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Abstract  

Relative errors are typically used in Chemometrics to evaluate the performance of a multivariate 

predictive model. However, these models are not obtained through the criterion of minimising 

relative errors, as would be expected in a model whose response is the concentration of an 

analyte. 

There are no studies in Chemometrics on the use of a Principal Component Regression that 

minimises the sum of the squares of the relative errors. This work proposes a model, which 

serves this purpose. The suggested model, wPCR, has been applied to 7 datasets with 12 

predicted responses, 10 of which are multivariate calibrations of analytes in complex mixtures 

based on instrumental signals coming from various analytical techniques. 

As PCR and wPCR are methods seeking to optimize different criteria, each one achieves a better 

performance with respect to its own criterion. Therefore, the new model wPCR leads to better 

results insofar as the relative errors are considered, especially for the smallest responses. In this 

sense, the wPCR model also outperforms PCR with logarithmic transformation of the response 

(logPCR). 

In addition, as for the performance of the method using Joint Confidence Regions for the 

intercept and the slope of the accuracy line, it is shown that the application of wPCR does not 
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introduce bias, neither constant nor proportional for the models built, nor a systematic 

alteration of the achievable accuracy. 

Keywords: relative error; Principal Component Regression; accuracy line; Joint Confidence 

Region; multivariate calibration 

1. Introduction 

The Least Squares criterion does not take account of the internal distribution of errors, that is, 

the amount and location of individual errors. However, the way errors are distributed is 

relevant, since two errors similar in size can clearly differ in percentages, i.e., when compared to 

different observed values of the response variable. This issue is particularly applicable in 

Chemometrics as to the multivariate calibration methods in which the response variable is a 

concentration and the importance of a certain error strongly depends on whether it occurs at a 

small or a large concentration. 

Multivariate calibration models based on the least squared criterion, such as Multivariate Linear 

Regression, Principal Component Regression or Partial Least Squares Regression, are meant to 

predict the concentration of one or several chemical analytes from a multivariate recorded 

signal (UV-visible spectroscopy, molecular excitation-emission fluorescence, infrared 

spectroscopy, polarography…). An overall adequate model can be achieved, but predicted 

concentrations far away in percentage points from the actual concentrations of the calibration 

standards can still occur particularly at low concentration samples.  

In the statistical literature on multivariate regression by least squares, the subject of response 

transformations has been widely addressed (e.g., chapter 13 in Ref. [1]). In particular, the 

logarithmic transformation would naturally up-weight the low values of the response and would 

be able to reduce relative errors. 
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In Least Squares Relative Errors, LSRE, a model that minimizes the sum of squares of relative 

errors, ∑((𝑦𝑦 − 𝑦𝑦�) 𝑦𝑦⁄ )2, is fitted. In the univariate regression case, Ferreira et al.2  have obtained 

explicit formulae as quotients of determinants for coefficients and their variance while pointing 

to the connection between weighted least squares, wLS, and LSRE. The analysis extends to the 

multivariate case in the Ref. 3. The authors provide a unique solution and a matrix expression is 

obtained for the calculation of coefficients. Additionally, it is shown to be equivalent to a 

weighted multivariate regression whose weights equal the inverse of the squared values of the 

response. 

Virtually all textbooks devoted to regression models include a chapter on weighted regression as 

it is the standard procedure for getting residuals with equal variances1,4. Generally, Least 

Squares Relative Errors, LSRE, inherits all the theoretical properties from the least squared 

regression, especially when relative errors follow a normal distribution.  

Concerning univariate calibration, linear regression by least squares has been used with the 

response weighted by the variance of the experimental signal5. Recently6,7,8, different weights 

have been suggested (1 𝑦𝑦2,⁄  1 𝑦𝑦, 1 𝑦𝑦0.5, 1 𝑥𝑥2, 1 𝑥𝑥 , 1 𝑥𝑥0.5⁄  ⁄⁄⁄⁄ being x the concentration and y 

the signal) aiming at selecting the one that best fit the data. Nevertheless, this does not result in 

the univariate version of LSRE, since relative errors are not those of the concentration but those 

of the experimental signal. 

Regarding the field of multivariate calibration models, even though relative errors are not 

included in the objective function to be minimised, results are usually interpreted in terms of 

relative or percentage errors.  But as far as the authors know, relative errors of concentrations 

have never been used as a fit criterion. In this work, we suggest a procedure focused on relative 

errors for the estimation of multivariate calibration models. More specifically, we propose 

minimizing the sum of squared relative errors as a criterion to develop a multivariate calibration 

model through Principal Component Regression. The procedure designed, which happens to be 

based on a specific weighted regression, seems to be suitable for dealing with poor prediction 
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problems. Section 2 details the suggested methodology and Section 3 the software used. In 

section 4, we provide different case studies for the multivariate calibration model (subsection 

4.1). As they are intended to determine the analyte concentrations in complex mixtures, a soft 

regression model is required. Finally, the work concludes with some discussion about the 

calibration procedure proposed in terms of accuracy (subsection 4.2), predictive ability 

(subsection 4.3) and a comparison when a logarithmic transformation of response. (subsection 

4.4). 

2. Methodology  

Multivariate calibration models are usually based on a Least Squares procedure.  Let X1, X2, ..., Xp 

denote the p independent variables and y the dependent variable. The Least Squares Regression 

model with n observations and p predictors can be written as follows 

 𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝛆𝛆 (1) 

where y is an n x 1 vector of concentrations, X is an n x (p+1) matrix whose first column is a 

vector of ones and the remaining columns comprise the values of the p independent variables 

and β is a (p+1) x 1 vector of unknown coefficients that will be estimated. Lastly, ε is an n x 1 

vector of underlying random errors, supposedly uncorrelated, with zero mean and equal 

variance σ2, i.e., E(ε)=0, V(ε)=Iσ2. (See Ref. 1 for a detailed explanation). 

The Least Squares (LS) criterion to estimate β is minimizing the Sum of Squared estimate of 

errors (SSe)   

 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑆𝑆𝑖𝑖2𝑛𝑛
𝑖𝑖=1 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1   (2) 

which gives an estimator  𝜷𝜷�𝐿𝐿𝐿𝐿 as follows 

 𝜷𝜷�𝐿𝐿𝐿𝐿 = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚 (3) 
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As mentioned above, our goal here is not to focus on errors as such, but on relative errors (𝑟𝑟𝑆𝑆𝑖𝑖) 

defined as the errors over the corresponding actual values of the dependent variable  

 𝑟𝑟𝑆𝑆𝑖𝑖 = 𝑒𝑒𝑖𝑖
𝑦𝑦𝑖𝑖

= 𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

 (4) 

where y is assumed to be a positive response variable (yi > 0, i=1, …,n) 

Thus, the new optimization criterion consists of minimizing the Sum of Squared relative errors 

(SSre) 

  𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆 = ∑ 𝑟𝑟𝑆𝑆𝑖𝑖2𝑛𝑛
𝑖𝑖=1 = ∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦𝑖𝑖
�
2

= ∑ � 1
𝑦𝑦𝑖𝑖2
� (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1   (5) 

As Eq. (5) points out, this is a kind of optimization problem, which can be transformed into, or 

tackled by means of, a Weighted Least Squares (wLS) procedure, with specific weights 𝑤𝑤𝑖𝑖 = 1
𝑦𝑦𝑖𝑖2

. 

Let W be an n x n matrix with the 𝑤𝑤𝑖𝑖 on the diagonal and zeros everywhere else. The problem 

posed In Eq. (5) addresses the estimation of new coefficients 𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿   which minimise the weighted 

sum of squared residuals by means of Eq. (6).  

 𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿 = (𝑿𝑿𝑇𝑇𝑾𝑾𝑿𝑿)−1𝑿𝑿𝑇𝑇𝑾𝑾𝒚𝒚 (6) 

Nevertheless, multivariate calibration models built through least squares regressions, weighted 

or not, must deal with two inherent difficulties: 

i. Datasets where the number of observations n is lower than the number of predictor 

variables p, i.e., the unknown coefficients outnumber the equations, which implies an 

underdetermined system. 

 This is rather frequent in multivariate calibration, where the number of available calibration 

samples is often less than the number of instrumental signals, for instance in molecular 

spectroscopic signals (UV-visible, emission fluorescence, near infrared, …). 
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ii.  Collinearity between the predictor variables, which leads to almost singular 𝑿𝑿𝑇𝑇𝑿𝑿 matrices, 

and therefore unstable matrix inversions and 𝜷𝜷� coefficients. ‘Near-multicollinearity’ is often 

found in spectral measurements and other instrumental signals9.  

Principal Component Regression PCR is a suitable calibration technique in ‘soft calibrations’ 

considering that spectra have a latent structure related to a few chemical species. In this regard, 

PCR provides the advantages of ‘data compression’ methods9: p predictors are turned into a 

principal components orthogonal to each other, thus supplying non-redundant information. 

These components, computed by a Principal Component Analysis (PCA), are calculated in 

descending order according to the amount of variance captured so a suitable choice of a 

accounts for the main patterns in the data. Once a Principal Components (PCs) have been 

chosen, PCR regresses the response variable y onto their corresponding PCs scores. 

Formally, it turns out that the PCA is based on a decomposition of the data matrix X0  into two 

orthogonal matrices, 𝑿𝑿𝟎𝟎 = 𝑻𝑻𝟎𝟎𝑷𝑷𝑻𝑻, 𝑷𝑷𝑻𝑻 being an a x p loadings matrix and 𝑻𝑻𝟎𝟎 the n x a principal 

component scores matrix. Notice that, in this decomposition, subscript 0 refers to a matrix 

without the column of ones. 

Adding the column of ones to matrix 𝑻𝑻0, to obtain matrix T, the PCR uses T  as regressors, which 

leads to LS estimators for PCR,  𝜷𝜷�𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 

          𝜷𝜷�𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑷𝑷𝑇𝑇𝜷𝜷�𝐿𝐿𝐿𝐿 = (𝑻𝑻𝑇𝑇𝑻𝑻)−1𝑻𝑻𝑇𝑇𝒚𝒚 (7) 

Using PCR with the purpose of minimizing the relative errors, new regression coefficients  𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 

can be computed as weighted least squared estimators:  

 𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑻𝑻𝑇𝑇𝑾𝑾𝑻𝑻)−1𝑻𝑻𝑇𝑇𝑾𝑾𝒚𝒚 (8) 

matrix 𝐖𝐖 being the specific weighting matrix 

  𝑾𝑾 = diag� 1
𝑦𝑦12

, 1
𝑦𝑦22

, … , 1
𝑦𝑦𝑛𝑛2

� (9) 

http://www.statistics4u.com/fundstat_eng/cc_dmatrix.html
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As in the first part of the Eq. 7, we can write 

  𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑷𝑷𝑇𝑇𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿         (10) 

and replacing 𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿 with its equivalent in Eq. (8) 

          𝜷𝜷�𝑤𝑤𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑷𝑷𝑇𝑇(𝑿𝑿𝑇𝑇𝑾𝑾𝑿𝑿)−1𝑿𝑿𝑇𝑇𝑾𝑾𝒚𝒚 (11) 

the coefficients of the proposed model are expressed from X, y, the weighting matrix W and the 

loadings from the PCA of X0. 

However, the prediction power of PCR is closely related to the number a of components finally 

kept. If a is chosen considering a fixed proportion of variance explained in X-space, chances are 

that either 1) it retains just a few PCs with the highest eigenvalues and discards some PCs with 

lower eigenvalues strongly related to the response, or 2) it retains components up to particular 

minor PCs relevant to the response, thus including all the preceding PCs (with larger 

eigenvalues), some of which may not have explanatory power on y. Furthermore, when a cross-

validation procedure is used, unimportant PCs may be included in the final model if they have 

comparatively large variance10. Either way, it may lead to an unsuitable selection of a. 

Beyond these conventional procedures, a series of proposals to achieve the best choice of 

components in PCR may be found in the literature11,12, also including the use of Bootstrap 

methods as an alternative to cross-validation13, the use of model reduction methods through 

similarity transformations14 or the selection of PCs by a penalized least squares minimization10. 

To our knowkedge, all the methods cited focus on minimising errors as such not relative errors. 

To minimize the relative errors in ‘soft’ calibration models, we suggest a specific PCR as to the 

number of PCs considered and their selection procedure in the regression model. From an initial 

PCA with the largest possible number of PCs a=min (n-1, p), we have discarded the latest PCs 

when capturing a negligible percentage of the variance of X0. The calibration model through PCR 

is built by Backward elimination (section 15.3 of Ref. ¡Error! Marcador no definido.), with p-to 
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remove ≥ 0.05, p-to-enter ≤ 0.05. A forward stepwise has also been run to assess the stability of 

the model concerning the stepwise procedure. Whenever these two methods substantially 

differ in the PCs selected, an ordinary least squares method has been computed and PCs with 

significant coefficients retained. 

As outlying observations strongly affect all of the least squares methods, including PCR, even if 

some weighted least squares procedure is used15 , the dealing of these samples, when 

necessary, has been done according to their studentized residuals and their characterization as 

influential points. 

Although Ref. 15 puts forward an exhaustive procedure to adressing outlying observations, 

which leads to a robust PCR regarding outliers, the procedure here discards observations when 

showing an external studentized residual larger than 3 (in absolute terms) or even larger than 

2.5 if they are highly influential. The latter feature has been measured through an absolute 

value of DFFITS1, the difference between the predicted values when the model is fit with and 

without the i-th data point, higher than 2𝑝𝑝/√𝑛𝑛.  

When a sample is discarded in PCR, it is also ruled out in building the wPCR model, so as to avoid 

the ocurrence of additional principal components derived from the presence of this particular 

observation.  

Therefore, the multivariate calibration models derived from the minimization of squared errors, 

hereafter PCR, are computed in three stages: 

i. PCA of 𝑿𝑿𝟎𝟎,  𝑿𝑿𝟎𝟎 = 𝑻𝑻𝟎𝟎𝑷𝑷𝑻𝑻 computing scores and loadings of the largest possible number of 

components a=min (n-1, p). 

ii. Fine-tuning the number of PCs kept by discarding some PCs with virtually no explanatory 

power on 𝑿𝑿𝟎𝟎. This leads to a smaller number of initial PCs which allows a cumulative 

percentage of explained 𝑿𝑿𝟎𝟎 above 99.9% while each component explains at least 0.2%. These 

PCs will be potential predictors in the calibration model. 



10 
 

10 
 

iii. PCR, regressing the y variable onto the scores of the potential PCs obtained in stage ii 

through a Backward Stepwise method. 

Conversely, the multivariate calibration models coming from the minimization of squared 

relative errors become, as described above, a specific weighted principal component regression, 

henceforth denoted as wPCR. To compute them, we have just to include the weighting matrix W 

of Eq. (9) in stage  iii. 

In the case of considering the logarithmic transformation of the response (Section 4.4), Principal 

Component Regression will be noted as logPCR. 

Once PCR and wPCR coefficients are estimated and their respective models validated, relative 

errors, 𝑟𝑟𝑆𝑆𝑖𝑖, i=1,.., n, for both models have been calculated and then PCR relative errors have 

been compared to wPCR relative errors. The rationale of the comparison lies in including overall 

summaries of performance, such as average and variability of relative errors, adjusted R2 of the 

relative error-based models, as well as some insight on individual performance, namely 𝑟𝑟𝑆𝑆𝑖𝑖 and 

their distribution across the samples (observations).  

Along these lines, overall indicators are the Mean Absolute relative error (MAre)   

 𝑀𝑀𝑀𝑀𝑟𝑟𝑆𝑆 = ∑ |𝑟𝑟𝑒𝑒𝑖𝑖|𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 (12) 

and the Root Mean Squared relative errors (RMSre) 

 𝑅𝑅𝑀𝑀𝑆𝑆𝑟𝑟𝑆𝑆 = �∑ 𝑟𝑟𝑟𝑟𝑖𝑖2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛   (13) 

The adjusted R2 of the models based on relative errors is computed with the known expression 

 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 100 �1− �𝑛𝑛−1
𝑛𝑛−𝑝𝑝

� 𝐿𝐿𝐿𝐿𝐸𝐸
𝐿𝐿𝐿𝐿𝑇𝑇
� (14) 
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but the sum of squares include the weights used. That is, the total sum of squares is given 

by  𝑆𝑆𝑆𝑆𝑇𝑇 = ∑ 𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2,𝑛𝑛
𝑖𝑖=1   whereas the residual sum of squares in the suggested models, the 

loss function to be minimised, is calculated as 

  𝑆𝑆𝑆𝑆𝐸𝐸 = ∑ 𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2  𝑛𝑛
𝑖𝑖=1  (15) 

Individual comparisons of relative errors and their distribution are displayed by a Multiple 

Barchart with PCR and wPCR relative errors for each observation (sample).  Multiple Barcharts of 

𝑟𝑟𝑆𝑆𝑖𝑖 are displayed in increasing order of dependent variable, the observed concentration.  

Furthermore, to check the accuracy of the suggested method, wPCR, the predicted values by 

means of wPCR, fitted concentration 𝑦𝑦�𝑖𝑖, have been regressed onto the true values of 

concentration 𝑦𝑦𝑖𝑖  , getting a regression line that can be regarded as an ‘accuracy line’16. When 

predicted values are close enough to observed values, this line is expected to have a zero 

intercept and a slope equal to 1. As there is a negative strong correlation between the LS 

estimates of the intercept and the slope, a Joint Confidence Region for β0 and β1 at level 100(1-

α) is used5,16. If point (0, 1) belongs to this region, the calibration method is considered true 

(unbiased). So Joint Confidence Regions, JCR, for the regressions ‘estimated concentration vs. 

true concentration’ have been computed for the proposed calibration method wPCR. 

Additionally, the representation of regions for both PCR and wPRC allows to compare the 

precision of these two methods: the larger the area of the confidence region the less precise the 

calibration method.  

Moreover, the position of the intercept and the slope of the accuracy line relative to the point 

(0,1) is an indication of similarity between the two models. 

In summary, given a matrix with p predictor variables X0 and a response vector y, the proposed 

calibration procedure, wPCR, consists of: 
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a) Performing a PCA while keeping as many components, a, as possible, with the two criteria 

described in steps (i) and (ii) above mentioned, thus obtaining the scores matrix T. 

b) Using Eq. (8) along with the weigths in Eq. (9), computing 𝐗𝐗�wLSPCR  by means of a weighted least 

squares regression of y onto T, through a backward stepwise method for variable selection, 

while identifying possible outliers. 

c) Assessing the absence of bias in the calibration model obtained by verifying that the point 

(0,1) belongs to the Joint Confidence Region for the independent term and the slope of the 

accuracy line.    

3. Software  

The regression models are fitted and validated with the statistical program STATGRAPHICS 

Centurion XVIII17. To obtain the JCR, a home made program has been written in MATLAB18. 

4. Case studies on Multivariate Linear Calibration by PCR 

To evaluate the performance of our proposal on relative errors, a series of datasets are 

presented here. Their descriptions and references are summarized in Table I. 

Our main results for every dataset are summarized in Tables II and III. Table II shows a 

comparative list of the principal components kept by each model for every case study evaluated. 

The performance indicators are gathered in Table III. 

4.1 Comparative analysis PCR versus wPCR 

4.1.1 Dichromate-Permanganate dataset 

The calibration models to predict the concentration of both potassium dichromate and 

potassium permanganate have been based on six potential PCs accounting for 99.99% of the X 

variance in each one. As two outliers have been ruled out, the models have been built from 16 

samples (first and second row in Table II). 



13 
 

13 
 

The PCR to predict the concentration of potassium dichromate keeps just three PCs, namely the 

first, second and fifth one. The distribution of relative errors is displayed in Figure 1a. The most 

outstanding feature is the larger relative errors of the first samples depicted (those with 

extremely low concentration of potassium dichromate), particularly samples number 2 and 3. 

This calibration model leads to an average relative error of 7.8% (Table III) but the use of wPCR 

shortens it while reducing the RMSre (39%), thus resulting in a more balanced distribution of 

relative errors.  

Regarding the concentration of potassium permanganate, the regular PCR calibration model 

takes four PCs: the first two, fourth and fifth. In this case, predictions are rather close to the 

observed concentrations, MAre being below 2%, although samples number 1 and 3, with low 

concentration of potassium permanganate, show the highest relative errors. The calibration 

computed by wPCR selects just the first two PCs, leading to a substantial reduction in the 

average relative error together with a remarkable fall of the RMSre, about 37% (Tables II and III). 

The prediction of the concentration in the above-mentioned samples strikingly improves so that 

relative errors become more uniformly distributed (Figure 1b), none of them exceeding 3%. 
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Table I. Datasets studied  
 Dataset Objects Predictors Responses Ref. 
1 Dichromate-Permanganate Binary mixtures UV-vis absorbance, 380-520 

nm each 20 nm 
Analyte concentrations. Table S1 [19] 

2 Polycyclic Aromatic 
Hydrocarbons 

Mixture of 10 compounds UV-vis absorbance, 220-350 
nm each 5 nm 

Pyrene, benzanthracene and 
phenanthrene concentrations. 
Table S2 

[20] 

3 Vintages Port Portuguese wines aged 
from 4 to 27 years 

41 oenological parameters Age of vintages. Table S3 [21] 

4 Zinc Calibration samples Polarography. Current 
registered, 0.095 and -1.117 V   

Zinc concentration. Table S4 [22] 

5 Food colorants 
 

Binary mixtures  UV-vis absorbance, 340-570 
nm each 5 nm 

Tartrazine (E-102) and sunset 
yellow (E-110) concentrations. 
Table S5 

Our lab 

6 Fraudulent whisky  Ternary mixtures of water, 
low-quality and high-
quality whisky 

UV-vis absorbance, 220-400 
nm each 4 nm 

Percent of each whisky. Table S6 [23] 

7 Chromium in toys  Derivatized samples of 
hexavalent chromium 

UV-vis absorbance, 472-628 
nm each 4 nm 

Analyte concentration. Table S7 [24] 
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4.1.2 Polycyclic Aromatic Hydrocarbons (PAHs) dataset 

Table II.   Performance of suggested model wPCR vs regular model PCR in datasets. Number of observations by number of predictors (n x p), Number of 
initial Principal Components (PCs) considered, Percentage of X variance captured by the initial PCs, Regression method, Number of PCs selected, PCs 
selected and Number outliers removed. Abbreviations used: Back: Backward regression, OLS: Ordinary Least Squares Regression, Py: Pyrene, Benz: 
Benzanthracene, Phen: Phenanthrene 

Datasets n x p No. initial 
PCs 

% X Regression 
method 

No. PCs 
selected 

PCs  selected  No. outliers 
removed 

 PCR wPCR PCR wPCR  PCR wPCR 
Potassium dichromate 
Potassium permanganate 18 x 9 6 

6 
99.99 
99.99 

Back 
Back 

3 
4 

3 
2 

1, 2, 5 
1, 2, 4, 5 

1, 2, 5 
1, 2  2 

2 
2 
2 

Py 
Benz 
Phen 

25 x 27 
16 
16 
16 

99.99 
99.99 
99.99 

Back 
Back 
OLS 

9 
11 
8 

9 
9 
8 

1-7, 10, 12 
1-7, 8-10, 12 
1-3, 8, 10-11, 13-14 

1-4, 6-7, 10-12 
1- 7, 11-12 
1-3, 8, 10-11, 13-14 

 
0 
0 
1 

0 
0 
1 

Vintages 20 x 41 16 98.90 OLS 5 5 1, 2, 3, 4, 7 1, 2, 3, 4, 7  1 1 
Zinc 27 x 34 12 99.20 Back 9 10 1- 7, 10, 12 1-7, 8, 10, 12  3 2 
Tartrazine 
Sunset Yellow 12 x 47 5 

5 
99.98 
99.97 

Back 
Back 

3 
3 

3 
3 

1, 2, 3 
1, 2, 3 

1, 2, 3 
1, 2, 3  0 

1 
0 
1 

Low-quality whisky 
High-quality whisky 24 x 91 6 

6 
99.96 
99.94 

Back 
Back 

3 
3 

3 
3 

1, 2, 3 
1, 2, 3 

1, 2, 3 
1, 2, 3  2 

0 
5 
0 

Hexavalent chromium 17 x 79 6 99.99 OLS  3 3 1, 2, 5 1, 2, 5  5 5 
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Table III.  Performance of suggested model wPCR vs regular model PCR in fitting and in prediction. Mean Absolute relative error (MAre), Root Mean Squared 
relative errors (RMSre), Improvement in Mare and RMSre (%). Abbreviations used: Py: Pyrene, Benz: Benzanthracene, Phen: Phenanthrene. 
 In fitting In prediction  

Datasets MAre RMSre MAre  RMSre  

 PCR wPCR Impr 
(%) PCR wPCR Impr 

(%) PCR wPCR 
Impr 
(%) PCR wPCR Impr 

(%) 
Potassium dichromate 7.88 5.63 28.6 0.1215 0.0733 39.7 9.19 6.08 33.8 0.1145 0.0646 43.6 
Potassium permanganate 1.53 1.32 13.7 0.0228 0.0144 36.8 1.85 1.23 33.5 0.0208 0.0146 29.8 
Py 7.08 5.05 28.7 0.1045 0.0617 41.0 9.02 6.13 32.0 0.1059 0.0708 33.1 
Benz 2.54 2.19 13.8 0.0357 0.0282 21.0 5.00 2.84 43.2 0.0630 0.0404 35.9 
Phen 5.33 4.33 18.8 0.0668 0.0596 10.8 8.56 8.10 5.4 0.0995 0.0948 4.7 
Vintages 13.00 10.90 16.2 0.1632 0.1410 13.6 15.54 11.37 26.8 0.1817 0.1562 14.0 
Zinc 1.25 1.22 2.4 0.0200 0.0153 23.5 2.92 2.45 16.1 0.0418 0.0413 1.2 
Tartrazine 0.79 0.78 1.3 0.0114 0.0093 18.4 1.37 0.95 30.7 0.0201 0.0097 51.7 
Sunset Yellow 0.64 0.60 6.3 0.0082 0.0077 6.1 1.14 0.96 15.8 0.0141 0.0131 7.1 
Low-quality whisky (old) 2.11 0.80 62.1 0.0410 0.0100 75.6 2.58 1.72 33.3 0.0297 0.0202 32.0 
High-quality whisky (Chivas) 1.78 1.27 28.7 0.0228 0.0165 27.6 5.73 5.54 3.3 0.0779 0.0659 15.4 
Hexavalent chromium 1.76 1.59 9.7 0.0225 0.0193 14.2 20.3 18.12    10.7 0.2864 0.1884    34.2 
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These models have been built from sixteen potential PCs accounting for 99.99% of the X variance 

in each of them. Except for the Phen case, where an outlier has been detected, the calibration 

models have been obtained using all available samples (third to fifth rows in Table II)  

The relative errors of predictions have been computed and summarized in Table III (third to fifth 

rows). In the three PAHs studied, the wPCR calibration allows relative errors to decrease, both in 

terms of MAre and in terms of variability, markedly in the prediction of Py, whose RMSre achieves 

a reduction of 41%. 

As to the PCs kept (Table II), the suggested method wPCR retains a similar number of components 

to that of PCR, or even less (in the Benz case) still resulting in better outcomes.  

Figure 2a, concerning Py predictions, shows PCR relative errors above 20 or even 30% in samples 

with the lowest concentrations (especially, samples 1 to 3), which decrease by the application of 

wPCR at the cost of a slight increase of relative errors in some higher concentration samples, all 

but one with records below 10% in absolute terms. 

As to the pattern displayed for Benz (Figure 2b), predictions are drastically improved for samples 

number 1 to 6, again those with the smallest concentrations. The wPCR proposed model gets a 

more homogeneous distribution of relative errors, most of them ending up below 5%. 

Regarding the prediction of Phen, the stepwise methods have shown some differences in the PCs 

selected so an ordinary least squares method have been used and 8 PCs with significant 

coefficients selected.  As Figure 2c displays, the samples with the lowest concentrations highly 

advantage from the application of wPCR, as relative errors sharply fall in samples number 1 to 10, 

although the overall behaviour of the variability of relative errors is not as enhanced as in the 

previous cases. 

4.1.3 Vintages Port dataset 
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The proposed method to optimize relative errors may be suitable in a variety of contexts other 

than calibration models, i.e. when running a Principal Component Regression as long as the 

computation of relative errors makes sense. For illustrative purposes, we present here a dataset, 

taken from Ref. 29, concerning a regression model to predict the age of a wine. The dataset is 

made up of samples from 20 vintages with ages ranging from 4 to 27 years and 41 oenological 

variables.  

When builiding PCR, as described in section 2, an object is discarded as outlier and a final model is 

built on 19 vintages (Table II, sixth row). The PCR model draws five PCs as regressors, specifically 

the first four and the seventh one and gives rise to absolute errors below 3 years in most of the 

cases. However, this results in a MAre above 13% (Table III, sixth row), since relative errors for 

some younger vintages approach 30%, thus meaning poor predictions. Moreover, as Figure 3 

displays, there is a noticeable variability among the wines, with better predictions in older ones, 

namely, those aged over 20 years.  

The wPCR suggested method selects a subset of analogous PCs but achieves better predictions in 

percentage terms, especially for vintages of five or less years, where relative errors fall sharply. 

Roughly speaking, vintages up to ten years (wines number 1 to 10) get lower relative errors 

without substantially worsening predictions for older vintages (more than 20 years). Although not 

all the vintages benefit from the wPCR model, the new average relative error falls to about 10% 

and a small reduction of RMSE takes place, thus improving the predicted ages and reaching a 

more equalized distribution (Figure 3). 

4.1.4 Zinc dataset 

The analysis is carried out from 12 initial PCs capturing 99.2% of X variance. Regular PCR selects 

ten PCs (from first to seventh, plus tenth and twelfth) which leads to a small average relative error 

(seventh row in Tables II and III). Nevertheless, a few samples with low concentration of zinc, 
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particularly number 1 and 4, show predictions whose relative errors exceed 5%. When applying 

the wPCR model, which takes an aditional PC (the eighth one), predictions for these samples 

improve without affecting samples with high concentrations meaninfully. Since the RMSE 

decreases by 23%, the overall distribution of relative errors becomes more balanced (Figure S1 in 

supplementary material). 

4.1.5 Food colorants dataset 

The calibration models to predict the concentration of both Tartrazine and Sunset Yellow have 

been based on five potential PCs representing about 99.98% of the X variance in each additive 

(eighth and ninth rows in Table II). Predicted concentrations of the two additives have been 

performed from the first three PCs, both in PCR and wPCR, resulting in small relative errors, lower 

than 1% in average (Table III). Nonetheless, wPCR achieves even better predictions mainly in 

samples with lower concentrations (Figure 4a). Regarding Tartrazine, the suggested calibration 

model gets a decrease of 19% in RMSre. Concerning Sunset Yellow, a slight reduction in RMSre is 

seen (eighth and ninth rows in Table III) but still a visible improvement for samples number 1 and 

3 (Figure 4b) 

4.1.6 Fraudulent whisky dataset 

The percentages of high-quality and low-quality whisky have been predicted from 6 initial PCs 

which capture about 99.95% of the X variance in both cases. The calibration models select the 

first three PCs, PCR and wPCR alike (tenth and eleventh rows in Tables II and III). 

When predicting the percentage of high-quality whisky, the wPCR model reduces the average 

relative error as well as the RMSre (by almost 30%). In addition, the predictions for whiskies with 

less than 50% of high-quality whisky (samples 1 to 9) improve notably, without having an 

important effect over the predictions for samples with large percentages of high-quality whisky 

(see Figure 5a), any relative error surpassing 5% (samples 10 to 24). 



20 
 

20 
 

As to the percentage of low-quality whisky, where five outlier samples have been found and 

discarded (Table II), MAre and RMSre fall sharply, as Table III shows. This results in a decrease of 

relative errors, especially in samples 1 and 3, and a more homogeneous distribution with all 

relative errors virtually under 2% (Figure 5b)  

4.1.7 Chromium in toys dataset 

The calibration model to predict the concentration of hexavalent chromium has been built from 

an initial set of 6 PCs which represent 99.99% of the X variance. Again, five outlier samples have 

been ruled out and since the stepwise procedures (backward and forward) do not retain a similar 

number of components, an Ordinary Least Squares (OLS) regression has been conducted. Thus, 

the predition model keeps 3 PCs, namely, the two first and the sixth one (twelfth row in Table II). 

The outcome of wPCR slightly improves that of PCR, in terms of MAre and RMSre (twelfth row in 

Table III), but still gets a better prediction for low concentration samples, as Figure S2  in the  

Supplementary material displays. 

Overall, the analysis of the results of Table II shows that in all the cases analysed there is a 

reduction of MAre ranging from 1 to 28.7% and even greater for RMSre ranging from 6.1 to 41.0 

%, excluding the case of Low-quality whisky in which reductions in MAre and RMSre are 62.1% 

and 75.6% respectively. The criterion of minimising relative errors supplies smaller MAre values as 

expected. The decrease of RMSre caused by a more uniform distribution of relative errors in the 

predicted response is even more remarkable. 

4.2 Accuracy lines 

Finally, the performance of the method in terms of accuracy has been evaluated, the accuracy of 

the suggested method, wPCR and also that of PCR has been checked for all the datasets. The 

parameters of these regressions ‘predicted concentration versus true concentration’ are shown in 

Table IV. The JCR for the parameters of the accuracy line, all of them built at 95% confidence, are 
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showed in Figure S3 of Supplementary material, where each sub-figure includes the 

representation of both the PCR and the wPCR ellipses for comparative purposes. As shown, the 

point (0,1) falls inside the corresponding JCR in every sub-figure, thus meaning that the intercept 

and the slope are not significantly different from 0 and 1 jointly. Therefore, the wPCR method has 

neither constant nor proportional bias.  

Table IV. Accuracy line. Estimates for Intercept b0 and slope b1, Residual standard deviation Sy/x, 
explained variance R2(%). Abbreviations used: Py: Pyrene, Benz: Benzanthracene, Phen: Phenanthrene 

 PCR wPCR 
Datasets b0 b1 Sy/x R2 b0 b1 Sy/x R2 
Potassium dichromate 0.0319 0.9925 0.2152 99.25 0.1211 0.9594 0.2329 99.06 
Potassium permanganate 0.0066 0.9995 0.1531 99.95 0.0499 0.9950 0.2227 99.89 
Py 0.0082 0.9820 0.0298 98.20 0.0012 0.9922 0.0350 97.58 
Benz 0.0033 0.9980 0.0360 99.80 0.0253 0.9811 0.0532 99.53 
Phen 0.0091 0.9833 0.0347 98.33 0.0188 0.9562 0.0359 98.11 
Vintages 0.6201 0.9550 1.6496 95.24 0.6147 0.9179 1.6891 94.62 
Zinc -0.0380 1.0102 0.1409 99.39 0.0359 0.9933 0.1096 99.62 
Tartrazine 0.0024 0.9994 0.0439 99.94 0.0011 0.9996 0.0500 99.92 
Sunset Yellow 0.0006 0.9998 0.0234 99.98 -0.0080 1.0021 0.0255 99.98 
Low-quality whisky 0.0348 0.9994 0.7330 99.94 0.2954 0.9946 0.5846 99.95 
High-quality whisky 0.1111 0.9982 1.1899 99.82 0.1792 0.9960 1.3127 99.78 
Hexavalent chromium 0.0006 0.9989 0.0111 99.89 0.0009 0.9977 0.0124 99.86 

 

From an analytical point of view, it is important to figure out the effect on calibration of using the 

adjustment criterion of minimizing the sum of squared relative errors instead of the usual sum of 

squared errors. In this sense, the orientation and size of the JCR obtained with wPCR and PCR for 

each case study show that, they are mostly similar, with no discernible pattern linked to the type 

of regression used. 

For example, in Benzanthracene (Figure S3d), PCR calibration (magenta ellipse) is more accurate 

than wPCR (blue ellipse) but the opposite occurs in the Zinc case, Figure S3g. 

A detailed study of the results allows to note that changes in the accuracy line are independent of 

the percentage reduction of RMSre. For instance, the JCR of both models (PCR and wPCR) in the 

case studies of Phenanthrene, Vintages and Hexavalent chromium (Figures S1e, S1f and S1l) differ 
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in various ways, whereas the percentage reductions of RMSre are quite similar (10.8, 13.6 and 

14.2% respectively) 

A similar remark may be done for MAre, which is virtually the same for analytes Benzanthracene 

and Potassium permanganate, 13.8 and 13.7 % respectively, although the type of calibration, 

wPCR or PCR, impacts on the JCR differently, as seen in Figures S3b) and S3d). 

4.3 Comparison of PCR and wPCR in prediction 

The comparative evaluation of two methods can be done through a test set independent of the 

training set or by crossvalidation, CV. Despite the popularity of CV, its use has been criticized25.  

Moreover, in most of our case studies, calibration samples are mixtures of analytes so that 

samples with identical response (concentration) correspond to different signals due to the 

presence of different amounts of another analyte. In other words, there is no redundant 

information, but each sample provides significantly different information. In this sense, discarding 

samples can lead to lower quality designs affecting the validity of the calibration model, 

regardless of whether the regression is weighted or not. In line with this concern, we have 

decided to limit the potential adverse effect derived of constantly changing samples on the 

calibration models by using an external dataset instead of a cross-validation.  

Therefore, to evaluate the effect in prediction of wPCR versus PCR for each dataset, a test set has 

been defined by randomly selecting about 25% of the dataset samples (or observations). 

Subsequently, a PCA on the training set has been conducted following the criteria described in 

section 2 of methodology. Finally, both unweighted and weighted backward stepwise regressions 

(PCR and wPCR) were computed in the test set, thus allowing to calculate the relative errors in 

prediction. 

The results in terms of Mare and RMSre of these relative errors are gathered in Table III (columns 

8-9 and 11-12, respectively). As shown, relative errors in prediction are always higher than in 
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fitting. However, relative errors in prediction computed by wPCR are always lower than those 

computed by PCR.  The improvement, in percentage, for MAre varies between 3.3 and 43.2 while 

for RMSre, it ranges from 1.2 to 51.7%.  

The distributions of relative errors in the test set samples (observations), PCR vs wPCR, have been 

displayed in Figures S4 to S10 of the supplementary material. In general, the pattern of smaller 

relative errors in samples of lower concentration, arises again except for the Phenanthrene 

calibration (Figure S5c). Concerning this case study, it is worth noting that the spectra of the PAHs 

dataset correspond to mixtures of 10 analytes. The effect of having the same response 

(concentration to be predicted) in samples with different amounts of other analytes can be clearly 

seen in the same Figure S5 of the supplementary material. 

4.4 Effect of the logarithmic transformation of the response 

Logarithmic transforming the response is one of the most used methods to stabilize a least 

squares regression and is particularly suitable in case of multiplicative errors. Since the difference 

between the logs of two values is relatively smaller when they are large than when they are small, 

it can be thought that using logPCR might lead to smaller relative errors in low concentration 

samples. 

To explore this possibility, once the PCA has been done, the logarithm of the response has been 

regressed onto the T variables, with a backward stepwise procedure for variable selection. The 

results in terms of relative errors are presented in Table S8 of the supplementary material. As for 

the 12 cases studied, Figure 6 shows that the value of MAre obtained with logPCR is worse than 

with PCR which, in turn, is worse than the one from wPCR.  RMSre exhibits the same pattern, as 

shown in table S8 of the supplementary material.   

CONCLUSIONS  
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In the 12 predicted variables, it has been shown that a regression model based on relative errors, 

avoids the tendency to increase relative errors in small values of the response relative to the large 

ones, which is typical of the usual regression models. This is relevant in multivariate calibrations 

where the response is an analyte concentration and the relative error in its determination is a 

common analytical criterion for assessing calibration performance. To address the problems of 

collinearity and correlation of multivariate analytical signals, the wPCR proposed is a Principal 

Component Regression along with the criterion of adjustment of relative errors. 

The reduction in the mean of the absolute values of relative errors (MAre) achieved by wPCR over 

PCR ranges from 1 to 62.1% (3% to 43% in prediction) and 6.1 to 75.6% (1.2% to 52% in 

prediction) in its standard deviation (RMSe). The wPCR model also outperforms PCR with 

logarithmic transformation of the response (logPCR).  

The regression model attained by wPCR has no bias and its effect on the parameters of the 

accuracy line is not significant, nor is it related to the level of reduction in MAre and/or RMSre. 

Therefore, the change of criteria for achieving the Principal Component Regression does not 

introduce systematic trends. 

 

Acknowledgments 

The authors thank the financial support provided by Spanish MINECO (AEI/FEDER, UE) through 

project CTQ2017-88894-R and Consejería de la Junta de Castilla y León (BU052P20), both co-

financed with European Regional Development Funds. Junta de Castilla y León and Fondo Social 

Europeo. 

 

REFERENCES 
 
1. Draper NR, Smith H, Applied Regression Analysis.  3rd edition New York NY: John Wiley and 

Sons; 1998. 



25 
 

25 
 

 
2. Ferreira JM, Caramelo L, Chhabra RP. The use of relative residues in fitting experimental data: 

an example from fluid mechanics. International Journal of Mathematical Education in Science and 

Technology. 2000; 31: 545-552 DOI: 10.1080/002073900412651. 

3. Tofallis C, Least Squares Percentage Regression. Journal of Modern Applied Statistical Methods 

2008. 7:526-534 DOI: 10.22237/jmasm/1225513020. 

4. Montgomery DC, Peck EA, Vining GG, Introduction to Linear Regression Analysis, 5th edition 

Jhon Wiley and Sons; 2012. 

5. Ortiz MC, Sánchez MS, Sarabia LA, Quality of Analytical Measurements: Univariate Regression. 

In Brown SD, Tauler R, Walczak B, ed. Comprehensive Chemometrics. Chemical and Biochemical 

Data Analysis, 2nd ed. Amsterdam, Elsevier: 2020. 

6. Almeida AM, Castel-Branco MM, Falcao AC, Linear regression for calibration lines revisited: 

weighting schemes for bioanalytical methods; Journal of Chromatography B, 2002 774 215–222. 

7. Alladio E, Amante E, Bozzolino C, et al. Effective validation of chromatographic analytical 

methods: The illustrative case of androgenic steroids, Talanta 2020; 215 120867; DOI 

/10.1016/j.talanta.2020.120867. 

8. Sánchez J.M., Linear calibrations in chromatography: The incorrect use of ordinary least squares 

for determinations at low levels, and the need to redefine the limit of quantification with this 

regression model, Journal of Separation Science, 2020;1–10. 

9.  Naes T, Isaksson T,  Fearn T, Davies T. A User-friendly Guide to Multivariate Calibration and 

Classification. NIR Publications, 2002. 

10. Lee H, Park YM, Lee S. Principal Component Regression by Principal Component Selection. 

Commun. Stat. Appl. Methods 2015; 22(2):173-180. DOI: 10.5351/CSAM.2015.22.2.173. 

11. Næs T, Martens H. Principal Component Regression in NIR Analysis: Viewpoints, Background 

Details and Selection of Components. J Chemom. 1988; 2.2: 155–167. 

12. Sutter JM, Kalivas JH, Lang PM. Which Principal Components to Utilize for Principal 

Component Regression. J Chemom. 1992, 6.4: 217–225. 

13. Wehrens R, Van Der Linden WE. Bootstrapping Principal Component Regression Models. J 

Chemom. 1997; 11.2: 157–171.  

14. Ergon R. Finding Y-relevant part of X by use of PCR and PLSR model reduction methods.  J 

Chemom. 2007, 21: 537–546. 

https://www.iberlibro.com/servlet/SearchResults?an=tormod%20naes&cm_sp=det-_-plp-_-author
https://www.iberlibro.com/servlet/SearchResults?an=tomas%20isaksson&cm_sp=det-_-plp-_-author
https://www.iberlibro.com/servlet/SearchResults?an=tom%20fearn&cm_sp=det-_-plp-_-author


26 
 

26 
 

 
15. Hubert M, Verboven S. A robust PCR method for high-dimensional regressors. J Chemom.  

2003, 17:438-452. 

16. Mandel J, Linning FJ. Study of Accuracy in Chemical Analysis Using Linear Calibration Curves. 

Anal. Chem. 1957, 29.5: 743-749. 

17. STATGRAPHICS Centurion XVIII Version 18.1.11 (64 bit), Statgraphics Technologies, Inc., The 

Plains, VA, USA, 2018. 

18. MATLAB, Version 9.7.0.1190202, The Mathworks, Inc., Natick, MA, USA, 2019. 

19. Ortiz MC, Herrero A, Sanllorente S, Reguera C. La calidad de la medida analítica. The quality of 

the information contained in chemical measures, Servicio de Publicaciones de la Universidad de 

Burgos, Burgos, Spain, 2005. ISBN: 84-96394-26-1. 

20. Brereton RG. Chemometrics: Data Driven Extraction for Science, 2nd ed. Chichester, UK: John 

Wiley & Sons Ltd; 2018. 

21. Ortiz MC, Sarabia LA, Symingtonc C, Santamaría F, Íñiguez M. Analysis of Ageing and 

Typification of Vintage Ports by Partial Least Squares and Soft Independent Modelling Class 

Analogy. Analyst 1996; 121:1009-1013. 

22. Herrero A, Ortiz MC, Multivariate calibration transfer applied to the routine polarographic 

determination of copper, lead, cadmium and zinc, Analytica Chimica Acta 1997; 348: 51-59. 

23. Lucio Dallo FJ, Identificación y cuantificación de la adulteración de un whisky de calidad, End 

Degree Project, University of Burgos, 2013. 

24. Real García, BD, Optimización del funcionamiento de procedimientos analíticos en 

cromatografía y espectroscopia mediante el uso de diseño de experimentos y quimiometría, PhD, 

University of Burgos, 2010. 

25. Esbensen K H, Geladi P, Principles of Proper Validation: use and abuse of re-sampling for 

validation, J. Chemometrics 2010; 24:168–187, DOI: 10.1002/cem.1310. 

FIGURE CAPTIONS 

Fig. 1 Dichromate-Permanganate dataset. Relative error distributions compared: PCR (in 

blue) vs wPCR (in orange). 1a) Potassium Dichromate, 1b) Potassium permanganate. 

Sample codes and concentrations are shown in Table S1.   
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Fig. 2 Polycyclic Aromatic Hydrocarbons (PAHs) dataset. Relative error distributions 

compared: PCR (in blue) vs wPCR (in orange). 2a) Py, 2b) Benz, 2c) Phen. 

Abbreviations used: Py (Pyrene), Benz (Benzanthracene) and Phen (Phenanthrene). 

Sample codes and concentrations are shown in Table S2.    

Fig. 3 Vintages dataset. Relative error distributions compared: PCR (in blue) vs wPCR (in 

orange). Vintage codes and ages are shown in Table S3.   

Fig. 4 Food colorants dataset. Relative error distributions compared: PCR (in blue) vs wPCR 

(in orange). 4a) Tartrazine (E-102), 4b) Sunset Yellow (E-110). Sample codes and 

concentrations are shown in Table S5.   

Fig. 5 Fraudulent whisky dataset. Relative error distributions compared: PCR (in blue) vs 

wPCR (in orange). 5a) High-quality, 5b) Low-quality. Sample codes and 

concentrations (%) are shown in Table S6.   

Fig. 6 MAre computed by means of logPCR, PCR and wPCR for the 12 responses studied.  

 


