the opposite for the wine pomace 136 

obtained from the seeds.  137 

Fiber is another type of non-essential compound, present in wine pomace, with important 138 

physiological effects (Zhu et al. 2015). There are clear associations between dietary fiber intake 139 

and colonic health, gut motility and risk for cardiovascular diseases (Chambers et al. 2018; Das 140 

et al. 2020).  The polysaccharide fiber type determines its degree of fermentation by the 141 

intestinal microbiota (Goñi, Martín, and Saura-Calixto 2005; Palafox-Carlos et al. 2011). The 142 

dietary fiber content of wine pomace also varies depending on the grape cultivar, growth 143 

climates, and processing conditions. While red wine pomaces are rich in total dietary, fiber 144 

(TDF), white varieties have mainly soluble sugars (up to 55%) (Table 1) (Deng 2011). For instance, 145 

red wine pomace undergoes a period of fermentation whereas white wine pomace is removed 146 

before alcoholic fermentation (Moreno, Ballesteros, and Negro 2020). Furthermore, differences 147 
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in harvest and winemaking practices could explain the different composition between wine 148 

pomaces derived from diverse cultivars. Nevertheless, in both types of wine pomaces, the total 149 

dietary fiber (TDF) is composed predominantly of insoluble dietary fiber (IDF) (up to 98,5%), 150 

while the soluble dietary fiber (SDF) only constitute a small fraction (Deng 2011; Jin et al. 2019; 151 

Sheng et al. 2017).  The predominance of glucose indicates that cellulose is the major constituent 152 

of IDF, while the presence of xylose and galactose in the IDF evidence the existence of 153 

hemicellulose, principally in the skin pomace (Deng 2011).  154 

Furthermore, fiber compounds in wine pomaces make chemical bonds with phenolic 155 

compounds forming antioxidant dietary fibers (Saura-Calixto 2011). Therefore, the bioactivity of 156 

polyphenols and fiber from these wine by-products are interrelated. It is proposed that one of 157 

the main functions of dietary fiber is the transport of dietary antioxidant through the digestive 158 

tract, allowing their release from the fiber matrix within the colon by the action of bacterial 159 

microbiota, generating bioactive metabolites and an antioxidant environment (Saura-Calixto et 160 

al. 2010; Urquiaga et al. 2015).  161 

3. Bioavailability and metabolism of bioactive compounds from wine pomace  162 

Bioactive compounds have to survive food processing, in order to exert biological activities, and 163 

they have to be released from the food matrix and remain accessible in the gastrointestinal tract, 164 

undergo metabolism, and finally reach the target tissue (Figure 1). Hence, a bioactive compound 165 

cannot produce an effect, unless it is bioavailable -“the rate and extent to which the bioactive 166 

compound is absorber and becomes available at the site of action”- (Rein et al. 2013; FaDA.  167 

2002) and includes several processes known as LADME phases: liberation from the food matrix, 168 

absorption, distribution, metabolism and elimination. The rate and the extent to which different 169 

bioactive compounds, obtained from winemaking industry, can be absorbed vary between 170 

individuals and could to depend on diet, genetic background, and gut microbiota composition 171 

and activity, among others (Fraga 2019; Ozdal et al. 2016; Rein 2013; Teng and Chen 2019).  172 
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The wine pomace compounds bioavailability is influenced by their bioaccessibility -“the fraction 173 

of a compound which is released from the food matrix in the gastrointestinal lumen and thereby 174 

made available for intestinal absorption”- (Rein 2013; Saura-Calixto 2007). Bioaccessibility is 175 

affected by the composition of food matrix and the interactions between the different 176 

components of the food matrix (Fernández-García, Carvajal-Lérida, and Pérez-Gálvez 2009; 177 

Neilson and Ferruzzi 2011). Thus, the biological efficiency of wine pomace products, depends on 178 

the intake and chemical structures of their bioactive compounds, mainly polyphenols and fiber, 179 

that determine their intestinal absorption process (Cantos 2002; Gonzales et al. 2015; Marín et 180 

al. 2015; Scalbert et al. 2002) or enzymatic microbial biotransformation (Fraga 2019; Saura-181 

Calixto 2007).   182 

Bioavailability of wine pomace polyphenols depends of dietary intake and differs among winery 183 

by-products. Thus, studies in rats evaluated the effect of the intake of different doses of wine 184 

pomace on polyphenol bioavailability showed a dose-response effect in the plasma and urine 185 

profile of phenolic acids after red wine pomace intake but not after white wine pomace intake 186 

(Gerardi 2020a). These authors also observed that the bioavailability of phenolic acids of white 187 

wine pomace intake came before that red wine pomace with their maximum in plasma at 2 188 

hours and 4 hours respectively. Furthermore, the wine pomace polyphenol bioavailability is 189 

dependent of the intestinal absorption and of their bioactive metabolites resulted of digestive 190 

and hepatic metabolic processes. In general, the plasma phenolic profile, after intake of wine 191 

pomace product, is dependent of the grape variety, winery process, and even the presence of 192 

an extraction process (Alonso et al. 2002; Del Pino et al. 2016; Deng 2011; Gerardi 2020; Jara-193 

Palacios 2015). In this sense, phenolic acids of wine pomace include polymers, esters, and 194 

glycosides that are hydrolyzed by gastrointestinal enzymes and further modified by the 195 

intestinal microbiota (Castello et al. 2018). The metabolization of these compounds increases 196 

their hydrophilicity and facilitates urinary and/or biliary elimination (Manach et al. 2004). Thus, 197 

flavonoids such as the anthocyanins, the principal type of phenolic compounds in the red wine 198 
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pomace, are metabolized in the upper gastrointestinal tract and their metabolites include 4-199 

hydroxyhippuric and ferulic acids derivates, that reach their maximum in plasma at 1-1.5 hours 200 

after consumption (Ozdal 2016). In another hand, the anthocyanidins can be metabolized by 201 

microbiota into phenolic acids such as syringic, vanillic, protocatechuic, and coumaric acids, 202 

thereby contributing to the total content of phenolic acids in the plasma sample  (Fernandes et 203 

al. 2017). Other wine pomace compounds, flavonols (kaempferol-3-O-rutinoside) and flavanols 204 

(epigallocatechin, catechin, epicatechin, procyanidins) also contribute to the total phenolic acid 205 

content of plasma derivates from the microbial catabolism (Cueva et al. 2017; Fernandes 2017). 206 

It has been suggested that “colonic metabolism [of polyphenols] could be considered as the 207 

missing link between the consumption of certain polyphenols and their biological activity” (Rein 208 

2013; Williamson and Clifford 2010). The polyphenol elimination can be through two pathways: 209 

renal and biliar. Taking these into account, the levels of different phenolic acids in urine not only 210 

depend on their urinary excretion ratio, but they also depend on their capacity to bind plasma 211 

proteins and the amount eliminated by biliary excretion (Crespy et al. 2003). Polyphenolic 212 

metabolites generated after bioavailability showed different biological actions (Figure 2) (Del 213 

Pino-García 2016c; Gerardi 2020a; Rasines-Perea et al.,2018; Rodriguez Lanzi et al. 2018). These 214 

stable metabolites have the potential to act directly as antioxidants or to interfere with signaling 215 

pathways, receptors, enzymes and transcription factors (Hunyadi 2019). High levels of phenolic 216 

acids in plasma have been associated with a high plasma antioxidant capacity and with a high 217 

prevention of lipid peroxidation and nitric oxide bioavailability in rats after oral administration 218 

of wine pomace product (Del Pino-García et al 2016b; Gerardi 2020b). 219 

The health contribution of bioavailability of wine pomace fiber is mainly by microbial 220 

fermentation of no-digestible carbohydrates that contribute to the production of bioactive 221 

compounds. In general the main effects of dietary fiber is to prolong the gastric emptying time 222 

and to retard the absorption of nutrients and to reduce glucose and cholesterol levels (Birkett 223 

et al. 1997; Fuller et al. 2016; Lecumberri et al. 2007; Llobera and Cañellas 2007; Oh et al. 2019; 224 
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Stewart et al. 2010). In the colon, the dietary fiber is fermented by the microbiota and enhances 225 

the production of microbial metabolites, such as short-chain fatty acids (SCFAs) providing a 226 

source of energy for colonocytes and by passing through the colonic epithelium into the 227 

bloodstream, they also influence lipid, glucose and cholesterol metabolism through effects on 228 

G protein-coupled receptors (Barber et al. 2020).  A study of red wine pomace bioavailability in 229 

rats showed that after 4 weeks of consumption, the contents of SCFAs in fecal rats increase a 20 230 

% mainly due to the higher butyric acid concentration (Del Pino 2016c). Furthermore, these 231 

authors observed that the relative faecal content of butyric acid in diabetic rats was increased, 232 

and acetic acid was decreased, obtaining a molar ratio of butyric:propionic:acetic acid similar to 233 

no diabetic rats.  Considering that, dietary fiber acts entrapping polyphenols in their matrix and 234 

because of that, the gastrointestinal enzymes cannot release the fiber-associated polyphenols, 235 

and the polyphenols are not bioavailable in the gut and small intestine until colonic bacterial 236 

fermentation (Saura-Calixto 2007). Short chain fatty acids (SCFAs) are the mainly bioactive 237 

compounds released due to partial or complete fermentation of TDF and they can act 238 

synergistically with polyphenols modulating the expression of genes involved in certain diseases 239 

(Tang et al. 2011). 240 

4. Wine pomace modulates the oxidative stress response through redox signaling pathways 241 

Growing evidence indicates that the bioactive compounds such as polyphenolic metabolites 242 

might  modulate redox state systems in vivo  (Fraga, Oteiza, and Galleano 2018).   Cell oxidative 243 

stress is classified by its intensity, from physiological oxidative stress or eustress to toxic 244 

oxidative stress or distress with biomolecule damage and disrupted redox signaling 245 

(pathological). Sarsour, Kalen, and Goswami (2014) along with Niki (2016) proposed the term 246 

oxidative eustress, as a definition of beneficial cell responses to oxidant generation including 247 

redox processes which regulate normal physiological functions. In contrast, oxidative distress 248 

was defined as “a cell response resulting from irreversible modifications and damage to 249 
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biomolecules under pathological conditions”. In addition, there are many sub-forms of oxidative 250 

stress, associated with their different forms and ways in which they are generated.  251 

In physiological concentrations, reactive oxygen and nitrogen species (RONS) can act as signaling 252 

molecules in redox signaling pathways and have essential functions at basal levels including cell 253 

metabolism, gene expression, cell cycle progression, cell survival, proliferation and 254 

differentiation, cytoskeletal organization, immune defense angiogenesis, and vessel relaxation, 255 

among others (Figure 3A), (Battino et al. 2018; Belleza et al. 2018; Bogdan 2015; Moldogazieva 256 

et al. 2018; Schieber and Chander 2014; Takada 2003; Tu et al. 2019; Zhang et al. 2019b). 257 

Excessive levels of RONS can produce changes in redox status acting as signals that inducing 258 

cellular damage and various diseases including inflammation, autoimmunity, tumorigenesis, 259 

endothelial dysfunction, atherosclerosis, and hypertension, kidney fibrosis, among others 260 

(Figure 3B). This excessive increase in the levels of RONS lead to oxidative stress, which is a 261 

mediator of oxidative damage of biological targets and modulation of pathways such as the 262 

mediated by transcription factors  AP-1 (activator protein 1), NF-κB and Nrf2 (Sies 2018; Yin et 263 

al. 2017).  264 

In this regard, the modulation of the cell redox state by wine pomace is due mainly to the 265 

polyphenolic metabolites resulted from their bioavailability by direct or indirect mechanisms. 266 

The direct mechanism involves the reaction with RONS giving a less reactive product or the 267 

chelation of transitions metals (Fe2+ or Cu+). This direct activity is attributed to the presence of 268 

hydroxyl groups in the benzene ring that are capable of donating either one hydrogen or a single 269 

electron to RONS, thereby stabilizing the free radical molecules (Forman, Davies, and Ursini 270 

2014; Sandoval-Acuña, Ferreira, and Speisky 2014). Nevertheless, a growing body of evidence 271 

indicates that the bioactivity of wine pomace polyphenols might also related 272 

oxidant/antioxidant production (Fraga 2018). Depending on their concentrations, chemical 273 

structures and under the conditions that favor their autoxidation, at high pH, at high 274 

concentrations of transition metals or at high concentration of oxygen, some polyphenols also 275 
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act as prooxidants in vitro (Ayuda-Durán et al. 2019; Jara-Palacios et al. 2013; Pizzino et al. 2017; 276 

Tang and Halliwell 2010). Moreover, the prooxidant effect of grape pomace extract might be 277 

beneficial because it triggers the preconditioning mechanisms (Gems and Partridge 2008; 278 

Veskoukis et al. 2012). Still, further studies are necessary for evaluated the therapeutic effect of 279 

grape pomace product under distress oxidative conditions. 280 

The indirect mechanisms of wine pomace polyphenols can be by inhibition of oxidant enzymes, 281 

activation enzymatic and non-enzymatic antioxidant systems and regulation of gene expression 282 

of antioxidants by interaction with redox signaling pathways (Figure 4) (Del Pino-García 2016; 283 

Del Pino-García 2017b; García-Lomillo 2014; Kabir, Sultana, and Kurnianta 2015; Zhang et al. 284 

2011).  285 

Some authors observed a modulation of the Nrf2/NF-κB crosstalk by bioavailability fractions of 286 

wine pomace in culture cells with a consequent increase in the expression of antioxidant 287 

molecules and reduction of pro-oxidant and pro-inflammatory pathways (Del Pino-García 2016; 288 

Gerardi et al. 2019). Moreover, wine pomace bioavailability fraction upregulates Nrf2 pathway 289 

while downregulate NF-κB pathways by both regulating their gene expression and by their 290 

activation and nuclear translocation (Gerardi 2019). The mechanism of action is acting directly 291 

or on transmembrane receptors and trigger the activation or inhibition of signal transduction 292 

kinases/phosphatases (Figure 4). In that regards, different studies showed that wine pomace 293 

polyphenols activate protein kinases MAPK (ERK1/2, p38 and JNK) or PI3K/Akt involved in the 294 

modulation of AMPK/FOXO1/mTOR/SIRT1 pathways and later activation of transcription factors 295 

Nrf2/NF-κB, AP-1, HIF-1α, p53, Wnt/β-catenin (Bak, Jun, and Jeong 2012; Chen et al. 2017; 296 

Chung et al. 2010; Dai et al. 2018; Del Pino-García 2016b; Haegeman et al. 2010; Kårlund et al. 297 

2015; Maleki, Crespo, and Cabanillas 2019; Vargas et al. 2018; Wang, Zhong, and Zhao 2017; 298 

Weng and Yen 2012). Thus, flavonols presents in wine pomace inhibit MAPK pathways 299 

stimulated by IL-1β  or INF-γ in inflammatory rheumatoid arthritis by reduction of the ERK1/2, 300 
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p38 and JNK phosphorylation (Mateen et al. 2016). In contrast, wine pomace activate MAPK 301 

(p38 and ERK1/2), through changes in redox status cell, in human umbilical vein endothelial cells 302 

(HUVECs) by modulating the Nrf2/HO-1 gene expression (Cao et al. 2019; Gerardi 2019). Other 303 

flavonoids presents in wine pomace product such as quercetin inhibits PTEN phosphatase and 304 

PI3K/Akt/eNOS pathway (Cao 2019) involved in angiogenesis and tumor growth (Bjørklund and 305 

Chirumbolo 2017; Maaliki et al. 2019).  306 

Wine pomace product also modulate the cell redox status by regulation of the Nrf2 and NF-κB 307 

transcription factors and modulating superoxide dismutase (SOD1 and SOD2), catalase (CAT), 308 

HO-1 expression, among others (Del Pino-García 2016; Gerardi 2019; Goutzourelas 2015; Groh 309 

et al. 2020; Hegazy et al. 2019). In that regards, the presence of wine pomace flavonoids such as 310 

quercetin, flavanols, resveratrol and, proanthocyanidins activate Nrf2 by direct modulation 311 

(Fraga 2018) or via up-regulation of their mRNA and stabilization of Nrf2 protein. Moreover, it 312 

has been observed that wine pomace metabolites improved the redox balance, ameliorated 313 

protein oxidation, lipid peroxidation and cell membrane damage, and restored the balance 314 

between endothelial RONS and NO production in hyperglycemic cells through gene modulation 315 

of SOD1, SOD2, CAT, HO-1, NOX4, cyclooxygenase 2 (COX2) and endothelial nitric oxide synthase 316 

(eNOS) (Del Pino-García 2016; Gerardi 2019). Additionally, wine pomace  by modulation of cell 317 

redox status, inhibit the NF-κB activation, and as consequence have the inhibition of specific 318 

steps in the NF-κB cascade (Gerardi 2019). In that regard, different authors have observed that 319 

some polyphenols presents in wine pomace as epicatechin interacts with NF-κB and reduces the 320 

binding of NF-κB to the DNA κB site (Fraga 2018; Mateen 2016). 321 

Wine pomace can moreover modulate redox signaling, by their inhibitory effects on enzymes 322 

that generate RONS (Figure 4) such as NOX, NOS, COX, or LOX (Gerardi 2019). This could to be 323 

explained by the presence of polyphenols epicatechin or anthocyanins that reduce the RONS 324 

generation and act as competitive inhibitor of the NOX and inflammatory cyclooxygenase (COX) 325 
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enzymes (Furuuchi et al. 2018; Gómez-Guzmán et al. 2012). In that regard, the decreased of NOX 326 

activation by wine pomace product in aorta, heart, liver, kidney and adipose tissue, could have 327 

preventive effect on oxidative damage generated in hypertension, endotoxemia or diet-induced 328 

obesity (Fraga 2018). In addition, wine pomace prevents cell membrane alterations, by reducing 329 

lipid oxidation due to RONS, and regulates calcium fluxes that prevent NOX and protein kinase 330 

C (PKC) activation (Fraga 2018; Verstraeten et al. 2008). Another wine pomace mechanism of 331 

action is to modulate the levels of nitric oxide synthase (NOS) by activation of eNOS (Gerardi 332 

2020). In contrast, it attenuates the expression of iNOS after different inflammatory stimuli and 333 

modulates uncontrolled immune response (Cao 2019; Fraga 2018; Maaliki 2019).  334 

Recently, the wine pomace epigenetic modulation by regulation of HDACs and NMTs activity or 335 

by  microRNAs expression is of great interest as news mechanism of action (Arora, Sharma, and 336 

Tollefsbol 2019; Lubecka et al. 2018; Milenkovic, Deval, and Gouranton 2012; Ratovitski 2017; 337 

Sheng et al. 2019; Su et al. 2017). In that regards, some human studies of supplementation with 338 

wine pomace showed changes in the expression of several miRNAs related to glucose 339 

metabolism (miRNA-130a-3p, miRNA-122-5p, miRNA-34a-5p, miRNA191-5p and miRNA-342-340 

3p) (Gil-Sánchez et al. 2018; Ramos-Romero et al. 2021). In addition, miRNA regulation by wine 341 

pomaces was also observed against inflammatory processes, including the upregulation of mir-342 

376c, which regulates the expression of mRNA of inflammatory chemokines, chemokine 343 

receptors, interleukins, and interleukin receptors (Gessner et al. 2017). In addition, epigenetic 344 

modulation of individual compounds that are present in the wine pomace, it has been more 345 

studied. Thus, epigallocatechin gallate (EGCG) increased the expression of miR-133a/b and 346 

reduce Smad3 signaling leading to the amelioration of inflammation and fibrosis in rats with 347 

prostatic hyperplasia (Zhou et al. 2018). Several in vitro and in vivo studies showed the effect of 348 

compounds such as quercetin in the modulation of multiple cancer-associated miRNA including 349 

let-7, miR-155, and miR21 leading to the reduction of cancer initiation and development (Kim et 350 

al. 2019). Furthermore, resveratrol controls cancer proliferation by inducing tumor-suppressive 351 
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miRNAs such as miRNA-34, miRNA-663, and miRNA-744 (Esmerina Tili et al. 2013; Farooqi, 352 

Khalid, and Ahmad 2018; Otsuka, Yamamoto, and Ochiya 2018).. 353 

5. Wine pomace as modulator of oxidative stress-related disorders 354 

Disorders associated with oxidative stress by changes in cell redox equilibrium have 355 

consequences at different levels, including cellular, tissue, and systemic alterations. First, the 356 

modification of the redox status in the cells leads to the pathological expression of molecules, 357 

such as proinflammatory cytokines and oxidant enzymes, which alter the function and the 358 

structure of different tissues (epithelial, muscular, nervous tissue). Those pathological 359 

alterations are exacerbated by persistent oxidative stress that alters proteins and other cellular 360 

components, causing cellular dysfunction (Aykin-Burns et al. 2009; Dalle-Donne et al. 2006; 361 

Dikalov et al. 2014; Kuo et al. 2014; Tang et al. 2013; Valko et al. 2007; Welch 2008). Cells 362 

progressively lose their physiological activities and can finally to induce apoptosis to cytotoxic 363 

levels of oxidative stress or activate the proliferation of cells at levels of oxidative stress 364 

persistent. Both options alter the physiological functions of the tissue and cause organ failure 365 

and systemic diseases (Figure 5). 366 

The capacity of wine pomace to modulate the oxidative stress through redox signaling pathways 367 

plays an important role in the prevention of chronic diseases involved in cardiovascular diseases 368 

include endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity (Cani 369 

et al. 2012; Del Pino-García 2016b; Gerardi 2020; Pal, Naissides, and Mamo 2004).  370 

Endothelial dysfunction 371 

Endothelium is a selectively permeable barrier between the vascular wall and the bloodstream 372 

that regulates vascular tone, cell growth, vascular wall permeability, and interaction between 373 

leukocytes, thrombocytes, and the vessel wall (Endemann and Schiffrin 2004; Yang, Chang, and 374 

Wei 2016). 375 
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The endothelial dysfunction can be considered a consequence of three interrelated processes: 376 

impaired nitric oxide (NO) signaling with eNOS uncoupling, oxidative stress, and inflammation 377 

(Figure 6) (Ding et al. 2004; Higashi et al. 2009). Endothelial dysfunction is associated with the 378 

development of atherosclerosis, hypertension, and cardiovascular events. It is likewise 379 

associated with aging-related disorders such as erectile dysfunction, renal dysfunction, 380 

Alzheimer´s disease, and retinopathy (Burnett 2006; Coleman et al. 2008; Karbach et al. 2014; 381 

Price et al. 2004; Steven et al. 2019) (Figure 7). 382 

Wine pomace obtained from by-products showed great potential as source of bioactive 383 

compounds that protect the vascular endothelial function against endothelial dysfunction by 384 

stimulating Nrf2/ARE pathway and inhibiting the IKK/IκB/NF-κB pathway (Gerardi 2019). Wine 385 

pomace product in endothelial cells mediated up-regulation of cellular antioxidant genes (HO-386 

1, NQO-1, SOD, CAT) through the promotion of the transcriptional activity of Nrf2 and down-387 

regulation of the inflammatory process gene expression (COX-2, NADPH oxidase) mediated by 388 

NF-κB pathway. This modulation by wine pomace products could be due to the content of 389 

phenolic compounds such ferulic acid that decrease the phosphorylation of NF-κB under 390 

conditions of oxidative stress (Cao et al. 2015), or by the content of stilbenes that could to 391 

attenuate the phosphorylation, acetylation and nuclear translocation of NF-κB studies (Chung 392 

2010; Shanmugam, Kannaiyan, and Sethi 2011).  393 

Wine pomace product also inhibits the endothelial dysfunction by increasing the nitric oxide 394 

levels and decreasing superoxide production (Rahman, Biswas, and Kirkham 2006; Son et al. 395 

2010). Thus, in ex vivo studies, arteries were treated with grape pomace extract at 396 

concentrations of 0.1-30 mg/L observing a relaxation in aortic rings in dose-dependent 397 

mechanisms by the activation of eNOS (Rodriguez-Rodriguez et al., 2012). The activation of 398 

eNOS phosphorylation by wine pomace was observed as resulted PI3K/Akt pathway activation 399 

(Gerardi 2019; Gerardi 2020). On the other hand, the wine pomace mechanism involved in the 400 
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reduction of superoxide production is by reduction of the NADPH oxidase activity through the 401 

interaction with MAPK and downregulation of transcription factors, such as NF-kB (Hussain et 402 

al. 2016).   Furthermore, wine pomace could prevent endothelial permeability increase and cell 403 

infiltration by improving endothelial cell-cell junctions. Wine pomace products showed a 404 

protective effect on adherent junction in endothelial cells cultures by increasing the expression 405 

of endothelial cadherin (VE-cadherin) (Gerardi 2020b). 406 

Endothelial dysfunction is also associated with proinflammatory and prothrombic states that 407 

results in aberrant endothelium activation (Crimi, Ignarro, and Napoli 2007; Steven 2019). 408 

Inflammation is a biological adaptive response of vascular tissues to any alteration of tissue 409 

integrity, in order to restore homeostasis through the induction of various repair mechanisms 410 

and results in the increased of the expression of pro-inflammatory mediators cytokines and 411 

RONS (Figure 8) (Lugrin et al. 2014). Chronic inflammation is involved in the pathogenesis of 412 

several diseases such as type 2 diabetes, cardiovascular diseases, and obesity-related disorders 413 

(Hussain 2016)  (Figure 9).  414 

Wine pomace diet supplementation modulates the systemic inflammatory status by the 415 

reduction in the expression of several proinflammatory cytokines (TNF-α; IL-1) (Gerardi et. al. 416 

2020c; Rivera et al. 2019; Rodriguez-Morgado et al 2015). Rats fed with high fat diets and 417 

supplemented daily with 100 mg wine pomace product /Kg body weight for seven weeks 418 

modulate the inflammatory process by reduction of cytokines TNF-α and IL-1 (Gerardi 2020c). 419 

The  mechanism through which the polyphenols of thr wine pomace exert their anti-420 

inflammatory action was described by different authors (Balea et al. 2020; Rivera 2019; Bettaieb 421 

et al. 2016; Fechtner et al. 2017; Martins et al. 2017; Medina-Remón et al. 2015; Yahfoufi et al. 422 

2018; Zhang and Tsao 2016). Wine pomace polyphenols can inhibit the arachidonic acid 423 

metabolizing enzymes like cyclooxygenases (COX) and lipoxygenases (LOX) reducing the 424 

production of inflammation mediators including prostaglandins, and leukotrienes. Other 425 
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mechanisms involved in the anti-inflammatory activity of wine pomace include suppression of 426 

NF-κB and AP-1 activation, inhibition of iNOS, activation of antioxidant enzymes, and stimulation 427 

of MAPK, PKC and Nrf2 (Bode and Dong 2013; Del Pino-García 2016b; Hussain 2016; Nishizuka 428 

et al. 2011; Vezza et al. 2016). 429 

Hypertension 430 

Vascular alterations associated with hypertension include endothelial dysfunction, vascular 431 

smooth muscle cells (VSMCs) stiffness and adhesion, increased vascular RONS, and endothelin 432 

1 (ET-1) expression (Figure 10) (Endemann 2004; Larivie`re, Thibault, and Schiffrin 1993; Schiffrin 433 

2012; Touyz and Schiffrin 2004; Xu and Touyz 2006).  434 

The anti-hypertensive actions of wine pomace extract have been reported in various studies 435 

(Cassidy et al. 2011; Del Pino-García et al. 2017a; Gerardi 2020; He 2017; Javkhedkar et al. 2015; 436 

Maaliki 2019; Paredes et al. 2018). The action mechanism involves reduction of angiotensin I-437 

converting enzyme (ACE) activity and gene modulation of SOD, HO-1, NOX4, and eNOS (Del Pino-438 

García 2017a; Rasines-Perea 2018). These effects could be due to the synergy effect of the 439 

phenolic compounds such as resveratrol,  flavan-3-ols, flavonols, anthocyanidins and their 440 

degradation metabolites (Appeldoorn 2009;Edwards et al. 2015; Loft et al. 2008; Patel et al. 441 

2013).  442 

Furthermore, the intake of wine pomace is associated with lowering systolic blood pressure. In 443 

this regard  flavonols of wine pomace, such as epicatechin, increased eNOS activity and reduced 444 

superoxide production in the aorta of spontaneously hypertensive rats (Galleano, Puzserova, 445 

and Balis 2013). Other wine pomace compounds, EGCG activats PI3K/Akt/NO/cGMP and inhibits 446 

phosphodiesterase (PDE) activity, modulating vascular contractibility (Álvarez et al. 2006; 447 

Romano and Lograno 2009). Quercetin showed that improves endothelial function, modulates 448 

RAAS, regulates VSMC contractibility, increases aortic eNOS and NO plasma, and suppresses 449 

RONS production by NADPH oxidases. 450 
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Wine pomace also prevent cardiovascular risk factors associates with the vascular remodeling 451 

and endothelial function activity (Del Pino-Garcia 2016; Gerardi et al 2010; Spinetti et al., 2010;). 452 

Vascular remodeling is an active process that response to physiological and pathological changes 453 

in the hemodynamics conditions as consequence of different stimuli like hypertension, and 454 

other inflammatory diseases (Van Varik et al., 2012). Large central arteries of hypertensive rats 455 

undergo arteriosclerotic changes with outward hypertrophic remodeling characterized by 456 

increased cross sectional area and lumen diameter (O’Rourke and Hashimoto, 2007). The diet 457 

supplementation with wine pomace used in models of hypertensive and streptozotocin-diabetic 458 

rats prevents the vascular remodeling by reducing of wall aortic thickness, cross sectional area 459 

and wall/lumen ratio, and decreases ROS and increases eNOS activation (Garrido and Borges 460 

2013; Gerardi 2020; Serino-Salazar 2019; Spinetti 2010). Thus, the reduction of this alteration 461 

by the wine pomace could contribute to a less incidence of cardiovascular complications. Several 462 

mechanisms are involved in the activity of wine pomace including reduction of the gene 463 

expression of angiotensin converting enzyme (ACE), NADPH oxidase activity inhibition, reduced 464 

expression of NF-kB, stimulation of SOD2 and increased NO production (Del Pino-Garcia 2016; 465 

Gerardi 2019; Gerardi 2020; Serino-Salazar 2019; Spinetti 2010). Hence, there is a reduction of 466 

prooxidant and proinflammatory activity with a decrease of the reactive oxygen species and the 467 

inhibition of mitogen activated protein kinases (MAPK) activity that leads to inhibition of  the 468 

growth of SMCs and the vascular remodeling (Balasuriya and Rupasinghe, 2011; Del Pino-Garcia 469 

2017; Stangl 2007).  470 

Hyperglycemia 471 

Hyperglycemia implies the alteration of normal glucose levels and constitutes one of the main 472 

characteristics of diabetes. Hyperglycemia is also commonly linked to hyperlipidemia and 473 

obesity. Both, diabetes and hyperlipidemia are cardiovascular risk factors associated with 474 

inflammatory processes, by inducing the expression of proteins and inflammatory molecules in 475 

the endothelium that leads to leukocyte adhesion and infiltration. The autoxidation of glucose 476 
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has a dual role in the pathogenesis of hyperglycemia. On the one hand, the oxidation of 477 

monosaccharides such as glucose produces many types of RONS, thereby contributing to the 478 

oxidative stress (Exner et al. 2001; Hunt, Dean, and Wolff 1988). On the other hand, the 479 

oxidation of glucose participates in protein glycosylation contributing to protein damage (Wolff 480 

and Dean 1987) (Figure 11).  481 

Wine pomace decreases hyperglycemia and improves insulin secretion, and insulin sensitivity 482 

(Aryaeian, Sedehi, and Arablou 2017; Del Pino-García 2016; Del Pino-García 2016b). The possible 483 

mechanisms include decrease of intestinal absorption of glucose; inhibition of carbohydrate 484 

digestion; stimulation of insulin secretion; modulation of glucose release from the liver; 485 

activation of insulin receptors and glucose uptake; and modulation of intracellular signaling 486 

pathways and gene expression.  Winery by-products studied by Doshi (2015) showed antioxidant 487 

and insulinotropic effects, leading to an increase in the release of insulin in isolated mice 488 

pancreatic islets. Kadouh (2016) suggested potential effects of the red wine pomace in the 489 

prevention and treatment of diabetes through inhibition of α-glucosidase in rat intestines.  490 

In addition, the protective effects of the wine pomace in hyperglycemic cells include the 491 

modulation of several signaling pathways. The mechanisms through which the polyphenols 492 

could regulate the Nrf2 and NF-κB pathways in the hyperglycemic cells are as follows: 1) Nrf2 493 

and NF-κB activities might depend on the modulation exerted by several kinases such as Akt, 494 

PKA, PKC, MAPK that phosphorylate Nrf2 and NF-κB at specific sites; 2) might increase the 495 

expression of sirtuins (SIRT1 and SIRT2) that regulate the deacetylation of the NF-κB 496 

transcription factor, leading to a reduction of ROS and inflammatory cytokines. In addition, the 497 

inhibition of Nrf2 ubiquitination by SIRT1 might increases Nrf2 availability, favoring nuclear 498 

translocation of Nrf2 (Huang, Gao, and Wei 2017); 3) The activator CBP complex is used by both 499 

transcription factors, thus an overexpression of Nrf2 induced by bioactive compounds of wine 500 

pomace might limits the availability of CBP complexes for NF-κB (Wardyn, Ponsford, and 501 
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Sanderson 2015). The reduction of pro-oxidant and proinflammatory actions of Ang II, and 502 

NADPH oxidase involves less generation of RONS, decreased activity of the MAPK and 503 

consequent reduction of the protooncogens c-fos, c-jun and c-myc that leads to reduce growth 504 

of the remodeling  (Domínguez-Avila et al. 2016; Schiffrin 2012).  505 

Obesity 506 

Obesity is described as a state of chronic low-grade inflammation and is related to increased 507 

vascular risk, due to vascular alterations such as endothelial dysfunction, vascular stiffening, and 508 

vascular remodeling, dysregulation of adipose tissue signaling, altered metabolism such as 509 

insulin resistance and hyperlipidemia, and hypertension (Reho and Rahmouni 2017). Oxidative 510 

stress is associated with the development of co-morbidities in obesity. Alterations in several 511 

signaling pathways are observed, including excessive RONS production, rennin-angiotensin-512 

aldosterone-system (RAAS) activation, inflammatory/immune signaling, and reduced NO 513 

bioavailability and activity. Various factors contribute to oxidative stress in obesity and they are 514 

summarized in Figure 12 (Manna and Jain 2015). 515 

The anti-obesity effects of wine pomace products obtained from by-products of the food 516 

industry have been observed by various studies (Gerardi et al. 2020c; Hsu et al. 2009; Jin 2018; 517 

Zhang 2019a; Zhao et al. 2017). They may be attributed to the direct and indirect interaction of 518 

wine pomace compounds with the adipose tissue (Gerardi 2020c). Among the various 519 

mechanisms that have been proposed are: suppression of dietary fat absorption; enhancing fat 520 

oxidation in adipose tissue and skeletal muscle; increasing glucose utilization; decreasing de 521 

novo lipogenesis; inhibition of adipocyte differentiation by C/EBPβ and PPARγ downregulation; 522 

stimulation of adipocyte apoptosis and cell cycle arrest; and reduction of RONS levels and 523 

inhibition of the inflammatory process. Some polyphenols present in the wine pomace, such as 524 

flavonoids, catechins and resveratrol, reduce oxidative markers associated with obesity and 525 

diabetes in obese adults (De Groote 2012). Diet supplementation with 100-300 mg of seed 526 
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extract reduced postprandial glucose levels in healthy adults (Kalli 2018; Sapwarobol et al. 2012). 527 

Furthermore, wine pomace reduced food intake in rats and energy intake in humans (Gerardi 528 

2020c; Vogels and Plantenga 2004). The incorporation of wine pomace product in the diet of 529 

high-fat diet-obese rats, reduced weight gain through amelioration of abdominal fat and 530 

improving lipid profile. Moreover, the wine pomace product reduced the obesity-related 531 

complications, by regulating oxidative stress, inflammatory processes, and intestinal microbiota 532 

(Gerardi 2020c). Supplementation of diet-induced obese mice with grape seed flour ameliorates 533 

hepatic steatosis and insulin resistance through downregulation of genes involved in triglyceride 534 

and ceramide synthesis, the immune response, oxidative stress and inflammation, and 535 

upregulation of genes associated with fatty acid oxidation, and cholesterol and bile synthesis 536 

(Seo et al. 2016). 537 

6. Conclusion 538 

There are many cellular mechanisms involved in the antioxidant and anti-inflammatory actions 539 

of the wine pomace products obtained from winemaking industry. Several molecules and 540 

intracellular pathways are modulated (Nrf2, NF-κB, MAPK, Akt, SIRT1, eNOS, NOX, etc), which 541 

could explain the protective effects of these compounds in the vascular endothelium and other 542 

epitheliums. Furthermore, the wine pomace products can improve epithelium integrity through 543 

the regulation of the expression of cell-cell interaction proteins. Therefore, these by-products 544 

from winemaking industry could be used for the prevention of vascular injury associated with 545 

oxidative stress and inflammation. 546 

The findings confirmed in this systematic review indicate the health effects of wine pomace 547 

products against diseases associated with oxidative stress and inflammatory processes. The 548 

bioactive compounds of these products exert their antioxidant action through the modulation 549 

of signaling pathways, increasing endogenous antioxidant systems, decreasing RONS 550 

production, and enhancing NO bioavailability, among others. Through those mechanisms, 551 
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polyphenols show a capability to improve pathological states and metabolic disorders, such as 552 

diabetes, hypertension, obesity, cancer, and infection and inflammatory processes.  553 

Abbreviations 554 

ACE 
AGE 
Akt 
AMPK 
Ang II 
AP-1 
ARE 
BH4 
CAT 
cGMP 
COX2 
DAG 
DNMT 
EC 
EGCG 
EMT 
eNOS 
ET-1 
GPCR 
HDAC 
HF 
HIF-1α 
HO-1 
HUVEC 
ICAM 
IKKα 
IKKβ 
IL-1β 
INF-γ 
iNOS 
IP3 
IκBα 
Keap-1 
MAPK 
miRNA 
NADPH 
NF-κB 
NO 
NOS 
NOX 
NQO1 
Nrf2 
p38-MAPK 
PDE 

angiotensin I converting enzyme 
advanced glycation end-products 
protein kinase B 
AMP-activated protein kinase 
angiotensin II 
activator protein 1 
antioxidant responsive element 
tetrahydrobiopterin 
catalase 
cyclic guanosine monophosphate 
cyclooxygenase 2 
diacylglycerol 
DNA methyltransferase 
epicatechin 
epigallocatechin gallato 
epithelial mesenchymal transition 
endothelial nitric oxide synthase 
endothelin 1 
G protein-coupled receptors 
histone deacetylases enzymes 
high-fat  
hypoxia-inducible factor 1-alpha 
hemo oxigenase 1 
human umbilical vein endothelial cell 
intercellular adhesion molecule 1 
IκB kinase alpha 
IκB kinase beta 
interleukin 1 beta 
interferon gamma 
inducible nitric oxide synthase 
inositol triphosphate 
inhibitor of kappa B alpha 
Kelch-like ECH-associated protein 1 
mitogen-activated protein kinase 
micro-RNA 
reduced nicotinamide adenine dinucleotide phosphate  
nuclear factor-kappa B 
nitric oxide 
nitric oxide synthase 
NADPH oxidase 
NAD(P)H:quinone oxidoreductase 1 
nuclear factor erythroid 2-related factor 2 
p38 mitogen-activated protein kinase 
phosphodiesterase 
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PI3K 
PKA 
PKC 
PTEN 
RAAS 
RONS 
RTK 
SIRT1 
SOD 
TNF-α 
VCAM 
VE-cadherin 
VSMC 

phosphatidylinositol kinase 
protein kinase A 
protein kinase C 
phosphatase and tensin homolog  
rennin angiotensin aldosterone system 
reactive oxygen and nitrogen species 
receptor tyrosine kinase 
NAD-dependent deacetylase sirtuin-1 
superoxide dismutase 
tumor necrosis factor alpha 
vascular cell adhesion molecule 1 
vascular endothelial cadherin 
vascular smooth muscle cell 
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Figure Captions 1353 

Figure 1. Overview of the steps involved in the bioavailability and metabolism of bioactive 1354 

compounds. After ingestion, bioactive compounds are first released from the food matrix in the 1355 

gastrointestinal tract and modified to be then absorbed. Some bioactive compounds are 1356 

absorbed in the small intestine, but a significant amount enters the large intestine where the 1357 

colonic microbiota further transform them into readily absorbable molecules. After absorption, 1358 
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the bioactive compounds are metabolized, and the metabolites enter the blood circulation to 1359 

finally reach the target tissues and improve their biological activities. 1360 

Figure 2. Main metabolites of wine pomace polyphenols after in vitro and in vivo (Wistar rats) 1361 

bioavailability studies. The bioavailability process produces large amounts of new metabolites 1362 

as consequence of the digestion and metabolism of the original bioactive compounds. These 1363 

new metabolites can be responsible of different biological activities. 1364 

Figure 3. Physiopathological Effect of RONS. (A) Physiological effects of redox signaling. (B) 1365 

Pathological implications of oxidative stress. 1366 

Figure 4. Role of polyphenols in the redox signaling pathways. Polyphenols can exert their 1367 

biological activities by interaction whit several intracellular molecules such as enzymes, signaling 1368 

kinases/phosphatases, transcriptional factors, regulatory proteins, among others. Straight 1369 

arrow: stimulatory effect; Dotted arrow: inhibitory effect. 1370 

Figure 5. Different levels affected in disorders associated with oxidative stress. Oxidative stress 1371 

lead to the generation of a pro-oxidant and proinflammatory state that produces cell alteration 1372 

and damage, and finally affects tissue and organ functions. 1373 

Figure 6. Mechanism involved in endothelial dysfunction. The increased levels of RONS in the 1374 

endothelium can improve cell infiltration and atherosclerotic plaque formation by induction of 1375 

adhesion and chemotactic molecules, platelet aggregation and alteration of nitric oxide 1376 

bioavailability. 1377 

Figure 7. Clinical implications of endothelial dysfunction. Endothelial dysfunction plays a key 1378 

role in the development of several chronic diseases.  1379 

Figure 8. Role of oxidative stress in inflammatory process. RONS can affect the four 1380 

components of the inflammation (inductors, sensors, mediators and effectors). 1381 

Figure 9. Inflammation and oxidative stress. RONS contribute to inflammation by modulation 1382 

of different inflammatory mediators. 1383 

Figure 10. Mechanisms of oxidative stress and inflammation mediated hypertension. Many 1384 

vascular alterations are associated to oxidative stress including endothelial dysfunction, vascular 1385 

remodeling, and atherosclerotic plaque formation. 1386 

Figure 11. Participation of hyperglycemia in multiples pathways. Hyperglycemia contribute to 1387 

the development of oxidative stress by increasing RONS formation and protein damage. 1388 

Figure 12. Mechanisms implicated in the obesity. Obesity is a complex and multifactorial 1389 

disease with several pathological metabolic and vascular alterations such as hyperglycemia, 1390 

inflammation, lipid accumulation, endothelial dysfunction, among others, that contribute to the 1391 

development of oxidative stress.  1392 

 1393 
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Table 1. Different wine pomaces and wine pomace by-products compositions 1410 

 Composition 
% dry matter (dm)      By-product           References 

Water 
 
 
 
Dietary Fiber 
 
 

(50-85%) 
 
 
 

(>70% dm) 
 
 

50-70% 
55-80% 
73-85% 

 
49-59% 

80% 
75% 

Grape Pomace (seeds) 
Grape Pomace (stems) 
Grape 
 
Red wine pomaces 
Grape pomace 
Red grape pomace 

(Teixeira et al., 2014) 
(González-Centeno et al., 2010) 
(González-Centeno et al., 2010) 
 
(García-Lomillo et al, 2014) 
(Valiente et al. , 1995) 
(Llobera et al., 2007) 
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Proteins 
 
 
 
 
 
Fat 
 
 
Essential Oil 
 
 
Minerals 
 
 
 
 
Soluble 
sugars 
 
 
Polyphenols 

 
 
 

(2-15% dm) 
 
 
 
 
 

(3-17% dm) 
 
 

(13-16% dm) 
 
 

(6-9% dm) 
 
 
 
 

(1-3% Red 
55-78% 
White) 

 
(1-5%) 

 

77% 
73% 

 
12-14% 
11-12% 
12-14% 

5-6% 
11% 

 
4-17% 

14-17% 
3-6% 
13% 
16% 

 
6-9% 
5% 

6-8% 
2-3% 

 
55-78% 

1-3% 
3% 

 
4-5% 
2-3% 
3% 

1-2% 

White grape peel 
Grape skins 
 
Red wine pomaces 
Red wine pomace (skins) 
Red wine pomace 
White wine pomace (skins) 
Grape pomace (seeds) 
 
Red wine pomaces 
Wine pomace (seeds) 
Red grape pomace 
Red grape pomace 
Grape pomace (seeds) 
 
White and red grape pomace 
Red pomace 
Red pomace (skins) 
White pomace (skins) 
 
White grape pomace 
Red grape pomace 
White and red pomace (skin) 
 
White and red pomace 
Red pomace 
Red wine pomace (skins) 
White pomace 

(Goñi, et al., 2005) 
(Alí et al., 2003) 
 
(García-Lomillo et al., 2014) 
(Deng et al., 2011) 
(Llobera et al., 2007) 
(Deng et al., 2011) 
(Teixeira et al., 2014) 
 
(García-Lomillo et al., 2014) 
(García-Lomillo et al., 2017b) 
(Deng et al., 2011) 
(Llobera et al., 2007) 
(Teixeira et al., 2014) 
 
(Bravoet al., 1998) 
(Llobera et al., 2007) 
(Deng et al., 2011) 
(Deng et al., 2011) 
 
(Zhu et al., 2015) 
(Deng et al., 2011) 
(Bravo et al., 1998) 
 
(Bravo et al., 1998) 
(Deng et al., 2011) 
(García-Lomillo et al., 2014) 
(Deng et al., 2011) 

 1411 

 1412 

 1413 

 1414 
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Table 2. Major polyphenols of red and white wine pomaces from seeds or skins  1415 
 1416 
 1417 
 1418 
 1419 
 1420 
 1421 
 1422 
 1423 
 1424 
 1425 
 1426 
 1427 
 1428 
 1429 
 1430 
 1431 
 1432 
 1433 
 1434 
 1435 
 1436 
 1437 
 1438 
 1439 
 1440 
 1441 
 1442 
 1443 
 1444 
 1445 
 1446 
 1447 
 1448 
 1449 
 1450 
 1451 
 1452 
 1453 
 1454 
 1455 
 1456 
 1457 
 1458 
 1459 
 1460 
 1461 
 1462 
 1463 
 1464 
 1465 
 1466 
 1467 
 1468 
 1469 
 1470 
 1471 
 1472 
 1473 
 1474 
 1475 
 1476 
 1477 
 1478 
 1479 
 1480 
 1481 
 1482 
 1483 
 1484 
 1485 
TP = Total Phenols expressed as mg Gallic Acid Equivalent/g of wine pomace. TF = Total Flavonoids expressed as mg Catechin Equivalent/g of wine 1486 
pomace. TA = Total Anthocyanins expressed as mg Malvidin-3-glucoside Equivalent/g of wine pomace. Total Tannins are expressed as mg Catechin 1487 
Equivalent/g of wine pomace. Individual Phenolic Compounds are expressed as mg/100g of wine pomace. % = percentage of each compound/family 1488 
respect to the total phenolic composition of the wine pomace. (r) = red wine pomace. (w) = white wine pomace. n.d. = not detected. 1489 

  Seeds Skins 
    

Phenolic Families %  mg/g 
Total Phenols (TP)  30 (r) 96 (w) 12.5 - 85.8 (r) 

76.6 – 122 (w) 
11.8 – 33.3 (r) 

9.50 (w) 
Total Flavonoids (TF) 70 (r) 4 (w) 83.6-162.8 (r) 

0.77-7.98 (w) 
31.2 -47.5 (r) 
0.03-0.92 (w) 

 • Total Flavanols 21 (r) 23 (w) 17.5 – 152 (r) 
4.3 - 34.8 (w) 

0.18 – 64.2 (r) 
0.3 - 7.56 (w) 

 • Total Flavonols 0.6 (r) 5 (w) 0.27 – 1.22 (r) 
0.58 (w) 

0.29  – 4.0 (r) 
0.28 - 8.41 (w) 

 • Total Anthocyanins (TA) 2.4 (r) n.d. (w) n.d. 1.94 – 21.5 (r) 
0.09 (w) 

 • Total Tannins 76 (r) 72 (w) 39.1 – 455 (r) 
4.3-8.3 (w) 

7.1  – 345 (r) 
50.2 – 90.3 (w) 

Individual Phenolic Compounds (g/100g) % mg/100 g 
 Gallic acid  2.8 (r) 5.4 (w) 2.4 – 336 (r) 

10.7 – 35.8 (w) 
0.31 – 2.01 (r) 
0.41 – 2.01 (w) 

 Caftaric acid 0.5 (r) 8.9 (w) 1.58 (r) 
0.93 (w) 

1.63 – 62.4 (r) 
2.98 – 61.0 (w) 

 Coutaric acid 0.2 (r) 2.3 (w) 0.23 – 10.5 (r) 
3.02 – 10.6 (w) 

0.69 – 18.3 (r) 
0.98 – 5.45 (w) 

 Fertaric acid <0.01 (r) 0.3 (w) 0.26 (r) 
0.3 (w) 

0.44 – 1.59 (r) 
0.44 – 1.73 (w) 

 Protocatechuic acid 0.1 (r) 2.1 (w) 3.3 – 8-7 (r) 
9.3 - 10.3 (w) 

1.81 – 2.13 (r) 
0.78 - 4.28 (w) 

 Caffeic acid 0.1 (r) 0.5 (w) 7.6 (r) 
0.19 (w) 

0.34 - 1.07 (r) 
0.17 – 3.57 (w) 

 Syringic acid 0.1 (r) <0.01(w) 4.4 (r) 
0.11 (w) 

0.3 – 7.44 (r) 
0.10 (w) 

 p-coumaric acid 0.1 (r) 1.5 (w) 10.0 (r) 
0.72 – 10.0 (w) 

0.19 – 0.59 (r) 
0.21 (w) 

 Ferulic acid <0.01 (r) 0.1 (w) 0.19 (r) 
0.39 (w) 

0.12 - 0.37 (r) 
0.26 - 0.58 (w) 

 Vanillic acid <0.01 (r) 0.2 (w) 0.34 (r) 
 

0.32 – 3.04 (r) 
1.15 (w) 

 Gentisic acid <0.01 (r) 0.4 (w)  2.79 (r) 
2.94 (w) 

 Catechin 3.5 (r) 16 (w) 10 – 280 (r) 
79.0 – 87.6 (w) 

1.15 - 130 (r) 
6.87 – 22.7 (w) 

 Epicatechin 3.2 (r) 14 (w) 10.1 -270 (r) 
67.5 – 85.0 (w) 

1.56 – 110 (r) 
4.45 – 13.4 (w) 

 Epigallocatechin gallate 0.1 (r) 1.1 (w) n.d. 2.33 - 14.6 (r) 
7.62 (w) 

 Epicatechin gallate 0.1 (r) 7.5 (w) 5.29-12.5 (r) 
45.8- 48.9(w) 

2.05-3.41 (r) 
3.55 (w) 

 Procyanidin B1 4.8 (r) 18 (w) 74.6 – 306 (r) 
105 (w) 

1.33 – 259 (r) 
5.46 - 19.2 (w) 

 Procyanidin B2 3.0 (r) 8.5 (w) 61.5 – 223 (r) 
50.6 (w) 

3.35 - 128 (r) 
3.28 - 9.10 (w) 

 Quercetin 0.1 (r) 7.8 (w) 6.89 (r) 
3.80 (w) 

2.31 (r) 
2.66 - 50.9 (w) 

 Kaempferol 0.3 (r) 3.8 (w) 14.9 (r) 
2.00 (w) 

3.28 - 21.1 (r) 
2.98 - 24.8 (w) 

 Myricetin 0.3 (r) 0.4 (w) 11.9 (r) 
 

5.09 - 26 (r) 
2.79 (w) 

 Delphinidin-3-O-glucoside 7.3 (r) n.d. (w) 3.00 – 311 (r) 6.80 -555 (r) 
 Cyanidin-3-O-glucoside 1.8 (r) n.d. (w) 2.00 – 23.0 (r) 1.49 – 190 (r) 
 Petunidin-3-O-glucoside 8.3 (r) n.d. (w) 5.00 – 318 (r) 6.50 – 668 (r) 
 Peonidin-3-O-glucoside 11 (r) n.d. (w) 11.0 – 111 (r) 4.16 – 1245 (r) 
 Malvidin-3-O-glucoside 52 (r) n.d. (w) 39.0 – 1052 (r) 95.4 – 5098 (r) 
 t-resveratrol 0.01 (r) 1.4 (w) 0.74 (r) 

1.42 (w) 
0.46 – 3.45 (r) 
0.12 - 8.64 (w) 



47 
 

Figure 1 1490 

 1491 

 1492 

 1493 

 1494 

 1495 

 1496 

 1497 

 1498 

 1499 

 1500 

 1501 

 1502 

 1503 

 1504 

 1505 

 1506 

 1507 

 1508 

 1509 

 1510 

Phase I and 
Phase II 

Metabolism

Systemic
Circulation

BIOLOGICAL 
ACTIVITY

Fecal Excretion
Urinary Excretion

Phase I and Phase II 
Metabolism

Enzymatic
Hydrolysisdeconjugation

BIOACTIVE COMPOUNDS

aglycones glycosides polymers

Small 
Intestine

deconjugation depolymerization

Microbial
Metabolism

Large
Intestine

Enterohepatic
Recirculation



48 
 

Figure 2 1511 

 1512 

 1513 

 1514 

 1515 

 1516 

 1517 

 1518 

 1519 

 1520 

 1521 

 1522 

 1523 

 1524 

 1525 

 1526 

 1527 

 1528 

 1529 

In vitro 
Grastrointestinal

Digestion

In vitro 
Colonic

Fermentation

Wine Pomace Polyphenols
Bioavailability

In vitro

In vivo

Main Polyphenols
Malvidin-3-O-glucoside
Delphinidin-3-O-glucoside
Kaempferol-3-O-rutinoside
Epigallocatechin
Myricetin-3-O-rhamnoside
Procyanidin B2
Gentisic acid
Protocatehuic acid
Epicatechin
Catechin
Homoprotocatechuic acid

Epicatechin
Kaempferol-3-O-rutinoside
Myricetin-3-O-rhamnoside
Gentisic acid
Procyanidin B1
Protocatehuic acid

Homoprotocatechuic acid
p-hydroxyphenylacetic acid
Epigallocatechin
Catechin
3-O-methylgallic acid

Main Metabolites

Main Metabolites
Epicatechin
Procyanidin B1
Gentisic acid
Homoprotocatechuic acid
Epigallocatechin

t-ferulic acid
3-O-methylgallic acid
Catechin
Dihydro-3-coumaric acid
p-hydroxyphenylacetic acid

Main Metabolites

p-hydroxyphenylacetic acid
Syringic acid
Vanillic acid
m-hydroxyphenylacetic acid
Protocatechuic acid

▪ Anthocyanins
▪ Flavonols
▪ Flavanols
▪ Phenolic acids

Homovanillic acid
Gentisic acid
Caffeic acid
Catechin
Epicatechin



49 
 

Figure 3 1530 
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Figure 4 1543 
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Figure 5 1556 
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Figure 6 1575 
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Figure 8 1585 
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Figure 9 1601 
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Figure 10 1613 
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