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Abstract
The development of an electrochemical procedure for the determination of 4-ethylguaiacol and its application to wine 
analysis is described. Modified screen-printed carbon electrodes (SPCEs) with fullerene  C60  (C60)  have been shown to be 
efficient in this kind of analysis. The developed activated  C60/SPCEs  (AC60/SPCEs) were adequate for the determination of 
4-ethylguaicol, showing a linear range from 200 to 1000 µg/L, a reproducibility of 7.6% and a capability of detection  (CCβ) 
value of 200 µg/L, under optimized conditions. The selectivity of the  AC60/SPCE sensors was  evaluated in the presence of 
possibly interfering compounds, and their practical applicability was demonstrated  in the analysis of different wine samples 
obtaining recoveries ranging from 96 to 106%.
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Introduction

The occurrence of unpleasant odours in wine that negatively 
affect its quality may be related to the presence of certain 
molecules, including volatile phenols, such as 4-ethylguai-
acol, associated to the advent of smoked aromas [1, 2]. 
Therefore, the development of analytical methods that allow 
the early detection of this compound is extremely important 
to avoid the rejection of a wine, which seriously affects the 
reputation and economy of the producing winery.

Most of the methods described for the quantification of 
4-ethylguaicol in wine are based on the use of chromato-
graphic techniques, being gas chromatography using mass 
spectrometric [3–10] and flame ionization [11–15] detection 
systems the most often selected technique in the analysis of 
this compound due to its volatility [3–16]. Wine is a complex 
matrix with many different constituents present at different 
concentration levels, considered low in the case of volatile 
phenols (between 1 and 2660 µg/L) [4]. Thus, the measure-
ment of 4-ethylguaiacol in wine using gas chromatographic 

techniques frequently involves previous sample preparation 
steps based on different extraction procedures, including liq-
uid–liquid extraction [3, 4], solid-phase extraction [10, 11, 
14, 15] and stir bar sorptive extraction [8, 9]. Liquid chro-
matography has also been selected as an analytical technique 
in the determination of 4-ethylguaiacol in wine using diode 
array [17, 18] and fluorescence [17, 19] detectors, although 
the number of methods developed is considerably lower 
compared to gas chromatography. These chromatographic 
procedures also involve the use of preparative steps based 
on solvent and solid-phase extraction processes. The main 
advantages of the described chromatographic techniques are 
their high precision, selectivity and sensitivity. However, 
these techniques are associated with high-cost laboratory 
equipment and highly qualified personnel requirements, 
being difficult to adapt for in situ measurements, for example 
in a winery during the wine production process [16].

Electrochemical sensors may be an interesting alternative 
to chromatographic techniques in the determination of 4-eth-
ylguaiacol since they can easily be oriented towards in situ 
analysis, being able to detect the cause of the contamination 
just at the moment it occurs with also high sensitivity and 
selectivity [20, 21]. Like this, 4-ethylguaicol has been ana-
lysed using different electrochemical techniques (Table 1) 
including screen-printed carbon electrodes (SPCEs) 
modified with  TiO2 or  SnO2 nanoparticles [22]. The joint 
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determination of different phenols has also been approached 
using electrochemical sensors. Thus, the analysis of 4-eth-
ylguaiacol in the presence of other phenols can be carried 
out using Nafion-modified boron-doped diamond electrodes 
in the presence of α-cyclodextrin [23] or by means of an 
array of different modified electrodes using artificial neural 
networks for quantitative analysis [20, 24, 25]. Despite the 
advantages of the described electrochemical methods, only 
one of these works involves the determination of 4-ethyl-
guaicol in wine, but the detection limit reached (5.5 mg/L) 
above the normal content in wine samples [20]. Thus, the 
electrochemical analysis of this compound in complex 
samples, such as wine, requires the development of more 
sensitive and selective devices. In this way, highly selec-
tive sensors for the analysis of other volatile compounds 
in wine have been established by means of the modifica-
tion of the working electrode surface with a molecularly 
imprinted polypyrrole polymer [26]. However, experiments 
carried out with this type of modification in this work, using 
4-ethylguaicol as target molecule, did not lead to satisfactory 
results in its analysis in wine samples. On the other hand, 
the modification of the working electrode with nanomateri-
als has already proven to be suitable for the development 
of sensors for the analysis of similar compounds due to its 
capability to accept and donate electrons [27]. Among them, 
fullerene  C60  (C60) has demonstrated to be an excellent mate-
rial for electrode modification due to its high electroactive 
surface area and good conductivity. Moreover,  C60-modified 
electrodes have shown a long stability and a wide potential 
window [28]. Therefore, disposable SPCEs have been modi-
fied with  C60 for the development of sensitive and selective 

suitable sensors for the determination of 4-ethylguaiacol in 
wine. In addition, a selectivity improvement has been carried 
out in these analyses through a previous accumulation step 
of the analyte present in the gas phase set over the liquid 
sample [27].

Experimental

Reagents

Reagents used were analytical reagent grade chemicals, and 
all solutions were prepared using Milli-Q water (18.2 MΩ/
cm; Millipore, Bedford, MA, USA). 4-Ethylguaicol was pur-
chased from Alfa Aesar (98%; Haverhill, MA, USA); 0.1 M 
phosphate  (KH2PO4) buffer solutions (Fluka, Munich, Ger-
many) containing 0.1 M potassium chloride (Merck, Darm-
stadt, Germany) were used as supporting electrolyte for the 
electrochemical measurements; 1 M phosphoric acid (85%; 
Panreac, Barcelona, Spain) was used to adjust the pH of the 
buffer solutions to the adequate value;  C60 solutions (99.9%; 
Acros Organics, Geel, Belgium), used in the  C60/SPCE gen-
eration, were prepared using dichloromethane, purchased 
from Panreac (Barcelona, Spain), as solvent; 1.0 M KOH 
solutions (Carlo Erba, Val de Reuil, France) were used in the 
reduction of these modified electrodes; and 4-ethylphenol 
(97%; Alfa Aesar, Haverhill, MA, USA), 4-vinylphenol (10 
wt% solution in propylene glycol; SAFC, St. Louis, MO, 
USA) and p-coumaric acid (> 98%; Sigma-Aldrich, Stein-
heim, Germany) were analysed as possible interferences.

Table 1  Electrochemical sensors for 4-ethylguaicol

AC60/SPCE activated fullerene-modified screen-printed electrode, BDDE boron-doped diamond electrode, CPE carbon paste electrode, CPME-
CNT carbon paste–modified electrode with carbon nanotubes, CPME-AB carbon paste–modified electrode with activated biochar, CV cyclic vol-
tammetry, DPV differential pulse voltammetry, GECEs graphite epoxy composite electrodes, MIPs molecularly imprinted polymers, SWV square 
wave voltammetry

Technique Electrode Limit/capabil-
ity of detection 
(µg/L)

Repro-
ducibility 
(%)

Sample Recovery (%) Reference

CV Array of 6 GECEs modified with different materials 5500 6.5 Wine – [20]
SPCE modified with  SnO2 nanoparticles 12.5 – – – [22]
SPCE modified with  TiO2 nanoparticles 19.2
CPE 16.9 – – – [24]
CPME-CNT 16.1
CPME-AB 14.3

DPV SPCE modified with  SnO2 nanoparticles 9.4 2.48 Simulated chemi-
cal mixture of 
volatiles

91.6–108.8 [22]
SPCE modified with  TiO2 nanoparticles 5.3 4.85 91.0–101.8

Array of 5 GECEs modified with MIPs 2400 – – – [25]
AC60/SPCE 200 7.6 Wine This work

SWV Nafion-modified BDDE 15.2 – Whiskey samples – [23]
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Preparation of AC60/GCEs

The modification of the SPCE surface (DRP-C11L; 
Metrohm DropSens, Oviedo, Spain) with a well-coated 
layer of  C60 (i.e.  C60/SPCE) was performed according to 
a previously described procedure [27]. Briefly, 40 µL of 
0.1 mg/mL solution of  C60, prepared in dichloromethane, 
was deposited on the SPCE surface and allowed to dry 
at room temperature. This  C60 film formed on the elec-
trode surface was next partially reduced in 1.0 M KOH 
by cyclic voltammetry in the potential range from 0.0 
to − 1.5 V vs. Ag/AgCl, at a scan rate of 10 mV/s, becom-
ing conductive due to the formation of  K3C60 salt [29]. 
Thus, an activated  C60/SPCE  (AC60/SPCE) was obtained 
in this way. The formation of the  AC60 layer on the SPCE 
can be seen in the scanning electron microscope (SEM) 
images shown in Fig. 1.

Electrochemical measurements with AC60/GCEs

Electrochemical measurements were carried out by means of 
differential pulse voltammetry (DPV) by means of a Palm-
Sens4 potentiostat (PalmSens BV, Houten, The Netherlands), 
using a previous accumulation step of the analyte on the elec-
trode. First, the  AC60/SPCE was introduced into the top of a 
sealed cell containing 1 mL of supporting electrolyte solution 
(pH 2.3), except for the optimization process, and the cor-
responding analyte concentration. The solution was stirred 
during 360 s at 70 °C. After this incubation time, in which 
the 4-ethyguaicol present in the gas phase over this solution 
was accumulated on the working electrode, differential pulse 
voltammograms were performed in a drop of 100 µL of sup-
porting electrolyte solution deposited on the  AC60/GCE.

Results

The electrochemical oxidation of 4-ethylguaicol to the cor-
responding quinone has been described as a process which 
involves the previous formation of an unstable phenoxy 
radical in a one-electron and one-proton step [23, 30]. This 
oxidation response gives rise to an analytical signal suit-
able for the sensitive determination of this compound using 
conventional electrodes. However, it may show a lack of 
selectivity when the analysis of 4-ethylguaicol is carried 
out on complex samples. The modification of the working 
electrode with a molecularly imprinted polypyrrole polymer 
[26] and with  C60 [27] has therefore been studied to avoid 
this possible loss of selectivity. Better results were achieved 
in the case of the nanomaterial, so they are the only ones 
that will be shown below. In this case, SPCEs were selected 
considering their better properties to those of conventional 
electrodes, including their low cost that allows the simple 
production of a large number of disposable devices with 
numerous possibilities of modification and, in addition, their 
ease of adaptation to small portable instrument systems [31].

The oxidation of 4-ethylguaicol to its corresponding qui-
none may be observed using an  AC60/SPCE by means of 
DPV in a 100 µL droplet dropped of supporting electro-
lyte directly onto the three-electrode system, after a previ-
ous accumulation of the analyte on the electrode surface in 
the gas phase, to increase the selectivity of the analytical 
method. This oxidation signal was influenced by different 
parameters, including temperature and incubation time 
applied during the accumulation step, as well as pH of the 
supporting electrolyte solution used for accumulation and 
DPV measurements. Thus, in order to ensure that the analyt-
ical measurements were carried out under the best possible 

Fig. 1  SEM images obtained for a SPCE (a) and an  AC60/SPCE (b) with × 500 enlargement
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conditions, an optimization stage of these variables was first 
performed. Experimental designs were used as a tool for 
optimization which allow to explore a wide experimental 
range with a reduced number of experiments. Moreover, they 
are more effective than the “one-at-time” experiments being 
able to detect interactions between the different factors that 
could lead to wrong decisions [32]. A  23 central composite 
experimental design was then performed, taking the follow-
ing values as high, low and central levels for each of the fac-
tors to be optimized, being the oxidation intensity obtained 
for a 0.98 mg/L 4-ethylguaiacol solution the response to be 
optimized (Table 2).

Seventeen experiments were consequently performed 
with different combinations of these values, including three 
replicates in the central point to evaluate the residual error 
(Table 3). From the analysis of the results obtained for the 
different experiments, the following optimum values for the 
variables were found: pH, 2.3; incubation time, 12 min; and 
incubation temperature, 70 °C, using Statgraphics program 
[33]. Under these optimized conditions, an oxidation peak 
was observed at a potential of + 0.48 V vs. Ag/AgCl, which 

increased with the increasing analyte concentration (Fig. 2a, 
b) and being the sensitivity of the  AC60/SPCEs much higher 
than that obtained using bare SPCEs (Fig. 2c). Thus, the 
modification of the electrode surface by an activated film of 
 C60 notably improves the reactivity of a SPCE.

An incubation time of 12 min implies spending excessively 
time in the construction of each calibration set, which is difficult 
to adapt for real-time analysis. Thus, a deep study of the influ-
ence of incubation time on the sensitivity value of the method 
was carried out. Different calibration sets were constructed in 
the concentration range between 200 and 1000 µg/L, using dif-
ferent incubation times ranging from 3 to 6 min. As it can be 
seen in Fig. 3a, the sensitivity value found for 6 min was similar 
to that obtained for 12 min. Thus, this value was selected for 
next experiments, obtaining as well defined DPV signals for the 
quantification of 4-ethylguaicol (Fig. 3b).

Finally, the developed procedure based on  AC60/SPCEs was 
validated under the optimized conditions for the 4-ethylguaicol 
determination by means of the estimation of its precision, capa-
bility of detection, decision limit and trueness. Hence, different 
calibration plots were built using ordinary linear regressions 
in the concentration ranging from 200 to 1000 µg/L. Outlier 
points, characterized by a studentized residual higher than 
2.5, in absolute value, were rejected with the aim to achieve a 
perfect evaluation of the different calibration parameters [33]. 
The precision of the method was then assessed by studying 
the reproducibility obtained for the slopes of three different 
validated calibration sets, in order to evaluate the dispersion 
referred to a range of concentrations instead of just a single 
concentration value. The value of relative standard deviation 
(RSD) obtained was 7.6%, showing a high degree of precision.

Capability of detection  (CCβ) and decision limit  (CCα) 
were calculated using DETARCHI program [34], accord-
ing to the ISO 11843 approach, based on a linear regression 
model [35]. A value of 58.7 µg/L was obtained for  CCα, for a 
probability of false positive (α) and negative (β) of 0.05. The 
value found for  CCβ was inferior than that of the concentra-
tion used in the first calibration point, so 200 µg/L was taken 
as the capability of detection of the method.

Interference analysis

The selectivity towards 4-ethylguaicol of the developed  AC60/
SPCEs was also analysed by studying the possible interference 
caused by the presence of other compounds with a similar 
structure, including 4-ethylphenol, 4-vinylphenol and p-cou-
maric acid. Thus, different solutions of the possible interferent 
with concentrations between 500 and 1400 µg/L were analysed, 
keeping the concentration of 4-ethylguaicol at a constant value 
of 700 µg/L in all of them. Some grade of interference in the 
determination of 4-ethylguaicol was found for 4-ethylphenol at 
concentrations higher than 800 µg/L, due to the high overlap 
of the oxidation peaks of both phenols (Fig. 4a). 4-Vinylphenol 

Table 2  Factors optimized in the  23 central composite experimental 
design

High level Central level Low level

pH 5 4 3
Incubation time (s) 600 360 120
Incubation temperature (°C) 60 45 30

Table 3  The  23 experimental 
design for optimization of 
experimental variables in 
4-ethylguaicol determination 
using  AC60/SPCEs

Incubation 
temperature 
(°C)

pH Incuba-
tion time 
(s)

30 3 120
60 3 120
30 5 120
60 5 120
30 3 600
60 3 600
30 5 600
60 5 600
19 4 360
70 4 360
45 2.3 360
45 5.7 360
45 4 35
45 4 684
45 4 360
45 4 360
45 4 360
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Fig. 2  a DPV curves and 
b experimental points and 
calibration plot obtained under 
optimized experimental condi-
tions in the 4-ethylguaicol con-
centration ranging from 200 to 
1000 µg/L using an  AC60/SPCE. 
c DPV curves obtained for a 
2 mg/L 4-ethylguaicol solution 
using different electrodes (phos-
phate; pH, 2.3; incubation time, 
12 min; incubation temperature, 
70 °C; pulse potential, + 0.2 V; 
step potential, + 0.01 V; pulse 
time, 0.02 s; and scan rate, 
50 mV/s)

Fig. 3  a Experimental points and calibration plots obtained using 
an  AC60/SPCE for different incubation times ((1) 3  min [blue], (2) 
4 min [yellow], (3) 5 min [green] and (4) 6 min [red]). b DPV curves 
obtained in the 4-ethylguaicol concentration ranging from 200 to 

1000 µg/L using an  AC60/SPCE (phosphate; pH, 2.3; incubation time, 
6  min; incubation temperature, 70  °C; pulse potential, + 0.2  V; step 
potential, + 0.01 V; pulse time, 0.02 s; and scan rate, 50 mV/s)
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and p-coumaric acid showed no influence on the oxidation 
signal of 4-ethylguaicol even at high concentration levels 
(1400 µg/L) as it can be seen in Fig. 4b and c.

Wine sample analysis

The developed  AC60/SPCE sensors were also validated in 
terms of trueness by means of their application to the analysis 
of 4-ethylguaicol in different wine samples. Two commercial 
samples of red wine (Tempranillo variety) and two of white 
wine (Airen and Verdejo varieties) were studied, not find-
ing the presence of 4-ethylguaicol in any of them. Thus, an 
analysis of spiked wine samples was performed by means 
of standard addition method, obtaining results far from the 

concentration with which the samples were enriched. Hence, 
an important matrix effect was observed, which was avoided 
using a liquid–liquid extraction procedure for each stand-
ard: 2 mL of diethyl ether was added to 5 mL of spiked wine 
sample and ultrasonicated for 5 min. Then, 100 µL of the 
ether layer was transfer to a vial containing 900 µL of pH 2.3 
phosphate buffer solution for the accumulation step. The DPV 
analysis of the extracted phases according to this standard 
addition procedure gave rise to results shown in Table 4. As 
it can be seen, there is significant agreement of the results 
obtained by the described procedure and the real content of 
4-ethylguaicol of the spiked wine samples, obtaining good 
recovery percentages between 96 and 106% which confirm the 
potential of the developed sensors for practical applications.

Fig. 4  DPV curves obtained for solutions containing 700  µg/L of 
4-ethylguaicol and different concentrations of a 4-ethylphenol, b 
4-vinylphenol and c p-coumaric acid using an  AC60/SPCE (phos-

phate; pH, 2.3; incubation time, 6  min; incubation temperature, 
70  °C; pulse potential, + 0.2  V; step potential, + 0.01  V; pulse time, 
0.02 s; and scan rate, 50 mV/s)
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Conclusions

This work describes an electrochemical method that com-
bines the important advantages of SPCEs, related to its 
low cost and possibility of adaptation to in situ analysis, 
with the use of nanomaterials such as  C60 for its modifica-
tion, which provides improved sensitivity in the analysis 
of 4-ethylguaiacol. In addition, the prior accumulation of 
the analyte present in the gas phase on the electrode sur-
face manages to improve selectivity, allowing its analysis 
in the range of concentrations normally present in wine. 
The developed sensors are then presented as an interest-
ing alternative to the more complex and expensive classi-
cal techniques used by wine producers for the analysis of 
4-ethylguaiacol.
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