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Abstract

Intelligent robots are foreseen as a technology that would be soon present in most public and private environments. In order to
increase the trust of humans, robotic systems must be reliable while both response and down times are minimized. In keeping
with this idea, present paper proposes the application of machine learning (regression models more precisely) to preprocess data
in order to improve the detection of failures. Such failures deeply affect the performance of the software components embedded
in human-interacting robots. To address one of the most common problems of real-life datasets (missing values), some traditional
(such as linear regression) as well as innovative (decision tree and neural network) models are applied. The aim is to impute
missing values with minimum error in order to improve the quality of data and consequently maximize the failure-detection rate.
Experiments are run on a public and up-to-date dataset and the obtained results support the viability of the proposed models.
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1. Introduction

Wide attention has been devoted to the development of intelligent robots in recent years. Although significant
contributions have been done, it still is a challenging field where further progress is required to satisfy present and
future demands. One of such demands is the fluent interaction with non-expert humans, that is required for robotic
systems to be widely integrated in a variety of homes and workplaces [1]. In order to get such fluency, performance
of both hardware and software is a keystone. However, the ever-increasing complexity of robots leads to a parallel
increase in chances of experiencing a failure. Accurate and prompt detection of such events is required in order to
improve performance and hence fluency. Full attention has been payed to advance in many subfields of the robotics
arena but according to some authors [2], further effort must be devoted to anomaly detection in such systems. It is
even more challenging when failures happen in a real-world context where complex phenomenon may interfere.

Accordingly, present paper focuses on the preprocessing of robot-performance data, whose importance is widely
acknowledged. More precisely, the aim is the successful imputation of Missing Values (MV) in order to get as much
data as possible for subsequent anomaly/failure detection. Thus, a wide variety of Artificial Intelligence (AI) models
are applied in order to predict the MV of all the dataset components.

The successful detection of anomalies/faults is a challenging task that does not only apply to robots [3] [4] [5].
From a business perspective [6], AI in general, and Machine Learning (ML) in particular, can greatly contribute to
anomaly detection and some other interesting tasks, maximizing companies benefits.
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Since pioneer works [7] in the application of ML to robotics, unsupervised [8], supervised, and reinforcement [9]
learning models have been previously applied. A variety of problems have been addressed so far such as con-
trol [10] [11] and communications [12] among others. In the case of anomaly detection, most ML previous work
has been focused on the detection of hardware anomalies [13], while software anomalies have been scarcely inves-
tigated. Software failures often occur in robotic systems and their automatic detection requires training data. The
problem comes from the difficulty of obtaining the data either because of the lack of execution traces or because the
existing registers do not refer to the exact moment in which anomalies are produced. That is why it is difficult to find
a dataset generated in a controlled environment where all the information is available. Furthermore, when data are
gathered in a real-life environment, quite likely there will be some or many MV, that can not be processed by ML
models.

One of the few works on the detection of software anomalies within the framework of component-based robots
is [14]. In that paper, authors proposed the only publicly-available dataset (further details in section 3) that gathers
data from different performance indicators of a robot. The dataset [15] has been used in present paper as a benchmark
dataset due to its interest and novelty. In this dataset, there are many MV associated to different data so a robust
strategy must be followed in order to deal with them as most ML models can not process such data. One of the
obvious preprocessing alternatives in order to solve such problem in the data is removing MV, either by deleting
data instances or by deleting attributes. However, a more advanced proposal is to impute such values, keeping some
information that could be useful for the subsequent anomaly detection. This approach is adopted in the present paper.

AI methods have been previously applied for imputation of MV [16]. However, scant attention has been devoted
to the application of ML methods in order to solve such problem in robot datasets. One of the very few previous
proposals is [17], where a probabilistic approach for classification using incomplete data was applied. The author
performed a classification (for failure detection) of data samples by calculating the a priori probability of MV, deter-
mined from the data samples that are not missing. However, the author proposal was only applied to outdated (1999)
datasets containing hardware anomalies. Differentiating from previous work, the present paper is the first approach
to impute MV in a dataset containing information about the performance of the software components of a robot. A
comprehensive benchmark comprising a wide variety of methods has been performed and some of the methods are
applied to this problem for the first time.

The methods applied for imputation of MV are introduced in section 2, while the analysed case study is described
in section 3. The performed experiments, together with their associated results are compiled in section 4. Finally, the
main conclusions and some proposals for further work are presented in section 5.

2. Imputation Methods

As previously stated, ML methods are applied in present study for imputation of MV. More precisely, experiments
have been run with four regression techniques and two Artificial Neural Network (ANN) models with different training
algorithms. The applied techniques are described in the following subsections.

2.1. Regression Techniques

Regression tries to model the relationship between two variables in the dataset by fitting a linear equation to the
input data. One of the variables is the predictor variable and the other one is considered to be the criterion variable [18].
The general purpose of multiple regressions is to learn more about the relationship between several independent or
predictor variables and a dependent or criterion variable. Such relationships can be linear or non-linear, leading to the
two techniques that are described below.

2.1.1. Linear Regression
Linear Regression (LR) attempts to model the relationship between two or more explanatory variables and a

response variable by fitting a linear equation to the dataset [19]. Every value of the predictor variable (x) is associated
with a value of the criterion variable (y). The regression line for p explanatory variables (x1, x2, ..., xn) is defined as
follows:

Uy = β0 + β1x1 + β2x2 + ... + βnxn (1)
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This line describes how the mean response Uy changes with the explanatory variables. The observed values for
Y vary about their means Uy and are assumed to have the same standard deviation σ. The fitted values b0, b1, ..., bn

estimate the parameters β0, β1, ...,βp of the population regression line. Since the observed values for y vary about their
means Uy, the multiple regression models include a term for this variation. The model is expressed as DATA = FIT
+ RESIDUAL, where the ”FIT” term represents the expression β0+β1x1+β2x2+ ... +βnxn. The ”RESIDUAL” term
represents the deviations of the observed values (y) from their means Uy, which are normally distributed with mean 0
and variance σ. The notation for the model deviations is ε. The model for linear regression, given n rows, is [19]:

Yi = β0 + β1xi1 + β2xi2 + ... + βnxin + εi for i=1, 2, ..., n (2)

2.1.2. Non-Linear Regression
Non-Linear Regression (N-LR) is a form of regression in which observational data are modeled by a function

which is a non-linear combination of the input data and depends on one or more criterion variables . The parameters
can take the form of an exponential, trigonometric, power, or any type of non-linear function. To determine the
non-linear parameter values, an iterative algorithm is used. The model can be defined as:

y = f (X, β) + ε (3)

Where B represents the non-linear parameter estimates to be computed, X is the dependent variables and ε repre-
sents the error terms.

2.1.3. Regression Trees
Regression Trees (RT) are usually shown growing upside down, with its root at the top. An observation passes

down the tree through a series of splits (nodes). At them, a decision is made as to which direction (branch) to lead
based on the value of one of the criterion variables. When a terminal node (leaf) is reached, a predicted response is
given according to the end node. Trees are often built via binary recursive partitioning. In RT, values at the terminal
nodes are assigned using the mean of cases in that node [20]. In present study, two variations of RT are applied:

• Fine Tree (FT). It usually comprises a reduced set of leaf nodes to optimize building time.

• The Boosting Ensemble (BE) algorithm iterative calls the regression-tree algorithm to construct an ensemble of
trees. This ensemble combines results from many weak learners (least-squares boosting) with RT learners into
one high-quality ensemble model. The response is calculated according to the Mean Squared Error (MSE) of
the trained regression ensemble model that takes into account the results of boosting a high number (100) of
trees.

2.2. Artificial Neural Networks

Artificial Neural Networks, also known as connectionist systems or adaptive networks, are simplified models of
natural neural systems. The following definition, given by Hecht - Nielsen in 1988, formalizes the concept: ”An ANN
is a parallel processing computer system distributed, consisting of a set of elementary processing units equipped with
a small local memory and interconnected in a network through connections with associated weights. Each processing
unit has one or more input connections and a single output connection that links to many collateral connections as
desired. All processing associated with an elementary unit is a local, i.e. depends only on the values that take input
signals from the unit and the internal state of the same”. Two different models, adjusted to such definition, have been
applied in the present study and are defined in the following subsections.

2.2.1. Multilayer Perceptron
The Multilayer Perceptron (MLP) consists of a system of simple interconnected neurons or nodes. They are

connected by weights and output signals which are a function of the sum of the inputs to the node modified by a
simple activation function. The architecture consists of several layers of neurons; the input layer serves to pass the
input vector to the network. The terms called as “input vectors” and “output vectors” refer to the inputs and outputs of
the MLP and can be represented as single vectors. The MLP may own al least one or more hidden layers and finally
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an output layer. MLP are fully connected, with each node connected to every node in the next and previous layer.
One of the critical issues of such model is the training (update) of all the weights as the error can be calculated in the
output but weights in all layers must be updated. To solve such problem, backpropagation was proposed and several
different algorithms implement it. Due to their known advantages, two of them have been applied in present study:

• Levenberg-Marquardt (LM) [21]. It is derived from the Newton’s technique that is designed for minimizing
functions that are sums of squares of non-linear functions.

• Bayesian Regularization (BR) [22]. It aims to improve the model’s generalization capability, expanding the
objective function with the addition of the sum of squares of the network weights.

2.2.2. Radial-Basis-Function Networks
In a Radial-Basis-Function Network (RBFN), each neuron in the hidden layer has its own centroid, and for each

input vector x = ( x1, x2, . . . , xn) , it computes the distance between x and the centroid. As a result, the output of these
neurons is calculated as a non-linear function of this distance. Assuming that there are r input nodes and m output
nodes, the overall response function without considering non-linearity in an output node has the following form:

M∑
i=1

Wi ∗ K
(

x − zi

σi

)
=

M∑
i=1

Wi ∗ g
(
||x − zi||

σi

)
(4)

where x is an input vector, MεN is the number of units in the hidden layer, Wi εRm is the vector of weights linking
the ith hidden-layer unit to the output nodes, K is a radially symmetric kernel function of a unit in the hidden layer, zi

and σi, are the centroid and smoothing factor of the kernel node, and g: [ 0,∞) → R is the activation function, which
characterizes the kernel shape.

3. Real-life Case Study

Present research focuses on the imputation of MV in order to optimize anomaly detection in robot software. As
previously stated, researchers at the University of Bielefeld (Germany) developed the only publicly-available [15]
dataset [14] containing software anomalies. The analyzed robot has different components from different manufac-
turers integrated in the GuiaBot platform, developed by Mobile Robots. This robot was developed to participate in
the RoboCup@Home competition. RoboCup@Home aims to deploy technology to address future robot-service in
domestic contexts. The obtained score in such contest depends on two main issues [23]: the degree of autonomy
and the performance of the robot. In the dataset under analysis, the robot faced several problems similar to those
addressed by a human waiter, such as the identification of customers, serving drinks, and interacting with people and
objects. The diverse nature of such tasks requires the robot to have different components to be attached to the main
platform. Examples of such components are a mechanical arm, a sensor to detect people from their legs, and a camera
to recognize people.

The different software components of the robot communicate through the Robotics Service Bus (RSB) middle-
ware [24], using an event-based system and whose information is stored in a tool that incorporates the middleware
called rsbag. The transferred information is encrypted as a notification. There is a framework called BonSAI whose
responsibility is the combination between the sensors (that receive external information) and the actuators. For the
representation and control of the execution flows, a Finite State Machine (FSM) is used. The general architecture
of the robot is depicted in Figure 1, where it can be seen how the flow associated to the arm is different from that
associated to the detection of legs because the second one does not lead to a physical action of the robot.

The two components analyzed in present research are the one for controlling the arm (ArmController) and that for
the detection of legs (LegDetector). The first one performs two actions: to control the movement of the arm in different
directions and to open and close the grip. The induced anomaly (ArmServerAlgo) increases the amount of movements
to carry out the target tasks and hence penalizes the execution time. As a consequence, the robot performs a series
of unnecessary actions that have a negative effect on the performance counters. On the other hand, the LegDetector
component is responsible for recognizing and detecting the legs of human beings in order to avoid colliding with
them. The associated anomaly (LegDetectorSkippable) causes the robot to perform the scan of legs a greater number
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Figure 1. Robot system architecture comprising analyzed modules. Adapted from [14].

of times than needed. These components have been selected because, in the preliminary experiments carried out by
the authors of the dataset [25], ArmController achieved the worst results while LegDetector achieved the best results
when trying to detect the anomalies. Hence, the present study involves datasets that a priori have differences when
performing classification tasks for failure detection. As it can be seen in Figure 1, these components are of different
nature since one involves a physical response in the robot, while the other does not.

The whole dataset comprises data from several trials, being each one of them an attempt of the robot to perform
a target task. The authors who gathered the data [14], detected that in some of these trials there were undetected
anomalies, that’s the reason why some of them are discarded. The analyzed data for each one of the components
come from the performance counters, measured every second. Further details about the attributes comprised in the
component datasets can be found in Table 1. This dataset is described in greater detail in [15].

Table 1. Explanation of the dataset attributes.

Variables Description

vsize The current size of virtual memory used by a task.
open fds The current number of file descriptors opened by a process.

rchar Number of bytes that a process has read since the beginning.
open connections Number of network connections opened by a process.

stime Amount of time of the process in user mode.
wchar Number of bytes that a process has write since the beginning.
utime Amount of time of the process in kernel mode.

num threads Number of threads that a process has in operation.
rss Current RSS of a process

received bytes Number of bytes received by the interface.
sent bytes Number of bytes sent by the interface.
write bytes Number of bytes written by the device.

The induction of anomalies is not constant in the whole dataset, as anomalies are induced at a varying rate in the
different trials. Table 2 shows the distribution of anomaly occurrences for the analyzed components. There are 10
trials associated to the ArmController and 12 to the LegDetector components. All of the trials have been fused in
present study to generate 2 different datasets, one per component.

There is a similar rate of MV in the two component datasets. In the ArmController one there are 26025 (8.5%)
data instances containing missing values while there are 24163 (10.03%) in the case of the LegDetector.
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Table 2. Occurrences of each anomaly and distribution per trials.

Anomaly 1 time 2 times 3 times

ArmServerAlgo 28, 32, 36, 41, 45, 57, 65, 71 21 23
LegDetectorSkippable 19, 21, 24, 31, 36, 55, 57, 64, 66, 68, 70 71

4. Experiments and Results

The regression techniques described in Section 2 have been applied to the datasets (ArmController and LegDe-
tector) detailed in Section 3, in order to evaluate their imputation capability on all the attributes of each dataset. To
get more significant results, they are validated by the well-known n-fold Cross-Validation (CV) scheme. CV is a
technique that splits the data, in order to measure the performance (MSE in the present study) of each technique in
different subsets of data. The number (n) of data partitions has been set to 10 for all the experiments in the present
study, as it is a standard value.

In order to do the regression on all the attributes of the 2 datasets, different variations have been generated for
each dataset, one per each attribute. As a result, 11 variant datasets have been generated for the ArmController dataset
and 8 for the LegDetector. In each case, the attribute on which the regression is applied is stated as the target column
while the remaining ones are the predictor variables.

In the case of the ANN models, the training process has been repeated 10 times for each training algorithm (LM
and BR for the MLP). The main purpose of this repetition is to reduce the effect of randomness and therefore obtaining
more representative results. A sigmoid activation function in the hidden layer and a linear activation function in the
output layer have been applied in the case of the MLP. A radial-basis transfer function was applied in the case of
RBFN. Additionally, different parameters have been tested for some of the techniques. However, for the sake of
brevity, only the results obtained for the following parameters are shown in Sections 4.1 and 4.2:

• FT: minimum leaf size (4).

• BE: minimum leaf size (8), and number of learners (30).

• RBFN: spread (40) and maximum number of neurons (10).

• MLP (both LM and BR): neurons in the hidden layer (10) and training epochs (70).

The average MSE and execution time (for the 10 folds) have been calculated for all the experiments and are shown
in Tables 3 to 7. In the case of the MLP, the mean and standard deviation for the 10 executions are shown. MSE is
calculated when trying to impute 25% of the data samples (considered as the MV) for each one of the CV folds, while
75% of the data samples are used to build/train the methods.

4.1. ArmController Component

Tables 3 and 4 show the results obtained for the ArmController component. More precisely, Table 3 shows the
average MSE obtained by each one of the regression techniques when predicting values for each one of the attributes
in the original dataset. After analyzing results in this table, it is worth mentioning that figures significantly vary
depending on the applied method and the target attribute. The N-LR method gets the best results (minimum error) for
9 out of the 11 components, while 3 other methods get the best result only in one case; FT for the open fds component,
RBFN for the num threads component, and MLP with the BR training algorithm for the vsize component.

The differences in the MSE values are quite big, being the FT (except for the open fds component) and BE methods
the ones with the worst performance in terms of MSE.

When considering the attribute which obtain a lower MSE, the open fds achieves the best results while the
open connectins is the second one. On the other hand, the vsize is the attribute that obtain the higher error for all
the methods.
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Table 3. Average MSE value per method and dataset attribute on the ArmController component.

LR N-LR FT BE RBFN MLP LM MLP BR
Mean Std Dev Mean Std Dev

vsize 1.67E-06 1.64E-06 1.42E-05 3.12E-04 1.67E-06 3.49E-09 9.25E-26 2.89E-09 0
open fds 2.80E-23 2.76E-23 3.52E-24 2.43E-12 2.79E-23 7.97E-23 1.97E-39 1.28E-22 5.26E-39

rchar 5.35E-19 5.28E-19 4.83E-10 5.67E-10 5.35E-19 1.50E-15 0 8.54E-16 2.20E-32
open connections 2.80E-23 1.74E-28 1.31E-14 2.21E-12 2.79E-23 2.31E-22 2.63E-39 2.43E-22 0

stime 1.26E-17 1.26E-17 2.65E-09 2.78E-09 1.26E-17 3.32E-14 0 3.89E-14 0
wchar 6.63E-19 6.52E-19 3.55E-10 4.19E-10 6.63E-19 8.67E-16 0 1.15E-15 4.69E-32
utime 2.17E-14 2.16E-14 4.28E-08 4.97E-08 2.17E-14 6.31E-12 2.82E-30 2.01E-11 2.26E-29

num threads 5.59E-22 1.43E-22 5.03E-23 1.23E-11 5.59E-22 2.99E-21 7.36E-38 5.66E-21 0
rss 7.44E-11 2.48E-11 1.93E-06 5.82E-06 7.44E-11 6.73E-10 8.67E-27 9.39E-10 0

received bytes 1.67E-17 1.57E-17 9.95E-10 2.10E-09 1.67E-17 5.19E-14 5.29E-31 1.04E-13 8.82E-32
sent bytes 5.13E-18 4.83E-18 6.38E-10 1.22E-09 5.13E-18 3.02E-14 1.76E-31 1.61E-14 7.61E-31

Table 4. Average execution time per method and dataset attribute on the ArmController component.

LR N-LR FT BE RBFN MLP LM MLP BR
Mean Std Dev Mean Std Dev

vsize 8.13E-02 1.57E-01 1.44E-01 5.33E-01 2.00E-02 1.35E-01 1.20E-01 1.40E-01 1.17E-01
open fds 3.08E-02 1.12E-01 2.08E-01 6.28E-01 3.34E-02 9.81E-02 2.57E-02 9.37E-02 1.30E-02

rchar 3.47E-02 1.75E-01 3.51E-01 1.03E+00 1.44E-02 9.68E-02 2.03E-02 9.60E-02 1.45E-02
open connections 4.29E-02 1.74E-01 1.33E-01 5.48E-01 2.47E-02 1.04E-01 3.40E-02 9.90E-02 1.80E-02

stime 3.29E-02 1.45E-01 1.21E-01 5.57E-01 1.90E-02 9.76E-02 1.37E-02 1.06E-01 1.88E-02
wchar 3.33E-02 1.67E-01 1.66E-01 5.41E-01 3.88E-02 1.07E-01 2.20E-02 1.08E-01 2.42E-02
utime 3.65E-02 1.37E-01 1.34E-01 5.03E-01 1.32E-02 1.00E-01 1.23E-02 1.08E-01 1.91E-02

num threads 3.43E-02 1.58E-01 9.89E-02 4.50E-01 1.45E-02 9.57E-02 1.23E-02 1.03E-01 1.52E-02
rss 3.41E-02 1.59E-01 1.87E-01 4.62E-01 1.29E-02 9.81E-02 1.63E-02 1.05E-01 1.17E-02

received bytes 3.35E-02 1.39E-01 1.33E-01 5.36E-01 1.29E-02 9.78E-02 1.18E-02 1.11E-01 2.85E-02
sent bytes 3.87E-02 1.49E-01 1.37E-01 5.83E-01 1.38E-02 1.06E-01 2.72E-02 9.61E-02 8.66E-03

For the MLP neural model (2 training algorithms), the standard deviation of the MSE is really low (zero in eight
times). It means that obtain results are robust and consistent for the 2 training algorithms (LM and BR).

Complementary to the above-shown errors, Table 4 shows the average execution times for each method and at-
tribute.

As far as execution times are concerned, it can be said that the results slightly vary. The RBFN neuronal model
manages to be the fastest method for all the attributes. On the other hand, BE is the slowest method, as the highest
execution times are obtained by this method. Analyzing the table by attributes, no big differences are appreciated in
the time. However, the fastest results are obtained for the rss and received bytes attributes.

In order to ease a visual analysis of these obtained results, Figure 2 and Figure 3 show the boxplots for the values
that are summarized in Table 3 and Table 4 respectively. In Figure 2, all the results obtained by all the applied
imputation methods are included for each one of the components. Similarly, in Figure 3, all the results obtained on all
the dataset components are included for each one of the imputation methods.

It is worth highlighting from Figure 2 the great variability in the results when applying the different imputation
methods to each one of the components. This is specially visible for the components open fds (2), open connections
(4), and num threads (8). For such components, the high error rates obtained by the BE method for the component
open fds and those obtained by the FT and BE methods for the other two components can be easily identified. The
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Figure 2. Boxplot of the MSE values (all imputation methods) on the ArmController component per attribute. (1) vsize, (2) open fds, (3) rchar, (4)
open connections, (5) stime, (6) wchar, (7) utime, (8) num threads, (9) rss, (10) received bytes, (11) sent bytes

Figure 3. Boxplot of the execution time (all components) on the ArmController component per method. (1) LR, (2) N-LR, (3) FT, (4) BE, (5)
RBFN, (6) MLP LM, (7) MLP BR

remaining error rates obtained for these components are shown in a small box, with no variance. Something similiar
(to a certain extent) can be seen for the vsize (1) component. For the other components, error rates are pretty similar,
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slightly varying between the different methods.
As previously mentioned, it can be seen in Figure 3 that there is a small variability in the execution times. In the

case of the N-LR and MLP LM methods, some outlier values can be observed, while the other values are very similar.
All in all, average values are quite centered in the (25th and 75th) percentiles shown in the boxplot.

4.2. LegDetector Component

Similarly to what is shown above for the ArmController component (Subsection 4.1), MSE and execution times
are shown for the experiments run on the LedgeDetector component. Therefore, Table 5 and Table 6 shows the MSE
and execution times respectively obtained in the experiments on the LegDetector component.

Table 5. Average MSE value per method and dataset attribute on the LegDetector component.

LR N-LR FT BE RBFN MLP LM MLP BR
Mean Std Dev Mean Std Dev

write bytes 1.07E-14 1.07E-14 8.42E-08 9.28E-08 1.07E-14 3.68E-11 0 2.8099E-11 4.06E-28
rchar 3.71E-12 3.71E-12 1.68E-06 1.73E-06 3.71E-12 6.87E-09 0 5.5068E-09 0
stime 1.83E-14 1.83E-14 1.02E-07 1.17E-07 1.82E-14 6.20E-11 9.03E-28 1.9076E-11 4.06E-28
wchar 9.66E-17 9.66E-17 1.70E-09 2.29E-09 8.74E-17 5.25E-14 1.76E-31 6.1249E-14 0
utime 1.11E-12 1.11E-12 4.12E-07 5.01E-07 1.08E-12 2.45E-09 4.62E-26 5.0123E-09 1.39E-25

rss 1.79E-05 1.79E-05 2.44E-03 3.48E-03 1.79E-05 1.31E-05 7.19E-08 1.2559E-05 4.68E-07
received bytes 5.98E-14 5.98E-14 7.72E-08 1.25E-07 5.98E-14 5.83E-12 0 1.5439E-11 2.71E-28

sent bytes 1.58E-14 1.57E-14 1.82E-08 2.71E-08 1.42E-14 8.29E-13 0 1.0276E-12 1.16E-29

Table 5 shows quite different results from those observed in Table 3 for the ArmController component (Subsec-
tion 4.1). In the case of the LegDetector component, the model that returns the best results (in terms of the MSE) is
the RBFN neural model, for 7 out of 8 dataset attributes that have been imputed. For 3 of these attributes, namely
write bytes, rchar, and received bytes, the LR and N-LR regression techniques have obtained similar error rates. The
MLP with the BR training algorithm has obtained the best result for the rss component, while the FT and BE trees
have performed poorly (similarly to what is shown in Table3). As for the previous component, the standard deviation
for the two MLP training algorithms (10 executions each) are really low; it amounts to zero in 6 out of the 16 cases that
are shown. Analyzing the MSE per components (Table 5), wchar is the one for which the lowest error rate has been
obtained. Secondly, similar MSE values have been obtained for the write bytes, stime, received bytes and sent bytes
attributes. Oppositely, rss is by far the one with the highest MSE value.

Table 6. Average execution time per method and dataset attribute on the LegDetector component.

LR N-LR FT BE RBFN MLP LM MLP BR
Mean Std Dev Mean Std Dev

write bytes 7.15E-02 1.84E-01 5.36E-01 8.45E-01 1.43E-02 9.43E-02 1.36E-02 1.06E-01 2.43E-02
rchar 3.49E-02 9.30E-02 1.34E-01 9.68E-01 1.18E-02 9.53E-02 2.87E-02 9.93E-02 2.88E-02
stime 3.15E-02 1.33E-01 6.87E-01 7.49E-01 1.11E-02 5.52E-01 1.06E+00 8.84E-02 1.63E-02
wchar 2.98E-02 9.52E-02 5.22E-01 6.90E-01 1.09E-02 9.97E-02 3.29E-02 8.35E-02 9.87E-03
utime 2.91E-02 9.33E-02 7.95E-01 6.75E-01 1.66E-02 8.30E-02 1.08E-02 8.90E-02 1.14E-02

rss 3.09E-02 8.09E-02 7.40E-01 6.53E-01 1.08E-02 4.49E-01 7.53E-01 9.78E-01 6.57E-01
received bytes 2.83E-02 8.23E-02 6.52E-01 6.04E-01 1.07E-02 8.18E-02 9.15E-03 8.69E-02 1.16E-02

sent bytes 2.97E-02 8.49E-02 4.28E-01 6.14E-01 1.06E-02 7.98E-02 7.18E-03 8.77E-02 1.09E-02
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As far as average execution times are concerned, the results shown in Table 6 are very similar to those shown in
Table 4, the RBFN model outperforms the other methods, being the fastest one in the calculation of the missing values
for the 8 parameters that have been regressed. On the other hand, those methods based on regression trees (FT and
BE) are the ones with highest execution times for all the components. Although more trees are generated in the case
of the BE, their execution times are higher that those of the FT only for 5 of the attributes.

Additionally, it is noted that the execution times are somewhat smaller than those shown in Table 4 because the
the number of predictors (attributes) for this component (7) is smaller than those for the ArmController (10).

In order to ease a visual analysis of these obtained results, Figure 4 and Figure 5 show the boxplots for the values
that are summarized in Table 5 and Table 6 respectively.

Figure 4. Boxplot of the MSE values (all imputation methods) on the LegDetector component per attribute. (1) write bytes, (2) rchar, (3) stime, (4)
wchar, (5) utime, (6) rss, (7) received bytes, (8) sent bytes

Figure 4 shows more compact results than those associated to the ArmController component (shown in Figure 2).
In the case of the LegDetector component, there is no outliers in any of the attributes and all the error rates for the 8
attributes are within the 25th and 75th percentiles. This is a fact that deserves attention, as it means that the imputation
methods perform in a regular and smooth way for all the attributes.

On the other hand, when considering the boxplot of the execution time (Figure 5), it can be said that similar results
are shown to those for the ArmController component (shown in Figure 3). Once again, in the case of N-LR and the
MLP with the BR training algorithm, an outlier is identified outside the percentiles. For all the other methods it can
be said that time results are similar to those of the previous component (ArmController).

All in all, it can be said that for the two components that are analyzed in present research, error rates vary according
to the regression method that is applied. As the aim of present work is to validate which one of these methods
outperforms the other ones in order to impute missing values, MSE and time results (shown in Tables 3 to 6) are
summarized in Table 7.

By means of Table 7 it is possible to analyze at a glance the obtained results that are presented in this section. In
nutshell, the methods that have obtained the best results in terms of MSE are RBFN and N-LR. N-LR outperforms
the other ones for most of the attributes in the ArmController component while the same happens with RBFN in the
case of the LegDetector component. For 4 attributes LR, N-LR and RBFN have obtained similar error rates, that are
the lowest ones. In addition to this general perspective, it can be seen that for some of the attributes, MLR BR and

10
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Figure 5. Boxplot of the execution time (all components) on the LegDetector component per method.(1) LR, (2) N-LR, (3) FT, (4) BE, (5) RBFN,
(6) MLP LM, (7) MLP BR

Table 7. Summary of the best-performing imputation method per component attribute in terms of both error and execution time.

Dataset ArmController LegDetector
Attribute MSE Time MSE Time

vsize MLP BR RBFN - -
open fds FT RBFN - -

open connections N-LR RBFN - -
num threads N-LR RBFN - -

rchar N-LR RBFN LR, N-LR, RBFN RBFN
stime LR, N-LR, RBFN RBFN RBFN RBFN
wchar N-LR RBFN RBFN RBFN
utime N-LR RBFN RBFN RBFN

rss N-LR RBFN MLP BR RBFN
received bytes N-LR RBFN LR, N-LR, RBFN RBFN

sent bytes N-LR RBFN RBFN RBFN
write bytes - - LR, N-LR, RBFN RBFN

FT are the best performing methods. This means that the selection of the regression method must be considered case
by case and several methods must be applied in order to impute missing values with the minimum error. In terms of
execution times, the RBFN model is the fastest one in all cases.

11



N. Basurto et al. / Computers & Electrical Engineering 00 (2020) 1–13 12

5. Conclusion

In the present study the imputation methods detailed in Section 2 have been applied to the two datasets explained
in Section 3. These two datasets correspond to the ArmController and LegDetector components of the robot. After
preparing the data and applying the CV scheme to obtain more reliable results, a regression has been performed on
the 11 and 8 attributes of the dataset. From the obtained results (Section 4) it can be concluded that:

• For the ArmController component (Section 3), the N-LR method is the one that obtains the best results in terms
of MSE and the neuronal model RBFN is the second best. The worst error rates are obtained by the FT and BE
techniques. The attributes with lowest error rates have been open fds and open connections, so the imputation
of missing values on them can be reliably performed. As for execution times, the RBFN method obtains the
lowest times on all attributes.

• For the LegDetector component ( Section 5), the RBFN method is the one that obtains the best results in terms
of MSE for the 8 attributes. In many cases, similar results are obtained by LR and N-LR. Additionally, RBFN
is the fastest method on all attributes.

• It can be observed that there is no single technique that is best in all cases. Even on the same attribute in the 2
different datasets, the best results can be obtained with different techniques.

Taking into account all the above mentioned, it can be concluded that imputation of missing values can be successfully
performed. One of the regression methods that are compared can be selected to impute values of each one of the
attributes from the given components.

As a future line of work, imputation will be combined with some other data preprocessing techniques (such as
data balancing algorithms) to improve anomaly detection.
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