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Abstract 

The selection of a proper cutting tool in machining operations is a critical issue. Tool geometric 
parameters are essential to milling performance. However, the process engineer has very limited 
experience of the best parameter combination, due to the high cost of cutting tool tests. The same 
holds true for bachelor studies on machining processes. This study proposes a new strategy that 
combines experimental tests, machine-learning modelling and Virtual Reality visualization, to 
overcome these limitations. First, tools with different geometric parameters are tested. Second, the 
experimental data are modeled with different machine-learning techniques (regression trees, 
multilayer perceptrons, bagging, and random forest ensembles). An in-depth analysis of the 
influence of each input on model accuracy is performed to reduce experimental costs. The results 
show that the best model with no cutting-force inputs performed worse than the best model with 
all the inputs. Third, the most accurate model is used to build 3D graphs of special interest to 
engineering students as well as process engineers, for the optimization of power consumption 
under different cutting conditions. Finally, a Virtual Reality environment is presented to train 
engineering students in the study of the best tool design and cutting parameter optimization.  
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1. Introduction 

Manufacturing companies must balance reliable and productive cutting processes with quality 
parts, in order to satisfy short delivery times from industrial partners. Maintaining high mass 
removal rates under proper, optimum, milling forces is a crucial issue in machining operations. 
Hence, the modeling of cutting forces for the prediction of machining forces under a variety of 
conditions is essential for optimal machining operations. Some outputs of these models are the 
definition of power requirements, chatter onset, optimization design for fixtures and clamping, etc. 
Strasmann cutters also known as ripping or serrated cutters, offer an efficient solution for better 
mass removal rates. Their main applications are productive roughing operations in various areas, 
such as components for machine tool structural elements, tools, and fixtures, among others.  

The optimization of cutting processes using serrated cutters has followed two main approaches: 
either by programming the best cutting conditions or by selecting the most suitable cutting tool. 
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The first strategy has been extensively explored and summarized in recent reviews (Vallavi M S, 
Gandhi N, and Velmurugan 2015), while the bibliography related to the second approach is much 
more limited (Tehranizadeh and Budak 2017; Urbikain Pelayo and Olvera Trejo 2020). The reason 
for this imbalance between research efforts into both approaches is due to the high costs of testing 
many different cutting tools under the same cutting conditions. While the first approach requires 
only one cutting tool for testing tens of different cutting conditions (e.g., by changing feed rate and 
rotation speed), the second approach would require an inordinate number of specially 
manufactured tools for testing. Process engineers will therefore have very limited experience or 
criteria to decide upon the best combination of geometrical tool parameters and will generally rely 
on the tool manufacturer’s recommendations. Cutting process modeling might be the only 
alternative solution to costly extensive experimental tests. 

The mechanistic model was the first type of model used to optimize tooling processes and tool 
design. In their seminal work Engin and Altintas (Engin and Altintas 2001) described the 
fundamental points on the mechanics and the dynamics of milling cutters. Their models proved to 
be very useful and adaptable and were therefore extended towards more complex tool geometries. 
For instance, Budak (Budak 2003) analyzed the behavior of variable helix pitch tools and found 
productivity growth regions with respect to conventional straight end mills. More recently, 
mechanistic approaches when merged with either numerical methods or with FEM have led to 
important chatter research-related results. For instance, Ozkirimli et al. (Ozkirimli et al. 2016) 
reported good agreement with experimental results after having adapted the zero-th order semi-
discretization method through a speed average time-delay term in their model that reproduced 
regular and irregular tooling patterns. Likewise, Tunc (Tunc 2018) proposed a generalized milling 
model using a combination of FEM, stereolithographic (STL) slicing and Receptance Coupling 
Substructure Analysis (RCSA) for analyzing chatter in robotic milling. Urbikain (Urbikain 2019) 
analyzed the behavior of complex barrel tools under static and dynamic conditions.  

This strategy has been also followed regarding serrated or undulated profiles. The model proposed 
by Campomanes (Campomanes 2002) tested both the mechanics and the dynamics of serrated 
tools with sinusoidal forms. It took no account of the full tool geometry and its effects, preferring 
the linear edge force model to account for milling forces. The mechanistic cutting prediction model 
proposed by Zhang et al. (Zhang et al. 2003) divided the solid end-mill into axial disks. Grabowski et 
al. (Grabowski, Denkena, and Köhler 2014) also presented a model for forces and stability that took 
account of friction and rubbing effects. They included edge force coefficients for the computation 
of the cutting forces. Merdol and Altintas (Merdol and Altintas 2004) addressed the fundamentals 
of the mechanics and the dynamics of serrated endmills. They developed a mechanistic cutting 
force model to predict cutting forces and utilized the model to analyze the effects of tool geometry 
on basic quantities such as chip thickness, cutting force, power and vibrations. Imani et al. (Imani, 
Sadeghi, and Kazemi 2008) proposed real-time finite element analysis to study the stability of 
interrupted (low immersion) milling processes. In their work, they investigated the helix angle and 
its effects on cutting forces. In turn, Dombovari et al. (Dombovari, Altintas, and Stepan 2010) 
examined serration effects on milling stability using semi-discretization algorithms. In turn, Koca et 
al. (Koca and Budak 2013) used the Linear edge-force model for force modeling and the first order 
semi-discretization method for stability prediction with serrated end mills. They used Brute Force 
Search and the Differential Evolution Method to investigate serration parameters for improved 
stability. Recent investigations can be found on the margins for machining quality improvements 
based on the properties of the serrated profile (Tehranizadeh and Budak 2017) and on the serration 
shift angle between cutters (Urbikain Pelayo and Olvera Trejo 2020). 



Machine-learning techniques can also be considered for cutting-process modeling. Machine-
learning techniques have the advantage of generalizing the models to new conditions, thereby 
reducing the number of expensive experimental test that have to be performed. When the output 
of a machine-learning model is a continuous variable, the prediction problem is commonly called 
regression. Many machine-learning techniques have been developed for regression tasks: Artificial 
Neural Networks (ANN) (Yegnanarayana 2004), Regression Trees (RT) (Quinlan 1992) and 
Ensembles (Kuncheva 2014). The accuracy of these techniques equals other traditional approaches 
and the techniques themselves are more flexible for many manufacturing processes such as surface 
quality (Benardos and Vosniakos 2003) and tool wear (Chandrasekaran et al. 2010) prediction in 
machining operations. However, there are few studies that have modeled power consumption as 
an output, although recent studies have shown that the energy consumption of the drive is the 
most critical factor for the eco-impact of a machine-tool when its whole lifecycle is considered 
(Dietmair et al. 2010). However, sensitivity towards eco-impact and power consumption is very 
recent in industry and the modeling of power consumption is not as extensive as the prediction of 
surface quality and tool wear. In this sense, Lechevalier et al. (Lechevalier et al. 2018), in one of the 
rare studies on power consumption modeling with machine-learning algorithms, proposed an ANN-
based methodology to generate analytical models for energy consumption in milling processes.   

Tools can be properly designed once cutting process models are prepared, following either of those 
two approaches –analytical modelling and machine-learning techniques-. Tool design is studied and 
optimized through many different direct/indirect indicators of cutting-process quality. In the first 
group, we find surface quality; surface and average surface roughness parameters, Ra and Rz, are 
often the output functions. Tools that are optimized for the best surface accuracy are, however, 
finishing end-mills with a slight MRR. Such models tend to use empirical models and Taguchi 
techniques (Kumar 2018, Kumar et al 2019), but are not so useful in terms of relating surface 
roughness to tool geometry. In most cases, a surface function is built for the surface roughness 
parameter, depending on the cutting parameters rather than the tool geometry. Those models are 
only capable of describing the tool at the surface with a very coarse consideration of tool 
parameters (tool diameter, number of flutes, …). They can hardly be used in practice to improve 
tool design. In the second group, cutting forces are considered a relevant indirect parameter to 
assess process quality. Authors often try to reduce either the peak of the cutting forces or the 
average total force or both; the key variable is mainly the resultant force on the horizontal XY plane 
(as a lower force tends to be registered on the Z axis) (Tehranizadeh and Budak 2017, Urbikain and 
Olvera 2020). This criterion is selected when the aim is to improve tool life and to reduce tool costs. 
Controlling and reducing cutting forces is associated either with roughing or with finishing 
operations, because roughing operations are time-consuming operations and finishing operations 
may lead to chatter vibrations. Regarding the latter, chatter avoidance (or chatter-free region 
maximization) can also be a tool-design criterion (Comak and Budak 2017). However, chatter 
likelihood depends on a number of variables from one operation to another; for instance, cutting 
force directions, displacement direction, which in fact depend on the cutting parameter, tool 
geometry, etc. 



 

Among these criteria, energy optimization has gained ground over recent years. As sustainable 
manufacturing promotes competitiveness, manufacturers of consumer goods are increasingly 
involved in the environmental challenge (Wippermann et al. 2020). Improving the energy efficiency 
of manufacturing processes is a trend -if not a must- for goods manufacturers. In this sense, models 
for cutting power prediction and estimation have been created and adapted to various 
manufacturing processes. Gutowski et al. proposed a pioneering thermodynamic model in 
(Gutowski et al. 2006). These authors proposed the summation of a constant term (for idle spindle 
running) and a variable one for the power formula, which was proportional to the Mass Removal 
Rate (MRR). Later, models were developed both for turning and for milling processes (Li and Kara 
2011). Regarding the latter, Balogun and Mativenga (Balogun and Mativenga 2013) presented a 
very rigorous approach towards minimizing energy requirements. These authors modelled cutting 
power and studied the effect of toolpaths through milling tests and power measurements. Liu et al. 
(Liu et al. 2015) conducted an empirical study of total power modelling. However, the experimental 
agreement was only verified in slot-milling operations. They then presented a power model quality 
indicator that related energy consumption and surface roughness (Liu et al 2016), achieving very 
good agreement and even proposed a direct relation between both input-output parameters. Shi et 
al. (Shi et al 2019) proposed an improved model for power prediction that was successfully applied 
to the milling of titanium alloys, with very low errors. 

However, most energy optimization models for tool design are based on relating chip load (i.e., 
Material Removal Rate –MRR-) and the resultant cutting force with cutting power. Such 
mechanistic-based models can be very time-consuming and very often involve too much local to 
specific machining operations (slot milling, conventional straight cutting tools, soft materials…) and 
conditions (no tool wear, no chatter, etc.). Machine-learning models can only be of sufficient 
accuracy when fed with extensive experimental data to set their parameters and for model 
validation. Based on the above limitations of both approaches, a novel combination of power 
consumption obtained from a mechanistic-based model and small volumes of experimental data is 
proposed in this study using machine-learning techniques that simulate high-cost experimental 
models. The target applications are time-consuming rough milling applications where surface 
roughness cannot be the primary magnitude. Power consumption, which is related to MRR and 
cutting forces, is 1) a scalar quantity that is easier to process than some other parameters; and 2) it 
is easily measured with inexpensive devices (unlike cutting forces that need dynamometers). 
Therefore, power consumption will be used in this study as the main criterion. Besides, machine-
learning techniques can be adapted to variables with different meanings and origins, so the 
proposed methodology can also be extended to other output variables, such as surface roughness, 
cross XY average force component and any other chatter-related variables. 

However, the development of prediction models for manufacturing tasks is not the only challenge 
to the optimization of factory production. As manufacturing tasks are multivariable problems 
(Benardos and Vosniakos 2003), new technologies are needed for the visualization of high 
dimensional data. Some recent reviews outline this requirement, searching for solutions such as 
Augmented Reality (Bottani and Vignali 2019) and 3D printing (Ford and Minshall 2019). This 
challenge is mirrored in academic spheres: how to improve teaching methodologies so that 
(engineering) students can enhance their comprehension of (manufacturing) problems. As a 
cheaper alternative to Augmented Reality and 3D printing, Virtual reality has proven itself to be a 
highly effective technology for training and learning (Makarova et al. 2015). Improvements in 
hardware and associated technologies, coupled with lower costs, have led to a great expansion of 
Virtual Reality over recent years, and its progressive introduction at all educational and training 



levels. The use of virtual reality techniques in educational environments can produce an increase in 
student interest and prepare them for their future professional career (Checa and Bustillo 2020). 
There are many examples of virtual reality teaching and training experiences that include CNC 
procedures for engineering students to practice without fear of failure (Checa and Bustillo 2020), 
and for practical experience with a specific machining task (Nathanael et al. 2016). Virtual reality is 
also a suitable medium for visualization tasks (Pelliccia et al. 2016) as well as a medium in which to 
explore 3D learning environments, where the interaction with the content is a key factor (Valdez et 
al. 2015). In this way, the students learn not only the theoretical methods, but also the structure of 
the technical systems and the technological processes, preparing themselves better for practical 
professional work (Van Bibber and Bahr 2018). 

During their undergraduate studies, process engineers lack practical experience of the influence of 
cutting tools and their geometrical parameters on the energy consumption of machining processes. 
As recent studies have outlined (Gani et al. 2018), new learning tools that can evaluate these 
influences are necessary. The combination of machine-learning techniques and virtual reality 
environments are, in this case, especially interesting, because they can simulate many new 
geometrical conditions with a very limited experimental data. The accuracy of the models might be 
limited for industrial use, although sufficient for students to extract useful information and patterns 
on the influence of geometrical parameters of a tool on cutting performance. Besides, the high 
immersion effect of Virtual Reality and its high interactivity with the prediction models can increase 
student learning rates. 

This research proposes a new strategy based on experimental tests, machine-learning modelling 
and Virtual Reality visualization to overcome this lack of experience in the selection of the best 
cutting tool. First, different cutting tools were selected to analyze the effect of variable cutting 
geometries. Power consumption was measured in cut-off and during cutting for each test condition. 
Second, different machine-learning techniques were used to model the experimental data. Four 
types of machine-learning techniques were selected for this purpose: regression trees, multilayer 
perceptrons, bagging ensembles of those regressors and random forest ensembles. The most 
accurate model was used to build 3D graphs of direct interest for the process engineer to optimize 
the power consumption under different cutting conditions. Third, a Virtual Reality environment was 
used to train engineering students in power optimization in slot milling considering different cutting 
conditions and tool geometries. Figure 1 summarizes the proposed strategy. 



 
Figure 1. Scheme of the proposed strategy.  

The paper is organized as follows. In Section 2, the cutting conditions and the experimental 
characterization of tool behavior will be presented. Milling tests will be performed and spindle 
speed power consumption levels will be measured. Then, the dataset extracted from the milling 
tests will be presented in Section 3 together with the machine-learning techniques used to model 
the dataset. In Section 4, the results of the modelling process will be presented as well as the best 
way of applying the model in industry and for teaching engineering. Finally, the most relevant 
results of the research will be summarized in the Conclusions and future research lines will be 
proposed. 

 

2. Experimental set up 

The procedure for the characterization of cutting tool behavior will be described in this section. It 
will cover the characterization tests including tool selection, cutting parameter selection, and 
experimental tests performed on Al 7075-T6 aluminum alloy workpieces in a 3-axis machining 
center.  



2.1. Tool selection 

The group of chatter-resistant solid end-mills can be classified into four main types each of which 
reduce the regenerative effect thus improving chatter performance: alternating pitch cutters, 
Strassman or roughing cutters, trapezoidal cutters, and bi-helix cutters. In this study, our attention 
is focused on the second and third groups. Strassman cutters are cylindrical tools with helical forms. 
In addition to tool diameter D, helix angle β, and number of cutters Z, the major parameters are the 
amplitude A and the wavelength L of the sinusoid. An additional pair of parameters are needed for 
the trapezoidal tools: the upper width of the trapezoid, sometimes described as a percentage of the 
wavelength period, ε, and the angle of the trapezoid’s flank, θ. Figure 2 describes these parameters 
on both tool types. 

 

 
Figure 2. Geometrical parameters in sinusoidal and trapezoidal solid end-mills (β=45°).  

Quotes were requested from various tool suppliers for a serrated aluminum alloy cutting tool, so as 
to ensure identical cutting conditions. The only constraint was the tool diameter: D = 8 mm (larger 
diameters increase their cost). Three tools from three different suppliers were selected as the best 
option for the milling of Al 7075-T6, in view of the manufacturers’ recommendations. The suppliers 
of tools #1 and #2 recommended the most specific solutions for the machining of Al 7075-T6. The 
supplier of tool #2 recommended the tool for aluminum, but not for other materials, while the 
supplier of tool #3 recommended the P group for the use of its serrated tool, although it also 
included the S group. Finally, tool #4 was recommended for stainless steels or titanium-based 
alloys, but was selected here to test the influence of the geometry. 

There were differences between the three tools: number of teeth Z = 3 or 4 and helix angles from 
30-45°. The most interesting feature of the roughing cutters was their serrated profile. All the tools 
were measured using a digital microscope. Table 1 summarizes the geometrical data of the tools. 



No internal lubricant was used. Besides, not all the types are available with internal lubrication and 
the tool cost would be doubled. 

Table 1. Main geometrical parameters. 

  

Tool 
number 

Number of teeth 
Z 

Helix angle 
β 

Serration parameters 

1 3 40° A=0.10 mm; L=1.30 mm 

2 3 45° A=0.12 mm; L=1.30 mm 

3 4 30° A=0.20 mm; L=1.35 mm  

4 4 45° A=0.20 mm; L=1.20 mm; 
ε=0.625; θ=45° 

2.2. Experimental tests 

A good practice to maintain chip load under a certain control is to compensate the ap and the ae 
parameters. For comparative purposes, the tools will be tested with identical machining 
parameters: cutting speed, Vc, in m/min; axial depth of cut, ap, in mm; radial depth of cut, ae, in 
m/min; and, feed per tooth and revolution, fz, mm/rev. The same feed per tooth was in all cases 
selected, because of the different number of cutters. Table 2 shows the cutting conditions for the 
experimental tests. 

Table 2. Cutting parameters for the characterization tests. 

Tool number ap [mm] ae [mm] f [mm/rev] N [rpm] 

1 1-3 8 0.09-0.36 3,000-6,000 

2 1-3 8 0.09-0.36 3,000-6,000 

3 1-3 8 0.12-0.48 3,000-6,000 

4 1-3 8 0.12-0.48 3,000-6,000 

A conventional 3-axis machining center (Kondia B640) was used for the cutting tests. Cutting forces 
were measured with a Kistler dynamometer (9255B). Additionally, a power sensor was installed in 
the electrical cabin of the machining center (Figure 3). This device extracts instantaneous direct 
readings from the intensity running on each of the three phases. The power consumption can then 
be obtained, as it is proportional to the intensities. Figure 3a shows the main elements: the supply 
voltage (230VAC), the U-V-W phases of the motor spindle, the Hall effect sensor holes, the sensor 
phase connections and laptop Ethernet wiring. Figure 3b shows an example of a cutting test. The 
program is executed and paused in cut-off condition (before the tool penetrates the workpiece). 
The spindle rotates at the programmed spindle speed where P0 is the measured power. Then, the 
operator runs the program at the programmed feed rate. Cutting forces and power consumption 
are monitored and recorded until the tool leaves the workpiece and the spindle speed is stopped. 



 
Figure 3. a. UPC-E power sensor; b. Monitoring spindle’s power consumption. 

3. Modeling 

This section describes the dataset extracted from the experimental tests and the machine-learning 
techniques used for the prediction of the selected dataset outputs. 

3.1. Dataset description 

A dataset was compiled from the experimental set up described in Section 2 with inputs of three 
different types: cutting conditions, cutting tool features, and cutting force measurements. Besides, 
the dataset includes three measurements of the power consumption shown in Figure 3b: its value 
before the cutting process begins (P0), its average value during the cutting process (P) and the result 
of subtracting the value before the cutting process from the value during the cutting process or the 
power consumption directly related to the cutting process (Pc). The power consumption directly 
related to the cutting process is calculated as the difference between the average value of the 
power consumption during the cutting process and its value before the cutting process begins (Pc= 
P-P0). The dataset comprised 5 inputs or attributes related to the cutting conditions, 6 inputs 
describing the tool geometry, and 4 attributes measured during the cutting process that can 
provide information on tool wear. About cutting conditions the selected attributes were the: feed 
per tooth and revolutions (fz), feed rate (f), spindle rotating speed (S), cutting speed (Vc), and the 
axial depth of cut (ap). Regarding the tool geometry, the selected attributes were the number of 
teeth Z, the helix angle β, and the serration parameters A and L (amplitude and wavelength of the 
sinusoid, respectively). Another two attributes were added to the dataset to consider new features 
of the tools, such as its coating or material; these parameters are not directly related to any 
geometrical characteristic of the tools. Shape classified the tools by their serrated profile: sinusoidal 
or trapezoidal. Tool is a general identifier of each tool tested in the experiments. Tool provides the 
tool information to the machine-learning model not included in all the other inputs (such as coating 
type, etc.). Finally, the selected attributes related to process performance were the cutting forces in 
the 3 axial directions, Fx, Fy, and Fz, and the total cutting force, F. Those inputs were selected as the 
main variables because they are the ones that the process engineer can change to optimize the 
power consumption of the cutting process. Almost all the inputs and the outputs are considered 
continuous variables, although some of them take a very limited number of possible values, due to 
the experimental design and the limitations in the number of tools to be tested. Only Tool and 
Shape are nominal variables: while Tool takes four possible values (1, 2, 3 and 4), because four 
different tools were tested, Shape takes only two values: 1 (for sinusoidal geometry) and 2 (for 
trapezoidal geometry). Although the trapezoidal tool might not be completely defined by the A and 
L parameters, as only one tool of this geometry is used, the attribute Shape contains the required 
information for the machine learning algorithms to separate its behavior from the sinusoidal profile 
tools. The dataset included 116 different experiments. Table 3 summarizes both the inputs and the 



outputs, their units and the range of dataset values; the output variables, power consumption, are 
shown in bold. 

Table 3. Dataset attributes and outputs, range of variation, and units. 

Variable Abbreviation Range Units 

feed per tooth and revolution fz 0.03-0.12 mm/rev/Z 

Feed rate F 0.09-0.36 mm/rev 

Spindle speed S 3000-6000 rpm 

Cutting speed Vc 75.4-150.8 m/min 

Axial depth of cut ap 1-4 mm 

Tool identifier Tool 1, 2, 3, 4 None 

Number of teeth Z 3,4 None 

Helix angle Β 30-45 ° 

Amplitude of sinusoid (serration parameter) A 0.2-0.25 mm 

Wavelength of sinusoid (serration parameter) L 1.2-2 mm 

Serrated tool profile Shape 1(sinusoidal),2(trapezoidal) None 

Cutting force in X direction Fx 17.61-193.48 N 

Cutting force in Y direction Fy 32.95-396.89 N 

Cutting force in Z direction Fz -174.91-4.62 N 

Total cutting force F 39.28-466.65 N 

Power consumption before cutting P0 0.44-0.56 kW 

Power consumption during cutting P 0.5-1.82 kW 

Power consumption due to the cutting process Pc 0.05-1.26 kW 

3.2. Machine-learning techniques 

Different families of machine-learning algorithms were tested in this research, to identify the one 
that produced the best model for the prediction of the power consumption in slot milling 
operations. All the experiments were performed using the Weka software tool (Hall et al. 2009). 

First of all, the regression trees (Quinlan 1992) were tested. Regression trees are structured in a 
first root node that split the trunk into two or more branches, some levels of internal nodes that 
form the upper branches of the tree and the terminal nodes called leaves. The root and the internal 
nodes include a dilemma related to one of the input attributes, asking the final user to evaluate 
whether the input value of a certain attribute is higher or lower than a calculated threshold. 
Following one branch, the final leaf will provide a prediction of the output by means of a linear 
model of the input attributes. The so called M5P is the regression tree implementation included in 
Weka Software (Quinlan 1992). 

Secondly, ANNs were considered, because of their well-known capacity as universal function 
approximators (Hornik, Stinchcombe, and White 1989). ANNs are built from small computational 
nodes, called neurons. Each performs a weighted transformation of the inputs to evaluate the 
output that is linked to an activation function. ANNs are inspired by biological neural networks that 



learn from previous experience. The most common ANN type is the MultiLayer Perceptron (MLP) 
(Bloch and Denoeux 2003) with a linear activation function. Neurons are split into a minimum of 
three layers. While the first layer receives the inputs or attributes of the dataset, the last one 
calculates the output value of the ANN. In the middle, the so-called hidden layers evaluate the 
hidden patterns in the dataset, discarding background noise. Despite their high accuracy for 
complex processes, ANNs present a serious drawback: they have many parameters that require an 
ideal value to be tuned for each industrial task. If not supervised by an expert, this tuning process 
will involve lengthy trial and error. At this point ensembles offer better solutions, because their 
sensitivity to parameter tuning is lower so that fewer parameters will need tuning (Bustillo et al. 
2011). 

Ensembles consist of a combination of many single models (called base models), such as regression 
trees and ANNs. The base models are trained with different datasets and their outputs are 
combined for improved predictive accuracy (Kuncheva 2014). One of the first ensembles to be 
developed is Bagging (Breiman 1996). In Bagging, each base model is trained with a bootstrapped 
subsample of the original data set with replacement (i.e., an instance may appear many times or 
not at all in a specific sample). The output is generated as a linear combination of all the base model 
predictions. Two main issues to achieve an accurate Bagging-based model are the use of very 
unstable and fast base models. A base model is unstable if slight differences in the training dataset 
produce very different prediction models. The speed requirement is due to the need to build 
thousands of models during the training stage of the predictor. Considering those two 
requirements, regression trees are commonly used in Bagging ensembles, although other basic 
models, such as ANNs, can also be used for that purpose. Random Forest is a second type of 
ensemble that provides very good results with regression trees as base models (Breiman 2001). In 
Random Forest, the base models are random trees. Random trees are a subtype of regression trees, 
where only a random subset of the attributes is considered to take the decision in each node. With 
this strategy, each random tree provides a different prediction model, because the division of the 
training data into subsets provides samples for training each random tree.  

Besides these three families of machine-learning techniques, two additional prediction models were 
selected as baseline methods to compare the performance of the machine-learning techniques: a 
naïve approach and a linear regression. The naïve approach, when predicting a continuous output, 
uses the mean value of the output in the training dataset as a fixed prediction of the output, 
regardless of the input values. A linear regression model was also considered as a baseline in this 
research, because the relationship between power consumption and some process inputs, such as 
rotation speed and feed rate, can be considered linear for certain reduced variation ranges of those 
process inputs [2-4]. The references in Weka software to both approaches are ZeroR and Linear 
Regression, respectively. As an expected result, the prediction error of any machine-learning model 
should be significantly lower than those of the baseline methods, to ensure that those techniques 
really provide reliable prediction models. 
 
4. Results and industrial implementation 

Firstly, the methodology used to train the machine-learning models and for their validation will be 
presented. Secondly, the results of the prediction models generated from the experimental dataset 
will be discussed. Finally, the industrial and teaching implementation of these models will be 
presented.  

4.1. Machine-learning modeling procedure 



Before building a prediction model with machine-learning techniques, it is necessary to define 1) 
the quality indicators that will be used to evaluate the model accuracy; and, 2) the training and 
validation scheme of the algorithms. Two quality indicators have been selected in this research: 
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Both indicators were selected 
because the bibliography on prediction models for manufacturing tasks is split between the 
researchers who prefer RMSE (Mia and Dhar 2016; Wang et al. 2016; Oleaga et al. 2018) and the 
researchers who prefer MAE (Willmott and Matsuura 2005; Mikołajczyk et al. 2018; Grzenda and 
Bustillo 2019). The RMSE and the MAE units are the same as the predicted target units, in our case 
kW, which facilitates the evaluation of model performance: the lower the RMSE and the MAE 
values, the better the model. RMSE and MAE are calculated as follows: 
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where n represents the number of instances of the test subset, i refers to the instance used for the 
current prediction, ŷi is the predicted value, and yi is the actual value of the output variable.  

A 10x10 cross-validation scheme  (Kohavi 1995) was selected for training and validation due to the 
small size of the dataset. Accordingly, the prediction model is only evaluated with new data (data 
that has not been used in the training stage) while the training and validation process is repeated 
100 times with different random subsets of the dataset to assure statistical independence of the 
models with the selected subsets for the training and validation stages.  

Finally, before analyzing the accuracy of each machine-learning model, the tuning process of its 
parameters should be described. From among the selected machine-learning techniques, MLPs are 
the models that show the highest sensitivity to parameter tuning (Bustillo et al. 2011), while 
ensembles are almost insensitive to that process, as they are averaged models. Therefore, a grid 
search of the main MLPs parameters was performed to find their best combination. The variation 
ranges of the MLPs parameters were: 

• Number of neurons in the hidden layer: from 2 to 10 in steps of 1. 

• Momentum: from 0.001 to 0.5 in steps of 0.005 

• Learning rate: from 0.01 to 0.5 in steps of 0.005 

• Training time (number of epochs): from 100 to 700 in steps of 100 

For the other parameters, the default options in Weka were used. All the calculations were 
performed with a workstation equipped with an Intel Core i7 6700 3.4-GHz processor with 16 GB 
RAM and a NVIDIA Titan Xp GPU.  

4.2. Machine-Learning Modeling results 

The first output to be modelled was P0, power consumption without cutting. A linear model was 
able to predict the value of that output with high accuracy (RMSE of 0.0093 kW and MAE of 0.0068 
kW in a 10x10 cross validation scheme). No further research was therefore required for this output 
and only one of the other two outputs, P or Pc, should be modeled due to their linear relationship 
(Pc = P - P0). The linear model for P0 considers cutting parameters, geometric features of the tool, 



and cutting forces, although –as may be excepted, considering the nature of the manufacturing 
process- the rotation speed, S, was the main parameter that contributed to P0: 

P0 = 0.00003 * S + 0.0018 * ap - 0.0003 * β - 0.0001 * Fx - 0.0001 * Fz + 0.3661 

As P0 can be easily evaluated, the most interesting output will be the power consumption directly 
related to the cutting process, Pc. Table 4 summarizes the RMSE, the MAE, and the training time of 
the prediction models for Pc. A tuning process of the main parameters was only performed in the 
case of MLPs, as described previously in Section 4.1. The best combination of parameters was found 
for a Learning Rate of 0.05, 2 neurons in the hidden layer, 700 epochs and a momentum of 0.2. In 
this case only the Learning Rate parameter played a major role in the accuracy of the prediction 
model, a fact that has been previously reported for similar tasks modelled with MLPs such as 
chatter frequency in milling (Oleaga et al. 2018) and the prediction of tool life in turning operations 
(Mikołajczyk et al. 2018). The prediction models can be classified into three groups considering their 
accuracy: low accuracy (baseline) models; medium accuracy (regression-tree) models; and, high 
accuracy (MLP-based) models. All the machine-learning models performed statistically better than 
the baseline methods. Although the Bagging ensembles usually use regression trees as base 
models, the low accuracy of regression trees in this case suggests the use of MLPs as base models. 
A significant difference between the accuracy of regression trees and MLPs might be due to better 
modelling by the latter of non-linear processes (Hornik, Stinchcombe, and White 1989). The low 
accuracy that the linear regression baseline method achieves also fits in with this explanation. The 
MLP model (in bold in Table 4) was the most accurate, with a very small and insignificant difference 
with MLP Bagging. As MLP Bagging requires no parameter tuning process, it is considered the best 
model for power consumption prediction with an RMSE of 10.7% of the standard deviation of the 
dataset (0.269 kW). Finally, the analysis of the training times provides some new interesting 
information. Although low in all cases due to the small dataset size, there are two characteristics 
that increase this indicator: the number of models to be built (ensembles should build 100 base 
models while regression trees should only build one model for each fold of the cross-validation 
scheme) and the complexity of those models (MLP models are of higher complexity than regression 
trees). Therefore, although bagging of MLPs is the most accurate and easily-tuned solution, its 
suitability in huge datasets can be questionable, due to its higher training time. 

Table 4. Accuracy of the prediction models for power consumption Pc with all the input attributes. 

 RMSE (kW) MAE (kW)   Training time 
(s) 

ZeroR 0.2702 0.206 0.01 

Linear Regression 0.0899 0.0718 0.01 

M5P Tree 0.0386 0.0297 0.02 

MLP 0.0282 0.0196 0.07 

Bagging (M5P) 0.0365 0.0276 0.35 

Bagging (MLP) 0.0289 0.0201 1.4 

Random Forest 0.0601 0.0458 0.08 

Although the modeling of the power consumption, from the machine-learning point of view, might 
end with the identification of the most accurate model, any industrial use of this prediction would 
raise new questions. The first one refers to the influence of each input on the prediction model. 
This question can be also presented in a different way: can I avoid the use of some of the inputs and 



still achieve a high-accurate prediction model? If a positive answer to this question can be obtained 
a significant save from the industrial point of view can be achieved, reducing the number of 
attributes to be measured in the workshop. Besides, some inputs might repeat information 
presented in earlier inputs that could negatively affect the accuracy of the model. 

As already outlined in Section 3.1, the input variables can be classified into three groups considering 
their nature: cutting conditions (5 inputs), tool geometry (6 inputs), and on-line process parameters 
(4 inputs). If some inputs are strongly correlated, contributing the same or very little information to 
the prediction model, they could be deleted from the dataset. From the industrial point of view this 
fact could lead to lower measuring times, reduction of on-line sensors, etc. The most desirable 
result from such an analysis would be the elimination from the dataset of the on-line process 
attributes, due to their higher measurement costs.  

An evaluation of the feature contribution to the dataset was performed using the RELIEF algorithm 
(Kononenko 1994) implemented in Weka software (Robnik-Sikonja and Kononenko 1997), to study 
this possibility. The RELIEF algorithm was firstly developed for classification tasks and then extended 
to regression problems (Robnik-Sikonja and Kononenko 1997). It provides an estimation of the 
value of each attribute in a dataset by repeatedly sampling an instance and considering the value of 
the given attribute for the nearest instance of the same attribute, as well as the different and the 
same class (in classification tasks). Besides, a correlation analysis between the different inputs was 
completed and the correlation matrix in terms of the Pearson coefficient was calculated. Figure 4 
shows the influence of each input in the output obtained with the RELIEF algorithm and the 
correlation matrix between the inputs using the following coding: blue = positive correlation, white 
= no correlation, and red = negative correlation, while the circle deformation is proportional to the 
input correlation, where the diagonal line refers to the maximum correlation. 



 

 
Figure 4. RELIEF analysis and correlation matrix of the dataset. 

On one hand, in Figure 4 the RELIEF analysis shows the following order of importance of the inputs 
in the dataset (from the highest to the lowest): Fy, F, Fz, Fx, Vc, S, ap, Shape, L, Z, β, A, Tool, fz, and f. It 
is especially interesting to note that the last 5 inputs have a negative influence and might, 
therefore, reduce the accuracy of the model. Moreover, the correlation matrix in Figure 4 provides 
some extra information on the dataset. First some groups of inputs are strongly correlated 
(diagonals or very flat ellipses in the correlation matrix): feed rate and speed, Z, L, and tool, and F, 
Fx, Fy, and Fz. These results are expected because: 1) the speed is programed considering the 
selected feed rate; 2) the tool design fixes the number of teeth in terms of L; and, 3) the cutting 
forces will behave in similar ways, regardless of their axial direction, if very demanding cutting 
conditions are programmed. The lack of correlation between some inputs (white circles in the 
correlation matrix) is also reasonable; there was no correlation between most of the tool 
parameters (Z with A and β with L) and between some of the cutting parameters (e.g., Vc, S and ap 



with fz,), due to the design procedure and the experimental design of the tool. But the most 
interesting cases are those where there is a slight or medium influence between inputs of a 
different nature, because the machine-learning algorithms might be able to extract the same 
information from both inputs or from a combination of inputs, by-passing the measurement of 
some attributes. In this case, Fx and Fy could be exchanged for a combination of ap and Z, while Fz 

could be exchanged for a combination of ap, β, and A. If this prediction were true, the cutting forces 
could be deleted from the dataset with a reduced loss of model accuracy. 

In an in-depth analysis of these predictions, the inputs were deleted from the dataset (from the 
lowest to the highest) following the RELIEF order and the MLP and M5P Bagging models were 
trained to evaluate accuracy without some attributes. Figure 5 shows the accuracy in terms of the 
RMSE for the MLPs and M5Ps Bagging models. On the left-hand side of this figure, the models with 
all the features show low errors (around 15% of the standard deviation of the dataset), on the right-
hand side the models with very few inputs show high and unacceptable errors (around 70% of the 
standard deviation). As the RELIEF algorithm predicts: the deletion of the 5 first inputs that have a 
negative influence slightly increased the accuracy of the model, but the improvement was almost 
negligible. Interestingly, the accuracy of the model for both types of ensembles (MLP and M5P 
Bagging models) remained almost constant, while the models were built with at least five of the 
attributes: Vc, Fy, F, Fz, and Fx. Its accuracy drops drastically when any of these attributes are deleted 
from the dataset. Therefore, the cutting forces and one cutting parameters, Vc, might be the best 
and the cheapest combination of inputs for modelling this industrial process. However, the 
correlation factor proposes alternative solutions that could also be studied.  

 

 



Figure 5. Effect of reducing the attributes on model accuracy. 

In the search for a cheaper solution, the dataset cutting forces were deleted from the dataset and 
the machine-learning models were once again trained and validated. Table 5 summarizes the RMSE 
and the MAE of the prediction models for Pc after having deleted the four attributes related to 
cutting forces from the dataset. The Tool attribute was also deleted, due to its low influence on 
model accuracy according to RELIEF, and for easily interpretable models. Bold values in Table 5 
outline the most accurate models. Nevertheless, as in the previous case, the parameters of the 
MLPs were tuned. The best combination of parameters was found for a Learning Rate of 0.3, a 
Momentum of 0.01, a training time of 400 epochs and 8 neurons in the hidden layer. In this case 
the tuning process only improved its default accuracy values by 20%, because the MLP with the 
default values had an RMSE of 0.0575 kW and a MAE of 0.0425 kW.  

Table 5. Accuracy of the prediction models for power consumption, Pc, without force attributes. 
 RMSE (kW) MAE (kW)   

ZeroR 0.2702 0.206 

Linear Regression 0.1141 0.0874 

M5P Tree 0.0795 0.0583 

MLP 0.0450 0.0320 

Bagging (M5P) 0.0683 0.0495 

Bagging (MLP) 0.0367 0.026 

Random Forest 0.0912 0.0669 

In this case, the most accurate model (MLP Bagging) showed a 30% higher error (both for MAE and 
for RMSE) than the best model with all the inputs. A loss of accuracy that might be acceptable from 
an industrial point of view in some cases, but one that is quite acceptable for teaching purposes 
(the RMSE is only 13.7% of the standard deviation of power consumption in the dataset). As 
previously commented in the Introduction, students of mechanical engineering can benefit from 
testing the prediction models of medium accuracy that will give them some practical experience of 
the geometrical features of cutting tools and their expected effects on energy consumption in slot 
milling with serrated tools.  

4.3 Industrial and teaching implementation 

The following process is proposed, by both process engineers and students, to achieve useful 
models: first, only a reduced set of dataset inputs were selected; second, the best machine-learning 
technique was trained; third, 3D graphs were built from the trained model showing the influence of 
the main process inputs in the power consumption and displayed in different ways for their final 
use. This data dimensionality reduction approach, by means of a feature selection technique, has 
previously been identified as a suitable solution for visual optimization of manufacturing processes 
(Amini and Chang 2018).  

As the model is likely to have greater clarity with fewer inputs, seven inputs were deleted from the 
original dataset: F, Fx, Fy, Fz, S, tool, and f. The four inputs related to cutting forces, F, Fx, Fy, and Fz 
were deleted because their values were unknown before the cutting process and they were, 
therefore, of no use for any pre-process prediction. Besides, those inputs can be deleted with no 
radical reduction of model accuracy, as demonstrated in Section 4.2. The feed rate, f, was deleted, 
as it provided no useful information to the model and can reduce its accuracy. The spindle rotation 
speed, S, was deleted, as it provided the same information as Vc. Finally, Tool is an input of little 
influence in the model and can confuse the final user because it integrates in a nominal input most 
of the information already included in the other parameters (L, Z, β, A, and shape) of the tool.  



Then the best machine-learning technique, Bagging ensembles of MLPs, was trained with the 
dataset. In this case, the whole dataset was used for training with no cross-validation scheme, 
because the highest level of accuracy was sought with no requirement for accuracy evaluation. The 
model was generated and saved in Weka. Then, an extensive set of different input conditions for all 
the inputs was fed into the model and the predicted value of the power consumption was obtained. 

Finally, Figures 6-8 were built as an example of the possible industrial use of this model. The X and 
the Y axis show different cutting conditions in terms of ap and Vc, respectively. The Z axis shows the 
predicted power consumption for each cutting condition. For each figure, the other process inputs -
L, Z, β, A, shape and fz- were fixed. From those fixed inputs only one (fz) could actually be changed 
during the cutting process, because the others refer to the tool geometry (L, Z, β, A, and shape), 
which were dependent on the selection of the cutting tool. So, these 3D graphs are quite 
reasonable from an industrial point of view, where the cutting tool is first selected and then the 
best cutting conditions are programmed. In these three figures the expected power consumption 
evolution was the same: a higher cutting speed, Vc, and a higher depth of cut, ap, requires higher 
power consumption; the influence of those two inputs is not linear and can be modelled in 
quadratic terms, thereby explaining the better accuracy of the MLP models rather than the 
regression trees   

 
Figure 6. Predicted power consumption for a trapezoidal tool (β=40°, A=0.2, L=2). 

Figures 6-8 show how a process engineer might use the prediction model. The three graphs are 
built for the same feed rate and revolution, fz, (0.03 mm/rev per tooth), but for different cutting 
tool parameters. While Figure 6 shows the predicted power consumption for a trapezoidal tool with 
β=40°, A=0.2, L=2, Figures 7 and 8 refer to sinusoidal tools of L=1.3 but with different β and A values 
(β=40°, A=0.2 for Figure 7 and β=30°, A=0.25 for Figure 5). The three figures are built for the same 
number of tool teeth (Z=4). Comparing these three figures, the lowest power consumption, always 
for low values of ap and Vc, are achieved with a trapezoidal tool with higher values of the L 
parameter (Figure 6). The influence of the β parameter might be low in power consumption; only 
the convex or concave shape of the curves for low ap might be derived from this parameter as the 



comparison Figure 6-7 (convex) versus Figure 8 (concave) outlines. The influence of the A 
parameter might be especially strong for demanding cutting conditions, high values of ap and Vc, as 
shown by the comparison between Figure 7 and Figure 8: while in Figure 7 (A=0.2) the power 
consumption is always under the threshold of 0.4 kW, in Figure 8 (A=0.25) it almost doubles this 
value (reaching 0.7 kW) in the worst case. 

 
Figure 7. Predicted power consumption for a sinusoidal tool (β=40°, A=0.2, L=1.3). 

 
Figure 8. Predicted power consumption for a sinusoidal tool (β=30°, A=0.25, L=1.3). 



Obviously Figures 6-8 are not sufficient to evaluate the influence of each geometrical parameter of 
the cutting tool in a systematic way; but they show how the process engineer can build different 3D 
graphs to compare the expected performance, in terms of power consumption, of different cutting 
tools proposed by the tool manufacturer for a certain cutting process. 

The second proposed use of this prediction model, for the teaching of engineering students, could 
be done by using the same 3D graphs, but the extensive variety of inputs (5 tool parameters and 3 
process parameters) might prove confusing and could complicate work on the model, making it 
difficult to extract clear conclusions. Therefore, a Virtual Reality interface with the prediction model 
was built for the students. In this interface the values of the geometrical characteristics of the 
cutting tools are controlled by sliders (control bars), while three 3D graphs are built for the different 
values of fz, each of them representing the power consumption in terms of ap and Vc, as in the case 
of Figures 6-8. The use of a Virtual Reality interface allows the student to compare the 3D graphs 
simultaneously from different perspectives and quick and easy control of the geometrical 
parameters of the cutting tool provides a quick understanding of the influence of each parameter. 

A Java script was written for Weka to generate the predicted power consumption values according 
to the different cutting conditions. Weka generated three 2D matrices for the predicted power 
consumption (ap, Vc), each for a certain value of fz (0.03, 0.075 and 0.12 mm/rev per tooth) and for 
a certain set of tool parameters (L, Z, β, A, and Shape). This script repeated the process for 10 
different values of each tool parameter, in some cases (L, β, and A), or for only two values for Z and 
Shape, as only two different values of those two parameters were tested in the original dataset. 
Then, these data were formatted as column-based text and imported into the game engine. Unreal 
Engine was used because of its external data management capabilities and easy-to-program 
immersive virtual reality experiences. The head mounted display was Oculus Rift with Oculus Touch 
interaction devices. These devices permit the user to move in a physical space limited by the scale 
of the room, to approach objects (the milling tools in this case) and to pick them up, as well as to 
interact with the parameter controls and to explore the 3D graphs from any 3D view.  

The virtual environment includes 1) three 3D graphs similar to the ones presented in Figures 6-8 (X 
axis: ap, Y axis: Vc and Z axis: Pc) each of them for a different value of fz (0.03, 0.075 and 0.12 
mm/rev per tooth), 2) three controllers for the main geometrical tool parameters that can be 
changed (L, β, and A) and a 3D model of the selected serrated tool. As the virtual environment 
includes three 3D graphs each of them for a different value of fz; in this way, the student will not 
have the chance to change any cutting process variables and can concentrate on the analysis of 
power consumption as a function of tool parameter. The 3D graphs are visualized as points in the 
3D space; their shape, color and size can be altered for a better representation. The user interface 
was designed for the easy selection of tool parameters (L, β, and A), as Figure 9.A shows. According 
to the parameters that are set, the user will be able to check the geometrical changes directly in the 
3D model, both in the cutting tool and in the 3D graphs representing power consumption (Figure 
9.B). Besides, the user can observe the cutting tool in great detail, because it is projected on a much 
larger scale than the real one. In this way, the changes in its geometrical parameters may be better 
appreciated (Figure 9.C). The 3D models of the cutting tool in all possible configurations were 
created by means of 3D modeling software (Blender). Figure 9.E shows a user interacting with the 
educational experience. The environment is neutral grey to avoid distractions with the content, and 
the checkered floor design defines the space in which the user can move. Finally, Figure 9.D shows 
the controllers of the virtual experience (Oculus touch), from which a laser beam is projected for 
interaction with the sliders and the 3D model of the tool. 



 
Figure 9. A: User interface for proper selection of tool parameters (L, β, and A); B:  3D graphs of 
power consumption; C: cutting tool; D: controllers of the virtual experience (Oculus touch); E: User 
interacting with the virtual environment. 

The VR application is available at the following link: https://3dubu.es/en/cuttingtools/. In addition, 
this website includes videos of students using the virtual reality tool that can help provide a 
comprehensive view of how the VR application works. Figure 10 shows a practical example of two 
scenes of the virtual environment in which the user has selected different parameters for L, β, and 
A. In this example, the student has changed parameters β and A from lower (left) to higher (right) 
values. As there are no changes on the Z-scale of the VR application, the student can see that lower 
β and A parameter values increase the power consumption for high feed-per-tooth values, fz, while 
they have lower effects for both medium and low values of this cutting parameter. Immersion in 
the 3D models and VR data simulation should help to catch the attention of the students and their 
knowledge acquisition. 

 
Figure 10. 3D virtual-environment power-consumption graphs. 

Left L=1.2, β=30, A=0.2. Right L=1.2, β=45, A=0.25. 
5. Conclusions 

The selection of the best conditions for any machining operation is a critical issue in the daily 
activity of manufacturing, due to the high number of inputs that influence machining performance 
and the high costs of experimental tests. First, the use of machine-learning techniques for that 
industrial task has been proposed in this research relating to energy consumption optimization in 
the milling of Al 7075-T6 aluminum alloy with serrated cutters. Machine-learning techniques can 
simulate thousands of different tool geometries, a fact that cannot be achieved with experimental 
models, due to the reduced offer of different serrated tools on the market. Secondly, the use of 



different visualization techniques has been proposed for applying the trained models in two 
different ways: as 3D graphs for their industrial use (the selection of the best tool and the best 
cutting conditions) and as Virtual Reality environments for their teaching use (an understanding of 
the effect of tool parameters and cutting conditions on power consumption among undergraduate 
students). The key contributions from this study are that: 

- An extensive dataset has been compiled to validate the strategy. The dataset included 116 
different experiments with 15 inputs of a different nature: 5 inputs related to cutting 
conditions, 6 inputs described cutting tool features, and 4 inputs related to cutting force 
measurements. This dataset was used to train different machine-learning techniques, 
under a 10x10 cross-validation scheme, and for their validation. In a first stage, following 
consideration of all 15 inputs, MLPs showed the highest accuracy, although in view of their 
complex tuning processes, the alternative selection of bagging ensembles of MLPs was 
preferred, a model with similar accuracy but no-tuning process. Regression trees and 
ensembles of regression trees showed the worse performance, due perhaps to their 
weaker capacity at modeling complex relationships.  

- In a second stage, an in-depth analysis of the influence of each input on model accuracy 
was completed, searching for both savings and increased accuracy in the experimental 
stage. This analysis was done by means of an evaluation of the feature contribution to the 
dataset using the RELIEF algorithm and a correlation matrix between inputs. The analysis 
showed no decrease in accuracy, if only five of the attributes are considered: Vc, Fy, F, Fz, 
and Fx. However, the accuracy of the model drastically decreases when any of these 
attributes are deleted from the dataset. Therefore, the cutting forces and one cutting 
parameter (e.g. Vc) might be the best combination of process parameters to extract the 
main information from this industrial process, for accurate prediction models based on 
machine-learning algorithms, although alternative solutions that might be studied were 
also evident from the correlation factor.  

- In the search for a cheaper solution, the cutting forces were deleted from the dataset and 
the machine-learning models under consideration were once again trained and validated. 
In this case, the most accurate model (Bagging of MLPs) showed a 30% higher error than 
the best model with all the inputs. That accuracy loss level might not be acceptable from an 
industrial point of view in all workshops, but it may be acceptable for teaching purposes 
(the RMSE is only 13.7% of the standard deviation of power consumption in the dataset).  

- The following process achieved useful models for both process engineers and students: 
first, only a reduced set of inputs of dataset were selected (any force unknown before the 
cutting process took place was not considered); second, bagging ensembles of MLPs were 
trained with the whole reduced dataset; third, 3D graphs were built from the trained model 
showing the the influence of the main process inputs in the power consumption and 
displayed in different ways for their final use. 

- 3D graphs, where predicted power consumption is projected in terms of two cutting 
parameters, ap and Vc, have shown their suitability, in that they present clear information 
on the effect of each geometrical parameter of the tool on power consumption. The 
sinusoidal amplitude A is the most critical parameter for reductions in power consumption 
under any cutting conditions and the geometrical shape (whether trapezoidal or sinusoidal) 
the lowest influence. These sorts of 3D graphs have been incorporated in a virtual reality 
environment displayed with Oculus Rift and equipped with Oculus Touch interfaces. It is a 
virtual environment in which the student can modify, by means of 3 sliders, the main 



geometrical parameters (L, β, and A) of the tool, observing the changes in an enlarged 3D 
model of the serrated tool while observing the effect of power consumption under 
different cutting conditions.  

Future work will be focused on the extension of the dataset to tools of different diameter, a higher 
range or number of teeth and a more extended description of the trapezoidal geometry; the 
objective will be the analysis of the influence of those parameters in key machining variables such 
as cutting forces and/or power consumption. Besides, if tool diameters are changed in the dataset, 
the process productivity will have a very strong variation range and the optimization of power 
consumption and process productivity can be studied to identify the best cutting conditions for 
each tool geometry, depending on different manufacturing priorities. Additionally, other 
parameters considered constant in this study (such as phase shift parameter between sinusoids of 
different flutes) could be optimized following the proposed methodology. 
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