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Abstract

In this paper, we offer a comparison in terms of computational efficiency between
two techniques to avoid order reduction when using Strang method to integrate
nonlinear initial boundary value problems with time-dependent boundary con-
ditions. We see that it is important to consider an exponential method for
the integration of the linear nonhomogeneous and stiff part in the technique
by Einkemmer et al. so that the latter is comparable in efficiency with that
suggested by Alonso et al. Some other advantages of the technique suggested
by Alonso et al. are stated in the conclusions.

Keywords: Strang splitting, avoiding order reduction, computational
comparison

1. Introduction

The order reduction phenomenon which appears when time evolution prob-
lems are approximated by means of the method of lines is well known since
many years. We can mention the seminal papers [8, 25], where the cases of im-
plicit rational and explicit Runge-Kutta methods are studied. Sharp bounds for
the order observed when implicit Runge-Kutta methods are used for the time
integration are obtained in [7, 23].

There are different techniques to avoid the order reduction when Runge-
Kutta methods (or other methods with internal stages) are used for the time
integration of linear initial boundary value problems. The idea in [10] is to
subtract to the solution a function in order to obtain a problem with no order
reduction. On the other hand, it is also possible to avoid the order reduction of
such problems by acting on the boundary values of the internal stages [1, 2, 24].
The use of appropriate boundary conditions for the split subproblems of non
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exponential additive splitting methods for linear and even nonlinear hyperbolic
problems has also been previously considered in the literature [13, 20, 21], where
stability restrictions on the time stepsize with respect to the space grid were
necessary.

Obviously, the performance of different methods to avoid the order reduction
phenomenon can only be compared for the same underlying time integrator
and the same kind of evolution problem. Our goal in this paper is to compare
techniques to avoid the order reduction in time which turns up when integrating
with Strang method nonlinear problems of the form

u′(t) = Au(t) + f(t, u(t)), 0 ≤ t ≤ T,

∂u(t) = g(t),

u(0) = u0, (1)

where A is an elliptic differential operator, f is a smooth real function which acts
as a reaction term, ∂ is a boundary operator, g is the boundary condition which
is time-dependent and u0 is a smooth initial condition. We assume that the
solution of (1) is regular enough. As it is well known, Strang is a splitting method
with no stability restrictions if the linear and stiff subproblem is assumed to be
integrated ‘exactly’, for which order 1 is generally observed when integrating
(1) in the standard way, even when f = f(t) [18].

There are several papers in the literature concerning how to conserve the
second-order of this method. More particularly, in [15, 16] a technique is sug-
gested to do it, in which each part of the splitting is assumed to be solved in an
exact way for the analysis and, in the numerical experiments, standard subrou-
tines are used to integrate each part in space and time. In [15], in a similar way
to [10], the idea is to consider ũ = u− z, where z is the solution of this elliptic
problem at each time t ∈ [0, T ],

Az(t) = 0, ∂z(t) = g(t). (2)

Then, ũ satisfies an evolution problem with homogeneous boundary conditions.
More precisely,

ũ′(t) = Aũ(t) + f(t, ũ(t) + z(t))− z′(t), 0 ≤ t ≤ T,

∂ũ(t) = 0,

ũ(0) = u0 − z(0),

As it is explained in [15], splitting this problem in a proper way and applying
Strang method to it leads to avoid order reduction. However, this technique has
the same drawbacks than that in [10], which is the reason why [10] and [1, 24]
for Runge-Kutta methods have never been explicitly compared in the literature.
Although for one-dimensional problems, it is obvious to find analytically the
solution of (2) for every value t ∈ [0, T ], in more dimensions numerical techniques
should be applied, in principle for continuous time and having to calculate also
a good approximation for z′(t). This makes the technique complicated and
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expensive. Nevertheless, that is successfully avoided in [16] by considering just
a function q which coincides at the boundary with f(g) but which does not need
to satisfy any elliptic problem and for which no q′ is needed. Then, splitting
the problem as described in the preliminaries of this paper, the order reduction
can be avoided, as it is justified in [16] with a similar analysis to that in [15].
The calculation of q can also be done analytically in one dimension and simple
domains in two dimensions (as it is explained in Section 3 of this paper); and
even numerically in a cheap way in more complicated domains, according to
[14, 16], although it is not in fact applied to such problems there. In this paper,
we will concentrate on the technique in [16] for 1-dimensional and 2-dimensional
simple domains. Therefore, the cost of calculation of q is not included.

On the other hand, in [5], another technique is suggested in which appro-
priate boundary conditions are suggested for each part of the splitting. The
analysis there considers both the space and time discretization. The linear
and stiff part is integrated ‘exactly’ in time through exponential-type functions
while the nonlinear but smooth part is assumed to be numerically integrated
by a classical integrator just with the order of accuracy that the user wants to
achieve with the whole method. Although the latter seems to be the most natu-
ral, in order to ensure that the errors coming from the approximate integration
of the split subproblems are not bigger than the error of the splitting itself,
we will first use standard subroutines which use variable stepsizes with given
small tolerances for the nonlinear and smooth subproblems of both techniques
and the linear nonhomogeneous differential problem in [16]. However, as using
a standard subroutine with variable stepsizes is not the most efficient way for
solving the linear nonhomogeneous partial differential subproblems in [16], we
do not make an efficiency comparison between both techniques with this imple-
mentation, but we will make the comparison by just integrating the resulting
nonlinear subproblems with one or few steps of an explicit Runge-Kutta inte-
grator, so that the error is negligible when compared with that of the splitting
error itself and, in the case of the linear problems in [16], by considering also
one or few steps of exponential quadrature rules of the required accuracy.

We will concentrate on the extensively used second-order Strang splitting
and the aim of the paper is to compare both techniques ([5] and [16]) in terms
of computational efficiency and propose an efficient implementation of the tech-
nique in [16] so that it is comparable, in terms of computational efficiency, to
the techniques in [5]. This efficient implementation of the technique in [16] had
not been proposed before in the literature and in fact, in [15, 16] general sub-
routines were suggested (look at [6] for an efficiency comparison with general
subroutines). For the space discretization, we center on finite differences for the
sake of brevity and because, in such a case, sparse matrices turn up to which
FFT techniques or Krylov-type methods can be applied for the calculation of the
exponential-type matrices. (For a comparison with collocation spectral methods
for which the matrices are dense, look also at [6].) For the numerical experi-
ments, both one-dimensional and bidimensional problems will be considered.
There is already another comparison in the literature between both techniques
[17] but there they just compare in terms of error against the time stepsize
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without entering into the details of implementation and its computational cost,
which we believe that is the interesting comparison. Moreover, they just con-
sider time-independent boundary conditions and 1-dimensional problems, for
which many simplifications can be made.

The paper is structured as follows. Section 2 gives some preliminaries on
the description of the different techniques and suggest different implementa-
tions for each of them. In Section 3 we use standard subroutines in time to
solve accurately each of the split problems. We do not expect this to be the
best implementation neither of the technique in [5], nor of the one in [16], and
probably Einkemmer et al. did not either, but we consider this first implemen-
tation since no other explicit technique is detailed in [15, 16] to do it efficiently
and because, in this manner, we can see just the error coming from the split-
ting itself in the proper way. Section 4 offers the efficiency comparison when
using in principle just one step of a second-order explicit Runge-Kutta method
for the integration of the nonlinear problems and the exponential midpoint rule
without order reduction [11], i.e. with order 2, for the linear non-homogeneous
time-dependent boundary value problems appearing in [16]. In such a way, the
techniques which are used for the approximation of the splitting subproblems in
both [16] and [5] are similar. In both Sections 3 and 4, numerical differentiation
is also considered in order to achieve local order near 3 instead of just 2, and
again the computational comparison is performed. The conclusions of this work
are sketched in Section 5. Finally, in an appendix, a thorough error analysis
(including numerical differentiation) is given for one of the implementations of
the base technique which was suggested in [5], but which modifications were not
included in the analysis.

2. Preliminaries and suggestion of different implementations

The technique which is suggested in [16] consists of the following: A function
q(t) is constructed which satisfies ∂q(t) = ∂f(t, u(t)). Then, given the numerical
approximation at the previous step un, the numerical approximation at the next
step un+1 is given by the following procedure:

v′n,1(t) = Avn,1(t) + q(t),
vn,1(tn) = un,
∂vn,1(t) = g(t),{
w′

n(t) = f(t, wn(t))− q(t),
wn(tn) = vn,1(tn + k

2 ),
v′n,2(t) = Avn,2(t) + q(t),

vn,2(tn + k
2 ) = wn(tn + k),

∂vn,2(t) = g(t),

un+1 = vn,2(tn + k). (3)

However, we notice that two of three problems which turn up here are stiff and
therefore solving them will be more expensive than solving the unique nonlinear
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but smooth problem. In order to reverse that, the decomposition of the splitting
method can be done in another order and then the following procedure would
turn up for which, with similar arguments, no order reduction would either turn
up: {

w′
n,1(t) = f(t, wn,1(t))− q(t),

wn,1(tn) = un,
v′n(t) = Avn(t) + q(t),

vn(tn) = wn,1(tn + k
2 ),

∂vn(t) = g(t){
w′

n,2(t) = f(t, wn,2(t))− q(t),

wn,2(tn + k
2 ) = vn(k),

un+1 = wn,2(tn + k). (4)

Then, two of the problems are cheap and just one is more expensive.
On the other hand, in [5], the main idea is to first consider the problem{

v′n(s) = f(tn + s, vn(s)),
vn(0) = un,

which is numerically integrated with order 2 from s = 0 to s = k/2 to obtain

Ψf,tn
k
2

(un) ≈ vn(k/2). The second problem considered is
w′

n(s) = Awn(s),

wn(0) = Ψf,tn
k
2

(un),

∂wn(s) = ∂[u(tn) +
k
2f(tn, u(tn)) + sAu(tn)],

(5)

and the third problem is{
z′n(s) = f(tn + k

2 + s, zn(s)),
zn(0) = wn(k),

which is also numerically integrated with order 2 to obtain Ψ
f,tn+

k
2

k
2

(wn(k)) ≈
zn(k/2).

Then, the final equation is

un+1 = Ψ
f,tn+

k
2

k
2

(wn(k)).

Moreover, the procedure to integrate (5) is more explicitly stated. Firstly, in [5]
(see also [4, 3, 12]), a general space discretization is introduced which discretizes
the elliptic problem

Au = F, ∂u = g,

through the ‘elliptic projection’ Rhu which satisfies

Ah,0Rhu+ Chg = PhF,
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for a certain matrix Ah,0, an associated boundary operator Ch and a projection
operator Ph. Then, given the numerical approximation at the previous step Un

h ,
the procedure in [5] to obtain Un+1

h reads as follows:

V n
h = Ψf,tn

k
2

(Un
h ),

Wh,n(k) = ekAh,0V n
h + kφ1(kAh,0)Ch[g(tn) +

k

2
∂f(tn, u(tn))]

+k2φ2(kAh,0)Ch[g
′(tn)− ∂f(tn, u(tn)]

Un+1
h = Ψ

f,tn+
k
2

k
2

(Wh,n(k)), (6)

where φ1 and φ2 are the standard functions which are used in exponential
methods [5] and which are defined by

φj(tAh,0) =
1

tj

∫ t

0

e(t−τ)Ah,0
τ j−1

(j − 1)!
dτ, j ≥ 1. (7)

It is well-known that they can be calculated in a recursive way through the
formulas

φj+1(z) =
φj(z)− 1/j!

z
, z ̸= 0, φj+1(0) =

1

(j + 1)!
, φ0(z) = ez. (8)

The original suggestion used this order for the decomposition thinking that
Ψk is just an explicit method which is applied with a single step of size k, and
therefore it would be cheaper than the equation in Wh,n(k). We still believe
that would be the best. However, in the first part of this paper, in order to
ensure that errors arise from the splitting itself and not from the approximate
integration of the split subproblems, we will solve that part with a standard
variable stepsize subroutine for non-stiff problems until a given small tolerance.
In such a way, the first and last problem may be more expensive than the
middle one. Therefore, we will also consider this other implementation which
comes from reversing the order of the problems in the decomposition (see the
appendix):

Wh,n(
k

2
) = e

k
2Ah,0Un

h +
k

2
φ1(

k

2
Ah,0)Chg(tn) +

k2

4
φ2(

k

2
Ah,0)Ch∂Au(tn)

V n
h = Ψf,tn

k (Wh,n(
k

2
)),

Un+1
h = e

k
2Ah,0V n

h +
k

2
φ1(

k

2
Ah,0)Ch∂[u(tn) +

k

2
Au(tn) + kf(tn, u(tn)]

+
k2

4
φ2(

k

2
Ah,0)Ch∂Au(tn). (9)

In the following, we will denote by EO1 to (4), by EO2 to (3), by ACR1 to (6)
and by ACR2 to (9).
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ACR1 with discrete sine transform

ACR1 with Krylov

ACR2 with discrete sine transform

ACR2 with Krylov

ACR2 with Krylov with numerical differentiation

Figure 1: Numerical comparison with exact time integration of split subproblems for the
1-dimensional problem (10)
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Figure 2: Numerical comparison with exact time integration of split subproblems for the
2-dimensional problem (13)
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3. Numerical comparison with exact time integration of the split sub-
problems

As Strang method just has second-order accuracy, it is usually used for
problems in which a very high precision is not required. Because of that, in
space we have considered finite differences of just second order accuracy in the
space grid. More particularly, as in our examples we take the operator A as the
Laplacian, we use the standard symmetric second-order difference scheme in 1
dimension and the five-point formula in 2 dimensions [26]. We have considered
as space grid h = 5× 10−4 for the 1-dimensional case and h = 2× 10−2 for the
2-dimensional case. With this type of implementation, the matrix Ah,0 is sparse
and, in this particular case, their eigenvalues and eigenvectors are well-known
[19]. Because of the sparsity, it is natural to use standard Krylov subroutines [22]
in ACR1 and ACR2 to calculate the application of exponential-type functions
over vectors. When the eigenvalues and eigenvectors are known, which is specific
of this particular example and space discretization, in order to calculate the same
terms, it seems advantageous to use the discrete sine transform in the same way
that FFT is used in Poisson solvers [19]. In this section, for the one-dimensional
case, we show the results with both Krylov and discrete sine transform. For the
sake of brevity and because it is more general, on the bidimensional case, we have
centered on Krylov subroutines. When using Krylov subroutines [22], we have
considered the default tolerance 10−7. This value is enough since, when using
it, the dominant error is that of the splitting itself and the error of both Krylov
subroutines and space discretization is negligible because the error diminishes
with second order in the time-stepsize.

On the other hand, for the numerical integration of the nonlinear and smooth
subproblems in ACR, we have used subroutine ode45 from MATLAB. Similarly
to Krylov subroutines, we have considered 10−7 and 10−8 as relative and ab-
solute tolerances respectively for this subroutine. These accuracies are suitable
taking into account the errors of our numerical results.

In a first place, we have considered the following one-dimensional Dirichlet
boundary value problem whose exact solution is u(x, t) = et+x3

:

ut(x, t) = uxx(x, t) + u2 − et+x3

(9x4 + 6x+ et+x3

− 1), 0 ≤ x ≤ 1,

u(x, 0) = ex
3

,

u(0, t) = et, u(1, t) = et+1, t ∈ [0, 0.2]. (10)

In Figure 1 we see the results for ACR1 and ACR2 with the different values
of k which turn up in Table 1. We observe that ACR2 is more competitive
since not only the computational time is smaller for a fixed value of k but also
the error is smaller. In this particular case, considering discrete sine transforms
is much cheaper than using Krylov techniques. However, for a general operator
A, that may not be possible and that is why it is also interesting to see the
comparison when using these techniques. Besides, in Table 1, the avoidance of
order reduction with all ACR1, ACR2, can be clearly checked.
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Notice that we do not compare the results in terms of computational effi-
ciency shown in Figure 1 for ACR1 and ACR2 with those obtained with EO
techniques using also general variable stepsize subroutines. This is due to the
fact that using such subroutines to integrate the linear, nonhomogeneous par-
tial differential subproblems of EO1 and EO2 would not be the best option [6],
being a much more efficient implementation of EO techniques the one that we
propose in Section 4. However, we show here the results in Table 2 for EO1 and
EO2 (using subroutine ode45 for the nonlinear and smooth subproblems and
subroutine ode15s for the linear, nonhomogeneous partial differential subprob-
lems) which show also that order reduction is avoided. Notice that, as it is a
one-dimensional problem, the function q in EO1 and EO2 is calculated directly
for every value of t as the straight line which joins the corresponding values
f(t, 0, et) and f(t, 1, et+1) at x = 0 and x = 1 respectively. We notice that, for
a fixed value of k, EO2 leads to smaller errors than EO1, in the same way that
happened with ACR2 with respect to ACR1.

k 10−3 5× 10−4 2.5× 10−4 1.25× 10−4

ACR1 Global error 1.61× 10−4 4.30× 10−5 1.13× 10−5 2.96× 10−6

ACR1 Order 1.9 1.9 1.9
ACR2 Global error 5.70× 10−5 1.56× 10−5 4.11× 10−6 1.04× 10−6

ACR2 Order 1.9 1.9 2.0

Table 1: Global error and order for ACR1 and ACR2 with discrete sine transform or with
Krylov for the 1-dimensional problem, for the values of k which have been used in Figure 1

k 8× 10−3 4× 10−3 2× 10−3

EO1 Global error 5.96× 10−3 1.72× 10−3 4.80× 10−4

EO1 Order 1.8 1.8
EO2 Global error 2.5× 10−3 7.61× 10−4 2.20× 10−4

EO2 Order 1.7 1.8
EO2 with num. dif. Local error 5.8× 10−4 9.17× 10−5 1.43× 10−5

EO2 with num. dif. Local Order 2.7 2.7
EO2 with num. dif. Global error 5.56× 10−3 1.37× 10−3 3.15× 10−4

EO2 with num. dif. Global Order 2.0 2.1

Table 2: Global error and order for EO1 and EO2

Moreover, following [17], we have also considered numerical differentiation
in order to try to get local order 3 with EO1 and EO2 in (10). More precisely,
theoretically, a function q should be taken for which ∂q(t) = ∂f(t, u(t)) and
∂Aq(t) = ∂Af(t, u(t)). Although, even when that function can be constructed,
the order for the global error does not improve, it is interesting to see whether
the fact that the local errors maybe smaller implies a better overall behaviour.
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Notice that, in (10),

d

dx2
f = fxx + 2fx,uux + fuuu

2
x + fuuxx. (11)

As ∂uxx = g′(t)−∂f(t, u), numerical differentiation is just required to calculate
∂ux. For that, we have considered the second-order scheme

ux(0, t) ≈
− 3

2u(0, t) + 2u(h, t)− 1
2u(2h, t)

h
,

ux(1, t) ≈
3
2u(1, t)− 2u(1− h, t) + 1

2u(1− 2h, t)

h
.

From a theoretical point of view, to achieve local order 3, at each step we
would need these derivatives at any continuous time t ∈ [tn, tn+1). However,
we just have approximations for the interior values u(h, t), u(2h, t), u(1− h, t),
u(1 − 2h, t) at time tn. Because of this, in formula (11), we have evaluated
all terms at continuous t except for the term ux, which is just approximated at
t = tn. In such a way, the local error shows order a bit less than 3 but higher than
2.5, as it can be observed in Table 2. Although for the values of k considered in
Table 2 the global errors are not smaller when using numerical differentiation, for
smaller values of k the results when using numerical differentiation are slightly
better than when not using it. Therefore, the conclusion we reach is that using
numerical differentiation is, at best, slightly worth doing. This conclusion will be
corroborated when in Section 4 we propose an efficient implementation for EO
technique. We also notice that, although numerical differentiation is unstable,
its effect is still not visible with the considered value of h for the first derivative
and the range of errors which we are considering.

As for ACR2, considering also terms of second order in s for the boundaries
of the problems in which the operator A appears, the following full scheme turns
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up (see the appendix):

Wh,n(
k

2
) = e

k
2Ah,0Un

h +
k

2
φ1(

k

2
Ah,0)Chg(tn) +

k2

4
φ2(

k

2
Ah,0)Ch∂Au(tn)

+
k3

8
φ3(

k

2
Ah,0)Ch∂A

2u(tn)

V n
h = Ψf,tn

k (Wh,n(
k

2
)),

Un+1
h = e

k
2Ah,0V n

h

+
k

2
φ1(

k

2
Ah,0)Ch∂[u(tn) + k(

1

2
Au(tn) + f(tn, u(tn))

+k2(
1

8
A2u(tn) +

1

2
fu(tn, u(tn))Au(tn)

+
1

2
(ft(tn, u(tn)) + fu(tn, u(tn))f(tn, u(tn)))]

+
k2

4
φ2(

k

2
Ah,0)Ch∂[Au(tn) +

k

2
A2u(tn) + kAf(tn, u(tn))]

+
k3

8
φ3(

k

2
Ah,0)Ch∂A

2u(tn). (12)

As ∂A2u = ∂Au̇ − ∂Af = g̈ − ∂(ft + fuu̇) − ∂Af , what is again necessary
is to approximate ux with numerical differentiation, but just at tn, and we
have done it in the same way as before. Figure 1 also shows the results with
numerical differentiation for k = 10−3, 5×10−4, 2.5×10−4, 1.25×10−4 and it is
observed that there is a small improvement in efficiency when using numerical
differentiation with ACR2 although it is not extremely significant.

Notice that for ACR2, for a fixed value of k, the computational cost does
not increase but is slightly smaller when using numerical differentiation. This
must be due to the fact that the standard subroutines which are used converge
more quickly when numerical differentiation is applied. A full explanation for
that is out of the scope of this paper although it might be a subject of future
research.

Let us now see what happens with a bidimensional problem. We have con-
sidered

ut(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + f(t, x, y, u(x, y, t)), 0 ≤ x, y ≤ 1,

u(x, y, 0) = x2 + y2,

u(0, y, t) = ety2, u(1, y, t) = et(1 + y2),

u(x, 0, t) = etx2, u(x, 1, t) = et(1 + x2), t ∈ [0, 0.2], (13)

where f(t, x, y, u) = u2−e2t(x2+y2)2+et(x2+y2−4), so that the exact solution
is u(x, y, t) = et(x2 + y2).

We have implemented ACR1 and ACR2 again with Krylov subroutines [22].
In Figure 2 we have displayed the results corresponding to ACR1, ACR2 for
the values of k in Table 3. We can see that again, in this problem, the second
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implementation is the most efficient for ACR. Besides, the approximate second
order of all implementations is also clearly checked.

When implementing EO1 and EO2, the only remarkable difference with re-
spect to the one-dimensional case is that the function q(t, x, y) must be chosen
in a different way. We consider a function of the form

q(t, x, y) = r(t, x)f(t, 1, y, et+1+y3

) + s(t, x)f(t, 0, y, et+y3

)

which satisfies the corresponding conditions at the boundary. That is achieved
if r(t, x) and s(t, x) satisfy(

f(t, 1, 0, et) f(t, 0, 0, 0)
f(t, 1, 1, 2et+2) f(t, 0, 1, et)

)(
r(t, x)
s(t, x)

)
=

(
f(t, x, 0, x2et)

f(t, x, 1, (x2 + 1)et)

)
.

(Notice that this technique to calculate q analytically can be applied in a rect-
angular domain but not in more complicated domains in two dimensions.) The
results in Table 4 show that the order reduction is avoided.

k 5× 10−3 2.5× 10−3 1.25× 10−3 6.25× 10−4 3.125× 10−4

ACR1 Global error 4.02× 10−5 1.02× 10−5 2.72× 10−6 7.06× 10−7 1.82× 10−7

ACR1 Order 2.0 1.9 2.0 2.0
ACR2 Global error 2.06× 10−5 4.92× 10−6 1.22× 10−6 2.78× 10−7 7.71× 10−8

ACR2 Order 2.1 2.0 2.1 1.9

Table 3: Global error and order for ACR1 and ACR2 with Krylov for the 2-dimensional
problem, for the values of k which have been used in Figure 2

k 4× 10−2 2× 10−2 10−2

EO1 Global error 2.31× 10−3 5.64× 10−4 1.39× 10−4

EO1 Order 2.0 2.0
EO2 Global error 2.37× 10−5 7.01× 10−6 2.34× 10−6

EO2 Order 1.8 1.6

Table 4: Global error and order for EO1 and EO2 with ode15s for the 2-dimensional problem

Considering numerical differentiation in two dimensions is also possible but
we would like to remark that, with EO techniques, that it is not as plausible as
in one dimension since, apart from approximating numerically ∂Af(t, u(t)) at
each step and calculating a function q̃(t) which coincides with it at the boundary,
a function q(t) must be calculated such that

Aq(t) = q̃(t),

∂q(t) = ∂f(t, u(t)). (14)

In one dimension, this was achieved just by integrating twice the linear function
q̃(t) and that was done analytically for every value of t ∈ [tn, tn+1). However,

13



10
1

10
2

10
−6

10
−5

10
−4

cpu time

e
rr

o
r 

in
 i
n

fi
n
it
y
 n

o
rm

 

 

EO2

EO2 with numerical differentiation

ACR2

ACR2 with numerical differentiation

Figure 3: Numerical comparison with approximate time integration of split subproblems for
the 1-dimensional problem (10)

in two dimensions, that cannot be done any more and the elliptic problems (14)
should be numerically solved, not only for every value tn, but even theoretically
for every t ∈ [tn, tn+1). In contrast, notice that numerical differentiation with
ACR (12) just requires approximating ∂Af(tn, u(tn)) at each step and no elliptic
problem must be numerically solved. Besides, with respect to the same method
but without numerical differentation, the additional cost mainly consists of just
two more terms per step which contain φ3(

k
2Ah,0). In any case, we do not

either include numerical differentiation with ACR here for the sake of clarity
and brevity.

4. Numerical comparison with approximate time integration of the
split subproblems

In this section we consider again both techniques, EO and ACR, using finite
differences in space but, for the time integration of each of the subproblems of
the decomposition, we take in principle a single step of a method of the required
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Figure 4: Numerical comparison with approximate time integration of split subproblems for
the 2-dimensional problem (13)
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final accuracy.
More precisely, for ACR, we do it similarly to what was done in [5]; for the

time integration of the nonlinear part of the problem, we advance a single step
with the explicit Runge-Kutta method of local order 3 which is given by the
Butcher tableau

0
1
2

1
2

0 1
.

In such a way, the local error which is added to that of the splitting itself is an
order higher if numerical differentiation is not applied and of the same order if
the latter is used.

On the other hand, for EO, we also consider the same technique to integrate
the nonlinear subproblem and, for the linear part, we advance a single step with
an exponential quadrature rule of local order 3. In such a way, there is more
similarity with the technique suggested in [5] for the linear part in the sense
that exponential-type functions are finally used. The difference is that, with
ACR, after performing a spatial discretization of problem (5), an inhomogeneous
problem turns up with an inhomogeneity which consists of a linear expression
in s due to the boundary. Because of that, the exact solution of problem (5)
after spatial discretization can be calculated exactly in terms of functions φ1

and φ2. This is not the case with EO, since the boundary in the middle part
of (4) is not even a polynomial and, therefore, the system which turns up after
spatial discretization of that part can just be approximately integrated. The
exponential quadrature rule which we have taken is the exponential midpoint
rule without order reduction for time-dependent boundary conditions, which
was proved to be very efficient and of local order 3 in [11]. It reads like this for
the first and third subproblems in (3) when advancing a single step of size k

2
from Un

h and Wn
h respectively, where Wn

h is the result of applying a single step
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of size k of the previous Runge-Kutta method to the second subproblem in (3):

Vh,n,1 = e
k
2Ah,0Un

h +
k

2
φ1(

k

2
Ah,0)Chg(tn) + (

k

2
)2φ2(

k

2
Ah,0)Ch[ġ(tn)− ∂q(tn)]

+(
k

2
)3φ3(

k

2
Ah,0)Ch[g̈(tn)− ∂q̇(tn)− ∂Aq(tn)]

+
k

2

[
φ1(

k

2
Ah,0)q(tn +

k

4
) +

k

2
φ2(

k

2
Ah,0)Ch∂q(tn +

k

4
)

+(
k

2
)2φ3(

k

2
Ah,0)Ch∂Aq(tn +

k

4
)
]
.

Vh,n,2 = e
k
2Ah,0Wn

h +
k

2
φ1(

k

2
Ah,0)Chg(tn +

k

2
)

+(
k

2
)2φ2(

k

2
Ah,0)Ch[ġ(tn +

k

2
)− ∂q(tn +

k

2
)]

+(
k

2
)3φ3(

k

2
Ah,0)Ch[g̈(tn +

k

2
)− ∂q̇(tn +

k

2
)− ∂Aq(tn +

k

2
)]

+
k

2

[
φ1(

k

2
Ah,0)q(tn +

3k

4
) +

k

2
φ2(

k

2
Ah,0)Ch∂q(tn +

3k

4
)

+(
k

2
)2φ3(

k

2
Ah,0)Ch∂Aq(tn +

3k

4
)
]
.

For the sake of brevity and clarity and because they have been seen to lead
to smaller errors for a given stepsize in the previous sections for the problems
considered, we have centered on EO2 and ACR2.

For the one-dimensional problem (10), without resorting to numerical differ-
entiation and resorting to it, the numerical comparison in terms of efficiency is
given in Figure 3. There, as in Figure 1, h = 5× 10−4 has also been considered
for the finite differences in space and k = 10−3, 5×10−4, 2.5×10−4, 1.25×10−4,
for the time integration. Moreover, with both techniques, Krylov subroutines
have been used to calculate the multiplication by φj-functions with tolerance
10−7. The conclusion is that, with this implementation, both techniques are
very similar in the comparison of efficiency. Besides, with numerical differen-
tiation both techniques are slightly better than without resorting to it. (We also
remark here that, in a similar way to what happened in the previous section,
with numerical differentiation, when ∂ux(tn + sk) is needed for s ̸= 0, we just
approximate it at s = 0 because it is there where we have approximations of the
interior values.) We also notice that it can be checked that, for given stepsizes,
the errors which are committed with the implementations of the previous sec-
tion are very similar. Therefore, we have managed that the errors which come
from the approximation of the split problems are negligible compared to the
errors of the splitting itself.

As for the bidimensional problem (13), the comparison is given in Figure
4 for h = 2 × 10−2 and k = 4 × 10−2, 2 × 10−2, 10−2, 5 × 10−3, 2.5 × 10−3 for
EO2 and k = 5 × 10−3, 2.5 × 10−3, 1.25 × 10−3, 6.25 × 10−4, 3.125 × 10−4 for
ACR2. Now, numerical differentiation has not been considered for the same
reasons which we stated at the end of Section 3. Although, for a fixed value of
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k, the computational cost of EO2 is as bigger than ACR2, for this particular
problem the error is quite smaller (even much smaller than with EO1) and,
because of this, in this particular problem EO2 can be cheaper than ACR2 in
a relation 5/3. However, comparing the size of the errors with those obtained
with the implementation of the previous section, we see that, although for given
stepsizes, the errors for ACR2 are more or less the same, the same does not
happen with EO2. The error coming from the approximate integration of the
split subproblems is more important than that of the splitting itself. Follow-
ing something similar to what was already suggested in [15] for the nonlinear
subproblems, we have integrated both the linear and nonlinear subproblems in
(3) with the same integrators but, instead of using just one step, with r uni-
form steps for the nonlinear subproblems and m uniform steps for the linear
ones. The minimum values of r and m that we have had to take so that the
error is negligible compared with that of the splitting itself has been r = 10
and m = 5. In such a case, EO2 is equally comparable in efficiency with ACR2,
as it happened with the 1-dimensional problem with the implementation that
we propose in this section. In any case, we would like to remark here that the
cost of calculating the function q with EO2 is not considered in this paper and
that ACR does never need to calculate such a function q. Besides, although
some techniques have been proposed to calculate q efficiently [14], they have
not either been tested in complicated domains.

5. Conclusions

If suitable time integrators of IVP are chosen, then ACR and EO behave in
a similar way from the computational point of view. In section 4, we consider
a very recent technique [11] to approximate the solution of one of the split
subproblems for EO, which improves the computational performance of previous
EO proposals.

On the other hand, applying numerical differentiation to get local order 3
causes less problems with ACR than with EO. Moreover, ACR has the advantage
that you do not have to worry about the calculation of q which cost, although
small according to [14], has not even been included for the comparisons here.
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Appendix: Analysis of ACR2 with and without numerical differenti-
ation

In this appendix, we state where formula (9) comes from for ACR2 imple-
mentation and justify that the local and global error behaves with second order
of accuracy. Moreover, we also state where formula (12) comes from for ACR2
implementation with numerical differentation and justify that the local error
behaves with third order of accuracy in such a case. We concentrate here on
the results for the local errors after time semidiscretization since the results for
the errors after full discretization would follow in the same way than in [5].

As in [5], the problem to be solved may be given in an abstract setting as
follows.

Let X and Y be Banach spaces and let A : D(A) → X and ∂ : X → Y be
linear operators. Then, we consider the nonlinear abstract non homogeneous
initial boundary value problem

u′(t) = Au(t) + f(t, u(t)), 0 ≤ t ≤ T,
u(0) = u0 ∈ X,
∂u(t) = g(t) ∈ Y, 0 ≤ t ≤ T,

(15)

where the functions f : [0, T ]×X → X (in general nonlinear) and g : [0, T ] → Y
are regular enough.

The abstract setting (15) permits to cover a wide range of nonlinear evolu-
tionary problems governed by partial differential equations. We use the following
hypotheses

(A1) The boundary operator ∂ : D(A) ⊂ X → Y is onto.

(A2) Ker(∂) is dense in X and A0 : D(A0) = ker(∂) ⊂ X → X, the restriction
of A to Ker(∂), is the infinitesimal generator of a C0- semigroup {etA0}t≥0

in X, which type ω is assumed to be negative.

(A3) If z ∈ C satisfies ℜ(z) > ω and v ∈ Y , then the steady state problem

Ax = zx, (16)

∂x = v, (17)

possesses a unique solution denoted by x = K(z)v. Moreover, the linear
operator K(z) : Y → D(A) satisfies

∥K(z)v∥ ≤ C∥v∥, (18)

where the constant C holds for any z such that Re(z) ≥ ω0 > ω.

(A4) The nonlinear source f belongs to C1([0, T ]×X,X).

(A5) The solution u of (15) satisfies u ∈ C2([0, T ], X), u(t) ∈ D(A2) for all
t ∈ [0, T ] and Au,A2u ∈ C1([0, T ], X).

(A6) f(t, u(t)) ∈ D(A) for all t ∈ [0, T ], and Af(·, u(·)) ∈ C([0, T ], X).
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The problems to be solved after time semidiscretization are
w′

n,1(s) = Awn,1(s),
wn,1(0) = un,

∂wn,1(s) = ∂ŵn,1(s),
(19)


w′

n,2(s) = Awn,2(s),

wn,2(0) = Ψf,tn
k (wn,1(

k
2 )),

∂wn,2(s) = ∂ŵn,2(s),

(20)

with

ŵn,1(s) = u(tn) + sAu(tn), (21)

ŵn,2(s) = u(tn) +
k

2
Au(tn) + kf(tn, u(tn)) + sAu(tn), (22)

and Ψf,tn
k (wn,1(

k
2 )) ≈ vn(k) is a numerical time integrator approximating the

solution of {
v′n(s) = f(tn + s, vn(s))
vn(0) = wn,1(

k
2 )

Then,

un+1 = wn,2(
k

2
),

and the following result follows.

Theorem 1. Let assume that hypotheses (A1)-(A6) are satisfied, and that the
numerical integrator Ψk integrates (23) with order p ≥ 1. Then, when integrat-
ing in time (15) with Strang method using the technique (19)-(20) with ŵn,1 in
(21) and ŵn,2 in (22), the local error ρn+1 satisfies ρn+1 = O(k2).

Proof. By definition, ρn+1 = ūn+1 − u(tn+1), where ūn+1 is calculated through
w̄n,1 and w̄n,2 as in (19) and (20) but substituting un by u(tn). Then,

w̄′
n,1(s)− ŵ′

n,1(s) = A(w̄n,1(s)− ŵn,1(s)) + sA2u(tn),

w̄n,1(0)− ŵn,1(0) = 0,

∂[w̄n,1(s)− ŵn,1(s)] = 0,

from what, using the variation of constants,

w̄n,1(
k

2
)− ŵn,1(

k

2
) =

∫ k
2

0

e(
k
2−τ)A0τA2u(tn)dτ =

k2

4
φ2(

k

2
A0)A

2u(tn).

On the other hand,

w̄′
n,2(s)− ŵ′

n,2(s) = A(w̄n,2(s)− ŵn,2(s))

+
k

2
A2u(tn) + kAf(tn, u(tn)) + sA2u(tn),

w̄n,2(0)− ŵn,2(0) = Ψf,tn
k (w̄n,1(

k

2
))− u(tn)−

k

2
Au(tn)− kf(tn, u(tn)),

∂[w̄n,2(s)− ŵn,2(s)] = 0.
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Therefore, also by the variation of constants formula,

w̄n,2(
k

2
)− ŵn,2(

k

2
) = e

k
2A0 [Ψf,tn

k (w̄n,1(
k

2
))− u(tn)−

k

2
Au(tn)− kf(tn, u(tn))]

+
k2

4
φ1(

k

2
A0)A

2u(tn) +
k2

2
φ1(

k

2
A0)Af(tn, u(tn)) +

k2

4
φ2(

k

2
A0)A

2u(tn).

From this, using (21) and (22) and Taylor expansions,

ρn+1 = w̄n,2(
k

2
)− u(tn+1) = O(k2).

In order to be able to apply a summation-by-parts argument, so that order
2 is also proved for the global error, the following result is necessary, which
assumes a bit more regularity on the solution of the problem and a bit more of
accuracy on the integrator Ψk (see [5]).

Theorem 2. Let us assume that hypotheses (A1)-(A6) are satisfied, u ∈ C3([0, T ], X),
f ∈ C2([0, T ] × X,X) and fu(·, u(·))f(·, u(·)), fu(·, u(·))Au(·) ∈ C([0, T ], X).
Then, when integrating (15) with Strang method using the technique (19)-(20)
with ŵn,1 in (21) and ŵn,2 in (22), and assuming that the numerical integrator
Ψk is of order p ≥ 2, the local error ρn+1 satisfies A−1

0 ρn+1 = O(k3).

Proof. It suffices to notice that the terms in k2 in the previous expression of
ρn+1 can also be written as

e
k
2A0

[
k2

4
φ2(

k

2
A0)A

2u(tn) +
k2

2
fu(tn, u(tn))Au(tn)

+
k2

2
[ft(tn, u(tn)) + fu(tn, u(tn))f(tn, u(tn))]

]
+
k2

4
φ1(

k

2
A0)A

2u(tn) +
k2

2
φ1(

k

2
A0)Af(tn, u(tn))

+
k2

4
φ2(

k

2
A0)A

2u(tn)−
k2

2
u′′(tn).

Then, using that, because of the definition of φj [5],

A−1
0 e

k
2A0 = A−1

0 +
k

2
φ1(

k

2
A0), A−1

0 φ1(
k

2
A0) = A−1

0 +
k

2
φ2(

k

2
A0),

A−1
0 φ2(

k

2
A0) =

1

2
A−1

0 +
k

2
φ3(

k

2
A0),

the following is deduced simplifying the notation,

A−1
0 ρn+1 =

k2

2
A−1

0 [A2u+ fuAu+Af + ft + fuf − u′′] +O(k3) = O(k3).
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With numerical differentiation, the problems to be solved after time semidis-
cretization are those in (19) and (20), but with

ŵn,1(s) = u(tn) + sAu(tn) +
s2

2
A2u(tn), (23)

ŵn,2(s) = u(tn) +
k

2
Au(tn) +

k2

8
A2u(tn) + kf(tn, u(tn))

+
k2

2
[fu(tn, u(tn))Au(tn) + ft(tn, u(tn)) + fu(tn, u(tn))f(tn, u(tn))]

+sAu(tn) +
sk

2
A2u(tn) + skAf(tn, u(tn)) +

s2

2
A2u(tn)]. (24)

Then, we have the following result for the local error which implies, through the
standard argument of convergence which was used in [5] for Lie-Trotter, that the
global error for the full discretization behaves with order 2 in the timestepsize.

Theorem 3. Let us assume that hypotheses (A1)-(A6) are satisfied, u ∈ C3([0, T ], X),
f ∈ C2([0, T ] × X,X) and fu(·, u(·))f(·, u(·)), fu(·, u(·))Au(·) ∈ C([0, T ], X),
u(t) ∈ D(A3) for t ∈ [0, T ] and A3u ∈ C([0, T ], X), when integrating (15) with
Strang method using the technique (19)-(20) with ŵn,1 in (23) and ŵn,2 in (24),
and assuming that the numerical integrator Ψk is of order p ≥ 2, the local error
ρn+1 satisfies ρn+1 = O(k3).

Proof. We notice that now

w̄′
n,1(s)− ŵ′

n,1(s) = A(w̄n,1(s)− ŵn,1(s)) +
s2

2
A3u(tn),

w̄n,1(0)− ŵn,1(0) = 0,

∂[w̄n,1(s)− ŵn,1(s)] = 0,

Therefore, by the variation of constants formula,

w̄n,1(
k

2
)− ŵn,1(

k

2
) =

∫ k
2

0

e(
k
2−τ)A0

τ2

2
A3u(tn)dτ =

k3

8
φ3(

k

2
A0)A

3u(tn).

On the other hand, simplifying the notation,

w̄′
n,2(s)− ŵ′

n,2(s) = A(w̄n,2(s)− ŵn,2(s)) +
k2

8
A3u+

k2

2
AfuAu

+
k2

2
A(ft + fuf) +

sk

2
A3u+ skAf +

s2

2
A3u,

w̄n,2(0)− ŵn,2(0) = Ψf,tn
k (w̄n,1(

k

2
))

−[u+
k

2
Au(tn) +

k2

8
A2u+ kf +

k2

2
fuAu+

k2

2
(ft + fuf)],

∂[w̄n,2(s)− ŵn,2(s)] = 0,
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from what, also by the variation of constants formula,

w̄n,2(
k

2
)− ŵn,2(

k

2
) = e

k
2A0

[
Ψf,tn

k (w̄n,1(
k

2
))

−[u+
k

2
Au(tn) +

k2

8
A2u+ kf +

k2

2
fuAu+

k2

2
(ft + fuf)]

]
+

∫ k
2

0

e(
k
2−τ)A0 [

k2

8
A3u+

k2

2
AfuAu+

k2

2
A(ft + fuf) +

τk

2
A3u+ τkAf +

τ2

2
A3u]dτ

= O(k3),

and therefore

w̄n,2(
k

2
) = u+ k(Au+ f) +

k2

2
(A2u+Af + fuAu+ ft + fuf) +O(k3)

= u+ ku̇+
k2

2
ü = u(tn+1) +O(k3).
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