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Abstract
Photosensitivity, in relation to epilepsy, is a genetically determined condition in which patients have epileptic seizures of

different severity provoked by visual stimuli. It can be diagnosed by detecting epileptiform discharges in their elec-

troencephalogram (EEG), known as photoparoxysmal responses (PPR). The most accepted PPR detection method—a

manual method—considered as the standard one, consists in submitting the subject to intermittent photic stimulation (IPS),

i.e. a flashing light stimulation at increasing and decreasing flickering frequencies in a hospital room under controlled

ambient conditions, while at the same time recording her/his brain response by means of EEG signals. This research

focuses on introducing virtual reality (VR) in this context, adding, to the conventional infrastructure a more flexible one

that can be programmed and that will allow developing a much wider and richer set of experiments in order to detect

neurological illnesses, and to study subjects’ behaviours automatically. The loop includes the subject, the VR device, the

EEG infrastructure and a computer to analyse and monitor the EEG signal and, in some cases, provide feedback to the VR.

As will be shown, AI modelling will be needed in the automatic detection of PPR, but it would also be used in extending

the functionality of this system with more advanced features. This system is currently in study with subjects at Burgos

University Hospital, Spain.
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1 Introduction

Virtual reality (VR) is increasingly becoming part of our

daily lives and its applicability is widening [29]: from

video games and entertaining, to education, medical

treatment and rehabilitation, military applications, archi-

tectural and urban design, digital marketing and activism,

engineering and robotics, fine arts, heritage and archaeol-

ogy, occupational safety, social sciences, psychology and

many more. For this reason, it is not only important to

understand how this technology can affect our brains, but

also its potential to extend the current scope of neurological

diseases detection methods. Using VR in new specific

triggering scenarios will allow controlling and extending

the available functionalities of the visual stimulation sys-

tems used for the detection of such pathologies [4].

This reflection is not new. Back in the 1990s, research

performed to detect the risk of television and video games

exposure resulted in a set of recommendations for TV

manufacturers and video games developers. Simultane-

ously, the studies performed were the basis to many new

uses of these techniques in education [9] or in rehabilitation

[8], to name a few.

Photosensitivity is an abnormal visual sensitivity of the

brain resulting in a photoparoxysmal response (PPR), i.e. a

brain epileptic discharge consisting of a cortical spike or a

spike-and-wave provoked by a flash or a visual stimuli

[26]. There are four different types of PPR resulting from

different brain responses to intermittent light stimulation

[31]. Even though PPR can be found in non-epileptic

electroencephalogram (EEG) recordings, it is strongly

associated with epilepsy [16]. The relevance of the PPR

relies on its association with specific epileptic syndromes

[34] and monitoring of treatment in a clinical context [20].

The photosensitivity range is related to the likelihood of

occurrence of reflex seizures in daily life; thus, it is of

crucial interest to early detect PPR. The most commonly

used procedure to detect PPR, known as intermittent photic

stimulation (IPS), is described in [23]. It proposes to sub-

mit the subject to a series of light flashes while simulta-

neously monitoring the brain activity using EEG signals,

according to the European consensus group methodology

for visual stimulation defined in 2012 [27]. The light fla-

shes frequency is first increased from a minimum to a

maximum or until a PPR is observed (whatever happen

first). If no PPR is observed, the process finishes. Should a

PPR occur, the procedure is repeated in an inverse manner,

i.e. starting with a top flickering frequency that is gradually

decreased until a minimum is reached or a PPR happen.

The aim is to detect the minimum and the maximum fre-

quencies at which the subject shows PPR, if any, with the

minimal exposure.

The detection of PPR is usually performed by physi-

cians, i.e. clinical neurophysiologists and nurses, who

manually review the EEG signals’ variability in search of

PPR [2, 14, 22], taking into account each subject’s clinical

context such as age, seizure and family history. To our best

knowledge, no automated method for the detection of PPR

has been developed so far. This research is mainly focused

on the design of a new and safe procedure for the automatic

detection of PPR within EEG signals using digital bio-

markers implemented using VR and AI techniques.

In this sense, [25] designed a PPR detection method by

analysing the potential and oscillation of the response

provoked by a flashing stimulation, but following a dif-

ferent stimulation pattern from the standard one. There are

other recent studies that analyse the photosensitivity and

epilepsy based on other generalized discharges or seizures

than PPRs: in [18], a detection method based on the band

amplitude fluctuation computed from a high-frequency and

a low-frequency components of the EEG windows in each

EEG channel is proposed; [30] applied the extreme gradi-

ent boost technique for the classification of seizures in two

different ways (applying a standard partitioning of the data

and applying a leave-one-out cross-validation scheme),

while a channel-independent long short-term memory

network is used in [5]; the information extracted from EEG

and electrocardiogram (ECG) signals is used in [35] in a

multi-modal neural network which analyse the data in three

different ways (only EEG data with a convolutional LSTM

network; only ECG data with a residual convolutional

network; and a fused network which combines the outputs

of the individual networks to perform the final classifica-

tion); in [6], K-nearest neighbours and artificial neural

networks are used for the detection of ictal discharges and

inter-ictal states; [32] proposed an EEG single-channel

analysis applying three types of visibility graphs (basic,

horizontal and difference) to represent different EEG

patterns.

Other studies make use of additional and different bio-

metric measures for the same purpose, such us electro-

cardiograms (ECG) [10, 11, 28], electromyograms (EMG)

[3, 36] or magnetoencefalograms (MEG) [24].

This study proposes an alternative to the conventional

IPS procedure for PPR detection using VR and machine

learning (ML). This research is focused on the most fre-

quent PPR type; thus, the PPR detection still needs more

research work as it is not completely solved. However,

introducing VR would eventually allow to study and to

develop new and safer procedures for PPR detection. Since

the VR infrastructure is much more flexible than the

standard one, it can be easily configured to carry out new

assays and stimulation paradigms, allowing for an

advanced IPS/Visual stimulation system. Our proposal

includes a VR device with a wireless connection to a
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computer that has access to the data gathered by the EEG

sensors. The subject must wear at the same time both the

EEG cap and a head mounted display (HDM). Further-

more, a plausible solution for the automatic PPR detection

is proposed using some features extracted from the EEG

signals in an average montage, and classic ML techniques.

An average montage is used so that the electronegative

PPR discharge will express with an upward deflection of

the EEG signal in the affected channel.

The main contributions of this research are:

– To introduce VR in a close loop with AI and ML

models, so medical procedures could be revisited and

enhanced. This contribution can lead in the near future

to more advanced diagnose tests and procedures.

– To provide the neurophysiology department at Burgos

University Hospital with a novel instrument to analyse

the impact of VR in relation to photosensitivity by

integrating this solution in its daily work.

– To develop ML models to detect anomalies in the EEG

recordings when the patient is flashed using either VR-

ML IPS or conventional IPS.

The structure of this study is as follows. The next section

focuses on the description of the proposal, detailing the

different elements in the loop. Section 3 gives details of the

experimentation set-up that has been carried out at the

proposal, while Sect. 4 includes all the obtained results and

the discussion on them. The final section draws the con-

clusion of this research.

2 A prototype for VR-ML IPS procedure

The proposed solution complements the conventional set-

up by means of introducing a VR device that the subject

must wear along with an EEG cap (see Fig. 1). The signals

from the EEG sensors are analysed using well-known ML

techniques. The intelligent module will eventually control

the VR contents to gain increased capabilities and to per-

form more complex assays. This section gives details on

each of the main modules: the VR part (next subsection)

and the ML module (Sect. 2.2).

2.1 VR design for IPS and PPR detection

Flashing lights are one of the main triggers of photosen-

sitive responses. VR-Photosense [15] is a software

designed to detect photic-driving and PPR while using VR

and wearing a head-mounted display (HMD). VR-Photo-

sense offers a VR scenario with IPS in order to measure

brain responses to flashing lights at various frequencies and

using different sequences. The main goal of this software is

to simulate conventional IPS tests in a virtual reality

environment.

Conventional IPS places the light stimulator at a very

short distance from the patient’s eyes, creating high

exposure to flickering lights which are perceived with

intensity even when the patient’s eyes are closed. In order

to emulate the exposure and sensory effect caused by the

conventional IPS light stimulator, a virtual reality scene

has been designed as a 3D enclosing spherical dome

environment with the patient’s vision placed at its centre

(see Fig. 4). This design suppresses patient’s peripheral

vision and increases the focus on the visual stimuli even

with the eyes closed.

Fig. 1 To the left, the

conventional set for IPS

procedure. To the right, the new

VR-ML set for IPS procedure,

including automatic EEG

analysis and PPR detection
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The VR-Photosense’s set-up is fairly simple. After

downloading and starting the app, the cardboard viewer,

into which a smartphone is inserted, is secured to the

subject’s head using the adaptable straps, leaving the upper

part of the head clear. Then, the EEG cap is easily set up on

the subject’s head covering all necessary points of contact

as shown in Fig. 2.

The software system is divided into two parts: the light

stimulation and the monitoring software. The VR-Photo-

sense’s default configuration stimulates with white light

combined with dark black background, emulating the

conventional IPS. Introducing an innovation to conven-

tional IPS, VR-Photosene allows the colour of the flicker-

ing light and background to be changed from the default

configuration, so we designed two coloured settings in

addition to the white one: i) one with bright red flashes and

deep blue background; ii) and another with deep blue fla-

shes with dark black background. These tones may influ-

ence the brain discharges, and combined may be more or

less provocative when compared to the default one,

allowing to study brain behaviour reacting to the stimula-

tion with both of these scenarios.

VR-Photosense has also been designed to resemble the

conventional stimulation set-up and to facilitate the work

of physicians, both clinical neurophysiologists and nurses,

while conducting photosensitivity tests at the hospital. This

system includes a monitoring feature that allows to observe

in real time what is happening on the VR stimulation via a

web server. This is thanks to the use of Websockets, a

communications protocol that offers full-duplex commu-

nication channels over a single TCP connection making it

faster and with low latency to update system.

This monitoring feature along with EEG recordings

translates into a full coverage IPS scenario that closely

resembles the conventional set-up, with the difference of

replacing the traditional stimulation device with a low cost

VR headset and the VR-Photosense software. The EEG set-

up to carry out VR-Photosense testing at the hospital

consists of using Natus Brain monitoring and Neuroworks

software for EEG recording. Furthermore, the different

hardware and software elements can be easily mixed and

replaced as they are completely independent from each

other. For example, the VR-Photosense can be configured

to work with higher end HDMs such as Oculus; or EEG

recording can be performed using a different device such

us OpenBCI 3D printed device and open source software,

which were used at the university EEG laboratory for

preliminary experiments.

All in all, VR-Photosense offers an innovative, low-cost

and cross-platform IPS scenario in virtual reality, with

more upcoming features to be included aimed to achieve a

more detailed diagnosis.

This light stimulation software has been implemented in

Unity 3D using the programming language C#. Unity is a

video game development engine that allows designing 3D

scenes by means of a visual editor and the programming of

gameplay events via scripting. These scripts are associated

with the game objects included in the scene so that they

behave in the desired way.

Within the scene, the assets included are structured in

software components as shown in Fig. 3.

– Controls: auto-generated script and input system. The

new InputSystem 1.0.2 of Unity has been used, which

allows to set up the desired inputs through an interface.

Different inputs can be entered from different devices

for the same action. This makes configuration and

connectivity with different types of input hardware,

such as keyboards and game controllers, seamless.

Fig. 2 VR-Photosense set-up with a cardboard viewer and an

OpenBCI EEG headset Fig. 3 VR-Photosense software package diagram

5646 Neural Computing and Applications (2023) 35:5643–5659

123



– GoogleVR: an SDK for Android that allows the

creation of virtual reality applications to be used with

Google Cardboard HMD.

– Plugins: set of Android plugins needed to export

applications for devices using this operating system.

– Resources: all the scripts developed for lighting and

connection with the monitoring side. This package also

includes shaders and materials used in the scene.

– Scenes: the designed virtual reality scene (Fig. 4).

– XR: default Unity configuration for extended (virtual

and augmented) reality apps.

The developed scene has four objects or GameObjects:

the camera, two point lights and a sphere (see Fig. 4). The

purpose of the sphere is to provide a black background,

placing the camera inside it and inverting the normals, thus

avoiding transparency. This inversion process is done by

adding a custom shader to a new material assigning it to the

sphere. As for the spotlights, one of them is the main white

light and the other provides a blue background for the

custom colour functionality.

All developed scripts use the MonoBehaviour built-in

class, since Unity uses a standard Mono run-time imple-

mentation. These classes are considered blueprints and

each time they are associated with a GameObject, a new

instance of the object defined by that blueprint is created.

In them, two methods are predefined: Start and Update. In

this case, only Start is used, which will be called by Unity

when loading the scene. It is also important to note the use

of corrutines. Corrutines are functions that allow pausing

and resuming the execution in the frame in which it was

paused. In this case they are used to implement the flick-

ering effect in the lights and the stimulation sequences.

As for the input system, two options were considered:

remote control and keyboard. Considering the number of

configurable parameters and the controlled actions to be

performed by the person in charge of the stimulation, the

use of only a VR remote control was considered insuffi-

cient. Bearing in mind the end user and the technology they

use on a daily basis, the use of a Bluetooth keyboard was

chosen. As a result, more configurations are available and

the commands are set in the way these experts consider

more comfortable to perform the stimulation in the most

efficient possible manner. However, in order to enable the

use of the stimulation with the Oculus Quest 2 glasses, this

configuration has also been adapted for the two remote

controls associated with this HMD. Finally, the list of

commands available is shown in Table 1.

2.1.1 Monitoring

In addition to simulating the IPS environment, it is deemed

necessary to know what is happening inside the scene

during the tests. To address this problem, a monitoring

component—a web page (https://vrphotosense.herokuapp.

com)—was added to the system. This solution allows the

physicists to see in real time what is happening in the VR

stimulation, e.g. the evolution of the sequences and the

commands entered by the user.

Another possibility was to implement a sound system to

communicate the situation through audio, but it was con-

sidered less efficient as it was volatile and did not have a

visual record of the simulation.

To implement the monitoring system, a WebSokets

component was used, which allows real-time and fast

communication between the smartphone application and

the web page avoiding the use of a database. The desired

functionality is as shown in Fig. 5. Client 1, the smart-

phone application, sends information about the stimulation

to the server, and the server passes it to client 2, the web

page, which displays it on the screen along with a time

stamp.

WebSockets is a protocol that provides bidirectional,

full duplex communication over a single TCP socket. The

environment in which the VR-Photosense application is

used is a fairly sensitive one for medical testing, thus

imposing an as fast as possible exchange of information

exigence. WebSockets is probably the most popular pro-

tocol for this type of use cases where data needs to be sent

in real time. As we have seen before, Unity is based on the

Mono platform as scripting engine, which means that it

works in .NET (C#). This framework provides a default

support for this protocol that is also supported by Mono,

Fig. 4 Scene diagram implemented in Unity 3D
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through the System.Net.WebSockets namespace. The

operation in this case would be as shown in Fig. 6.

The server has been developed using Node. It is a simple

server that receives information from the client and returns

it. In this case, nothing is done in Unity with the returned

Table 1 List of available

commands in VR-photosense

application

Available commands

Action Command (keyboard) Command (Quest 2)

Start Enter Right trigger

Pause Space bar Right grip

Reset Backspace Secondary touched (R)

Increment Hz Numpad ? Primary touched (R)

White light B Start (L)

Blue light A Left grip

Red-blue combination R Left trigger

Upward pattern Up arrow Primary touched (L)

Downward pattern Down arrow Secondary touched (L)

Exit Escape Start (R)

Fig. 5 Theoretical functionality

of the monitoring system

Fig. 6 Sequence diagram of the

system using WebSockets
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information; it is the monitoring client that makes use of it.

This client is an HTML page that connects to the server,

opens a connection, gets the information coming from the

server that is part of a message and displays it on the

screen. This HTML client has been implemented in the

simplest possible way since it is an add-on to the main

work and its appearance in terms of design is not relevant

for the EEG laboratory staff.

2.2 ML-based PPR detection

PPR can be found in epileptic syndromes that present

seizures with or without visual stimulus trigger, and in

some subjects both types of seizures are observed. Waltz

classification [31] is used to define the expression of the

PPR from an electroencephalographic point of view,

introducing up to four different types of PPR:

• Type-1: spikes within the occipital rhythm.

• Type-2: parieto-occipital spikes with a biphasic slow

wave.

• Type-3: parieto-occipital spikes with a biphasic slow

wave and spread to the frontal region.

• Type-4: generalized spikes and waves or polyspikes and

waves.

All of them are depicted in Fig. 7. Type-4 PPR is the most

frequently found in epileptic syndromes where photosen-

sitivity constitutes a clinical concern, as it seems to have a

strong association—higher than 90%—with epileptic sei-

zures; the detection of this type of PPR represents the

challenge focused on this research. Besides, in clinical

practice, it is frequent that expression of PPR is variable,

and in many times we obtain PPR that not necessarily fit

within only one category of those initially defined by

Waltz. Even more, the morphological characteristics of a

given subject’s PPR may vary because of clinical variables

as doses of anti-epileptic treatment, sleep quality, etc.

To identify Type-4 PPR we propose the use of sliding

windows—one second length and a tenth of a second

shift—followed by a pre-processing stages that subtracts

the window average and performs a feature extraction.

Well-known ML techniques consider these features to

propose a final label to the window.

These ML techniques are applied in three parts that will

be described in this section. First, the set of transformations

that will be applied and their rationale are explained in

Sect. 2.2.1. Then, the design and deployment of the ML

models are detailed in Sect. 2.2.2 and, finally, the training

of the ML part is described in Sect. 2.2.3.

Fig. 7 The four types of PPR:

a type-1: spikes within the

occipital rhythm; b type-2:

parieto-occipital spikes with

biphasic slow wave; c type-3:

parieto-occipital spikes with

biphasic slow wave and spread

to the frontal region; d type-4:

generalized spikes and waves
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2.2.1 Feature extraction

The selection of mathematical transformations for signals

representation is, per se, a problem that needs to be care-

fully addressed. The main point is to select features that, in

conjunction, include, as a whole, the information that the

experts use to make a decision. Therefore, all the possible

windows must be analysed and significant differences must

be stated between the anomalies and the normal signal

state. Nowadays, the problem of feature transformation is

dealt with deep learning (DL) and, more specifically, with

auto-encoders; however, due to the lack of data to train the

networks, we left this issue for future research.

For this study, we focused on channels Fz and O2

because these are the channels were PPRs more frequently

appear regardless their type. We pay attention to their

normal and abnormal behaviour for the considered PPR

type. Some examples of the windows that might be faced

are depicted in Fig. 8. From the analysis of the signals, the

following features set has been selected to represent each

EEG data window, where w is the width of the window, t

refers the time stamp for which the feature is computed, c

is the channel—either Fz or O2—and dct is the EEG

c channel’s signal with an average montage—the PPR

expresses with an upward deflection—at time stamp t:

• Cumulative First derivative, also known as the

intensity of the signal, computed as

CFDc
t ¼ 1

w

Pw�1
i¼0 jdctþiþ1 � dctþij=D. This feature has

been chosen because PPR present high rate of change in

the value of the channel. D represents the interval

between consecutive samples, which is kept constant.

• Cumulative Second derivative computed as

CSDc
t ¼ 1

w

Pw�1
i¼0 jdctþiþ2 � 2 � dctþiþ1 þ dctþij=D2. This

feature has been selected because there is also a high

rate of change in the first derivative, but not so high as

for artefacts.

• Number of relevant peaks using the S1 measurement

proposed in [19] and computed as follows. Equation 1

defines the calculation of S1, where k is the predefined

number of samples and p is the current sample

timestamp for which we are determining whether it is

a peak or not. The S1 transformation represents a

scaling of the TS, which makes the peak detection

easier using a predefined threshold a.

S1ðpÞ ¼
1

2
� max

p�1

i¼p�k
ðdcp � dci Þ þ max

pþk

i¼pþ1
ðdcp � dci Þ

� �

ð1Þ

So, for each point for which S1ðpÞ can be computed

within the EEG sliding window we compute S1ðpÞ; a

peak occurs in time p if the value Sp is higher than a and

is the highest in its 2k neighbourhood. In the original

report, all the parameters (k, a) where carefully deter-

mined for each problem in order to optimize the peak

detection. In this research, k is set to 10 and a is set to

three times the standard deviation of the EEG channel

values when no activity is shown (upper right corner in

Fig. 8).

• Sum of the absolute values, to measure the area under

the curve of the EEG signal.

Fig. 8 Three EEG fragments from different conditions: the left-most

and the centre recordings are considered normal conditions, while the

recording at the right shows a PPR. The recordings include, from top

to bottom, signals from the F3-AVG, Fz-AVG, F4-AVG, O1-AVG

and O2-AVG channels, respectively, where AVG stands for the

average of all recorded electrodes
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• Maximum differences, also known in some fields as

amount of movement [1], which measures the differ-

ences between the highest and the smallest values—

expected to be a high value. It is calculated as

MDc
t ¼ jmaxi2½t;tþw�ðdci Þ � mini2½t;tþw�ðdci Þj.

• Average Energy as proposed in [33], as the sum of the

squared discrete FFT components magnitudes of the

signal.

All the features are standardized; given a data set, the

average and the standard deviation are computed and used

to transform the values into a normal distribution with

mean 0.0 and standard deviation 1.0.

2.2.2 Designing and deploying the ML part

The goal in this stage is to obtain models able to label the

pre-processed EEG signal windows as normal or as PPR.

Due to the data imbalance, the most interesting approach is

to use unsupervised learning, so anomalies can be detected.

However, this might generate too many false positive, so it

could be interesting to also develop a complementary

supervised learning solution. Therefore, for this research

we proposed to use, first, unsupervised learning to obtain a

model that signals those anomalous windows and then to

classify the anomalous windows as PPR or normal using a

supervised approach. The unsupervised learning is specific

for a given subject, while the supervised learning is a

generalised model.

For this stage, we will develop models following the

workflow proposed in Fig. 9. Data from the EEG sensors is

windowed as explained before. For each window, the

average is calculated and subtracted; the transformations

from the previous subsection are calculated afterwards. A

one-class classifier, learned for the current subject data,

labels the window as normal or not. In case a window is

labelled as an anomaly, then the two-class classifier,

learned from other subjects, labels the window as PPR or

not.

For the one-class classifier, an unsupervised one-class

k-nearest neighbours model (1C-KNN) [12, 17] is tested:

this model has been selected for its fast training and

evaluation times while still performing sufficiently

accurate.

For the two-class classifier we propose K-nearest

neighbour (2C-KNN) due to the small number of instances

in the available data set.

Both classifiers are from the scikit-learn library for

Phyton [21].

2.2.3 Training the ML part

Training the models has two main stages as can be seen in

Fig. 10: (i) training the one-class model and (ii) training

the two-class model. At this moment we have two collec-

tions of data: (a) a collection of windows from the current

subject (CPData), all labelled as normal, and (b) a collec-

tion of windows from the historical records (HRData), each

window with its corresponding normal or PPR label.

CPData is used in the one-class training, while HRData is

used in the two-class training. The first part of the training

is the 2C-KNN learning using the HRData; in case of

highly imbalance of the data set, SMOTE will be used.

Different values of the parameter K are tested for both

classifiers to find the best performing model.

When analysing the data recorded for the current sub-

ject, an incremental training is proposed. The idea is

repeating the one-class classifier training until a real PPR

be detected at a certain flashing frequency. That is, in case

the frequency to be tested is increased for example from 4

to 6 Hz, if no PPR is detected in this new stimulation

frequency, then the 1C-KNN is trained including the win-

dows gathered from the first frequency range (1–6 Hz), and

then, the next flashing frequency is evaluated (8 Hz) and

the process is repeated again until a PPR is detected. The

stimulation frequency at which the first PPR is detected is

the cut frequency (fc). The process is illustrated in Fig. 11.

This process has been described for the following

flashing frequency increase sequence—standard

Fig. 9 The workflow of the designed approach. The data gathered

from the current subject are pre-processed. When a data window

comes from frequencies smaller or equal to fc (the cut frequency,

which is the stimulation frequency value at which the first PPR

appears), the window is preserved for the training of the one-class

models; otherwise, the window is labelled as normal or as anomaly. In

this latter case, the two-class classifier labels the window as PPR or

not. However, when no window is labelled as including a PPR for the

current frequency, the windows for this frequency are also considered

and the one class model is re-trained
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frequencies used are 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25,

30, 40, and 50Hz.

Additionally, the PPR analysis also includes a decreas-

ing frequency study, starting at certain frequency (i.e. 50

Hz) and decreasing the frequency until a PPR be found.

The whole process should then be repeated but with fc set

to the corresponding limit; the same workflow shown at

Fig. 11 is mostly valid with minor changes: i) the com-

parison operation is � , ii) the 2C-KNN is specific for the

decreasing flashing frequencies.

3 Experimentation set-up

3.1 Evaluation of VR-ML IPS procedure

In the preliminary stage of the study, a series of intermit-

tent light stimulation tests were performed under the

supervision of physicians (clinical neurophysiologists) at

the hospital. The experimentation was divided into two

series of tests in order to determine whether the virtual

reality stimuli have a photosensitivity impact, both on

healthy subjects and on previously diagnosed photosensi-

tive subjects.

As a starting point, the simplest response to look for in

an EEG recording is a photic-driving response, that is, a

common physiological response to light stimuli during an

IPS, which is triggered by an intermittent photic retinal

stimulation that can be detected in the alpha rhythm [7]. It

consists of brain activity that matches the time and fre-

quency or harmonic frequency of intermittent light stimuli

[13]. It is usually greater when the light stimulation is close

to the subject’s alpha rhythm.

A second series of tests were carried out to determine

the ability of VR-Photosense to elicit photoparoxysmal

responses. These tests looked for PPR induced by photic

stimulation, as it has been previously described in this

paper, at existing EEG records corresponding to previously

diagnosed photosensitive subjects.

The study is ongoing. Although the low number of

subjects does not yet allow establishing generalizations, the

initial series of tests confirmed very promising results

regarding the use of VR-IPS both for the detection of

photic-driving as well as PPR responses as described in the

Results and Discussion section.

3.2 Evaluation of the ML-based PPR detection

The data set gathered from Burgos University Hospital is

used to study the performance of the ML method for the

PPR detection. This data set includes ten anonymized EEG

recording sessions from different photosensitive subjects

Fig. 10 All the data are

windowed and the features are

computed. Although all the

training stages seem to be

simultaneous, they are

performed at different time

Fig. 11 Incremental learning of

the one class models once no

PPR has been found for a

certain flashing frequency f. The

windows gathered for this f are

also used to train the one-class

models until the fc value is

found. The figure shows the

increasing flashing frequency

case, a similar structure is

proposed when decreasing the

flashing frequency
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recorded with the hospital’s own equipment. Each session

consisted of two continuous recordings while the IPS (the

conventional IPS and the proposed VR-IPS) procedure was

performed: the frequency of the photic stimulation was

increased in the range 1–50 Hz for the detection of the

minimum frequency (fc) that causes a PPR in each subject.

The duration of each session varies in the range 3–5 min-

utes. The EEG signals were recorded at a sampling rate of

500Hz from 19 electrodes placed according the 10–20

standardized system, as shown in Fig. 12. Each recording

was then manually labelled by the expert clinical neuro-

physiologist by visual analysis, labelling every PPR with

their corresponding type: five subjects showed Type-4

PPR, while five other subjects showed other types of PPR.

Training the models follows a leave-one-participant-out

cross-validation scheme to train both one-class and two-

class classifiers. Therefore, EEG windows from the current

subject are not used in training the 2C-KNN model, while

the labelled windows from the remaining subjects con-

forms the HRData data set; conversely, the data from the

current subject conforms the CPData data set, which is

used by the 1C-KNN classifier.

The HRData is used to train the 2C-KNN classifier; to

do so, tenfold cross-validation is used to select the best

parameter value. On the other hand, the CPData is used to

train the 1C-KNN but also to evaluate the proposal.

Therefore, the CPData is split in two: i) the data for a

frequency f � fc, where fc is the current subject’s cut fre-

quency—used to train the 1C-KNN—and ii) the data for a

frequency f [ fc, used to evaluate both the 1C-KNN and

the 2C-KNN for those instances labelled as anomalies.

The accuracy (ACC), the sensitivity (SEN) and the

specificity (SPE) will be used to measure the quality of the

models. Furthermore, the average, median and standard

deviation among the tenfold of the cross-validation will

help in the evaluation of this model.

For the sake of simplicity, only increasing flashing fre-

quencies training and analysing is shown. The comple-

mentary decreasing flashing frequencies procedure would

be performed in a similar manner, so it is omitted to avoid

overload of figures and numbers.

The experimentation will be divided into two main

parts: training and evaluation of the 2C-KNN using the

HRData, and training and evaluation of the 1C-KNN using

the CPData. Due to the fact that this research is focused

only on Type-4 PPR, the experimentation will be per-

formed considering only these phenomena; however, we

also replicate the same experiments for the complete data

set considering all PPR types.

4 Results and discussion

4.1 Photic-driving response and PPR detection
using VR-Photosense

Our initial testing of VR-Photosense both on healthy sub-

jects and previously diagnosed subjects, confirms the

expected correlation between the IPS and the EEG

recording. Moreover, we have identified photic-driving

responses (see Fig. 13) as well as PPR responses (see

Fig. 14) using the Natus Neuroworks monitor. In the for-

mer one, the expected photic-driving responses of a healthy

patient can be seen after the photic stimulation, more

strongly in the occipital and parietal channels, and at fre-

quencies of stimulation that are similar to the alpha rhythm

of the patient, that is their basal oscillating frequency when

awake and in quiet state. In this case, the frequency spec-

trum of the brain response after the stimulation at 10Hz

reveals a strong component around the same frequency

value as expected. In the last one, it is shown how a PPR

was triggered on an epilepsy diagnosed subject right after

the photic stimulation at a frequency rate of 30Hz started.

Each stimulation starting point is indicated by the purple

labels at the top of the plots. As artefacts, we can see the

blink electropositve deflexion in both frontopolar regions

and some muscular contraction activity, showed as fast

frequencies burst that appears darker in the recording.

Feedback from this stage of the study has been used to

refine the software and accommodate it for clinical use at

the hospital.

In this research it is shown that no differences have been

found between the EEG responses recorded when using the

conventional IPS procedure or the proposed VR-IPS

Fig. 12 Position of the 19 scalp electrodes used to record EEG signals

according to the international 10–20 system of electrode placement as

defined by the international federation of EEG societies
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procedure, suggesting that they are completely comparable.

This assertion is based on the evidence that a clinical

neurophysiologist cannot tell the difference between two

EEG recordings, one registered while submitting the sub-

ject to the conventional IPS procedure, and the other one

obtained while submitting the same subject to the new VR-

IPS procedure.

At this point, testing VR-Photosense among diagnosed

subjects is crucial to advance on this study. At the time of

writing this paper, the research team has the approval of the

ethics committee from Burgos University Hospital to

conduct a trial on several subjects who suffer from pho-

tosensitivity, which will allow us to measure the

Fig. 13 Photic-driving response identified on a healthy subject using VR-Photosense at the flash frequency 10 Hz

Fig. 14 PPR response identified on a previously diagnosed subject using VR-Photosense at the flash frequency 30 Hz
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performance of VR-Photosense to detect photoparoxysmal

responses.

4.2 Performance of the ML-based PPR detection

Two different stages conform the measurement of the

performance of the PPR detection: the evaluation of the

2C-KNN and the evaluation of the 1C-KNN. In this way, it

would be possible to determine whether any of the classi-

fiers needs improvements or if the whole system is able to

detect the PPR.

For the evaluation of the 2C-KNN, Table 3 includes the

mean (MN), median (MDN) and standard deviation (STD)

of the ACC, SEN and SPE for each case and for the best

parameter K found in the leave-one-participant-out tenfold

cross-validation of the corresponding HRData.

For the evaluation of the 1C-KNN, Table 2 includes the

mean (MN), median (MDN) and standard deviation (STD)

of the ACC, SEN and SPE for each subject and flashing

frequency, and for the best parameter K found. In this case,

the cut frequency (fc) started at 1 Hz to evaluate all pos-

sible flashing stimulation frequencies. Then the 1C-KNN is

trained, and the next frequency data is labelled as anoma-

lies or not. Finally the fc is increased in order to repeat the

process with the next frequency data.

In both tables, two different sub-tables are shown: the

upper one corresponding to the performance of each clas-

sifier when taking into account all types of PPR; the lower

one corresponding to the case where only Type-4 PPR are

considered.

As can be seen, the detection results are better in the

case where only Type-4 PPR are considered by both

classifiers, as might be expected since our method was

Table 2 Results of the anomaly detection performance for all PPR

types (upper) and only for Type-4 PPR (lower) in channel Fz of the

1C-KNN classifier with K=15 neighbours. Mn = Mean. Mdn =

Median. StD = Standard Deviation. *Since subjects from P5 to P9 do

not have any Type-4 PPR, their results are not highlighted

Pi Acc Sens Spec F1

Mn Mdn StD Mn Mdn StD Mn Mdn StD Mn Mdn StD

P1 0.9549 0.9732 0.0552 0.4485 0.3158 0.4083 0.9843 0.9924 0.0195 0.2416 0.0000 0.3676

P2 0.9777 1.0000 0.0304 0.1506 0.0000 0.2471 0.9984 1.0000 0.0067 0.1845 0.0000 0.2920

P3 0.9448 0.9457 0.0312 0.3966 0.4182 0.3110 0.9928 0.9979 0.0101 0.4467 0.4933 0.3118

P4 0.9760 0.9882 0.0280 0.6722 0.7273 0.3420 0.9853 1.0000 0.0234 0.5009 0.5333 0.3169

P5 0.9938 1.0000 0.0152 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

P6 0.9924 1.0000 0.0304 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

P7 0.9902 1.0000 0.0205 0.0000 0.0000 0.0000 0.9989 1.0000 0.0044 0.0000 0.0000 0.0000

P8 0.9876 1.0000 0.0254 0.0278 0.0000 0.0481 0.9996 1.0000 0.0015 0.0455 0.0000 0.0787

P9 0.9733 0.9941 0.0306 0.0000 0.0000 0.0000 0.9982 1.0000 0.0040 0.0000 0.0000 0.0000

P10 0.9415 0.9532 0.0579 0.5859 0.7143 0.3368 0.9774 0.9773 0.0224 0.4794 0.6277 0.3868

Mn 0.9732 0.9854 0.0325 0.2282 0.2176 0.1693 0.9935 0.9968 0.0092 0.1899 0.1654 0.1754

Mdn 0.9768 0.9971 0.0304 0.0892 0.0000 0.1476 0.9983 1.0000 0.0055 0.1150 0.0000 0.1854

StD 0.0157 0.0168 0.0096 0.2381 0.2611 0.1597 0.0068 0.0048 0.0077 0.1818 0.2316 0.1596

P1 0.9645 0.9728 0.0369 0.4357 0.4168 0.3238 0.9864 0.9936 0.0155 0.2340 0.0000 0.3469

P2 0.9947 1.0000 0.0108 0.7102 0.8295 0.3179 0.9974 1.0000 0.0061 0.5643 0.7619 0.3722

P3 0.9607 0.9628 0.0218 0.6582 0.6750 0.1604 0.9883 0.9892 0.0100 0.7071 0.7000 0.1075

P4 0.9871 1.0000 0.0193 0.5669 0.5694 0.0965 0.9941 1.0000 0.0098 0.4795 0.5455 0.2473

P5* 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

P6* 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

P7* 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

P8* 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

P9* 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

P10 0.9375 0.9588 0.0750 0.5503 0.5417 0.2769 0.9753 0.9883 0.0310 0.3423 0.0000 0.3826

Mn 0.9844 0.9894 0.0164 0.2921 0.3032 0.1176 0.9942 0.9971 0.0072 0.2327 0.2007 0.1456

Mdn 0.9973 1.0000 0.0054 0.2178 0.2084 0.0483 0.9987 1.0000 0.0030 0.1170 0.0000 0.0538

StD 0.0181 0.0148 0.0175 0.2921 0.3032 0.1218 0.0065 0.0040 0.0075 0.2327 0.2810 0.1533
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designed to focus only on the detection of this type of PPR.

However, there is still room for further improvements.

The results of the 1C-KNN classifier, computed with the

best value found for the parameter K, i.e. K = 15 neigh-

bours, are shown in Table 2. The first thing to note is that

the results for subjects 5 to 9 expose ACC and SPEC values

equal to or very close to 1 while SENS is equal to 0. The

reason for this is because those subjects did not show any

Type-4 PPR throughout their recordings. All other patients

presented at least one Type-4 PPR among all the PPR

triggered during their sessions.

Despite the fact that figures in Table 2 are not impres-

sive, the results obtained for the specific Type-4 PPR

detection are slightly better than those obtained if all the

PPR types are considered but only for some subjects; for

two of them the 1C-KNN decreased its performance. This

might be due to the fact that some PPR are not pure Type-4

PPR, making their detection even more challenging.

Besides, the behaviour of the 1C-KNN obtained only for

the Type-4 PPR performed perfectly for those patients that

did not include any Type-4 PPR; furthermore, the perfor-

mance considering the ACC and the SPEC are really high.

In terms of the results of the 2C-KNN classifier shown

in Table 3, the same comments can be repeated. In this

case, one of the main reasons of the poor performance

could be the high HRData data imbalance, forcing to

introduce high rates of oversampling for the minority class

while severely undersampling the majority class when

using SMOTE. As a consequence, the outcome of the

SMOTE might not represent the variability of the initial

space, penalizing the overall results.

This study proposes several features to represent the

EEG TS; the obtained results may suggest these features

are not so representative and that a more complete study on

possible transformations is needed. Moreover, a feature

extraction stage would be required where introducing more

features to avoid the difficulties of finding an ideal feature

subset.

Additionally, the performance of KNN—either one class

or two classes—may suggest to introduce more complex

ML methods, such as random forests. However, due to the

limited size of the data set available for this study,

advanced ML methods were not used. Provided more data

is made available, these methods must be contemplated as

robust alternatives.

Undoubtedly, the experimentation and the results shown

in this study represent a very first step in this research; it

must be considered as a proof of concept. This is due to

two main reasons: On the one hand, the fact that only ten

patients have been studied so far suggests that much more

patients must be analysed to conclude that the VR-IPS is

totally equivalent to the conventional IPS; however, if so,

the potential of VR will easily surpass the old procedures,

introducing new medical research lines. On the other hand,

the limited amount of data and its unbalanced nature rep-

resents a challenge for ML; obtaining accurate models

certainly requires a higher amount of data, so evaluation

methods using either leave-one-participant-out or K-par-

ticipants fold cross-validations schemes become feasible

and credible. Nonetheless, what it is clear from the

experiments and the obtained results is that VR-IPS rep-

resents very promising research that can potentially be

spread to many other different areas, such as Alzheimer

disease evaluation.

There are several improvements that can be introduced

to the ML model. First, a more in-depth analysis of a wider

set of transformations from different domains must be

done, such as temporal energy, statistical properties or

spectral measures. Afterwards, unsupervised learning could

show some relationships between these features and the

labels, showing some more promising transformation.

Furthermore, feature extraction—either principal compo-

nent analysis or locally linear embeddings—must be

applied to reduce the feature subset. With these new set of

features, different models can be studied, such as random

forests, support vector machines or perhaps the KNN can

proof good performance. In any case, the models must be

valid to deal with this type of one-class and two-class

problems in highly unbalanced problems. Besides, data

augmentation techniques can also be employed to increase

the number of available experiments. In case enough data

are gathered from the experiments currently being carried

out at Burgos University Hospital, deep learning—auto-

encoders plus dense layers or TS classification using, for

instance, long short-term memory networks—and/or

XGBoost could also be applied in combination with dif-

ferent techniques such as High Frequency Oscillations.

5 Conclusions

For this study, our research team has developed a novel and

low-cost VR system that mimics and updates the conven-

tional intermittent photic stimulation (IPS) systems. It is

cross-platform and can be used with multiple types of VR

devices. It can also be used in any professional environ-

ment and with any type of EEG recording device, as VR-

Photosense is independent from the type of EEG headset

being used.

Our VR-IPS stimulation has proofed effectiveness to

identify photic-driving responses on healthy subjects as

well as PPR on photosensitive previously diagnosed sub-

jects during the initial testing. We are currently extending

this work to conduct a clinical trial on a large number of

patients.
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We also proposed a ML-based PPR detection procedure

that extracts six standardized features (Cumulative First

Derivative, Cumulative Second Derivative, Number of

Relevant Peaks, Sum of Absolute Values, Maximum Dif-

ferences, Average Energy) from the EEG windows and

then sequentially applies two different versions of the

K-nearest neighbours algorithm: the first one is an unsu-

pervised one-class KNN classifier (1C-KNN) that detects

anomalous activity in the EEG window; the second one is a

supervised two-class KNN classifier (2C-KNN) that deci-

des if the previously detected anomalous windows belong

to PPR activity or not. This technique is designed to target

only the detection of Type-4 PPR, as they represent a more

dangerous photosensitivity state than the other types.

Despite the ML results, which were not as high as

expected, the proposal can be considered a good proof of

concept in terms that, with more research, a robust and

resilience method for detecting PPR with VR?ML would

be possible. However, due to the lack of large and good

EEG data sets this has not yet been possible, although at

Burgos University Hospital are working on gathering new

data from subjects.

From the operational point of view, the learning curve of

the new VR IPS is similar to the one of the conventional

IPS, according to the feedback comments provided by the

physicians of the neurophysiology department at Burgos

University Hospital who have been using the new system

so far, when compared to the conventional IPS they use

every day named Natus Nicolet V44.

Furthermore, more alternatives can be followed con-

cerning the ML solution. Introducing more complex ML

methods such as random forests, feature extraction tech-

niques such as principal component analysis or locally

linear embedding or deep learning solutions, when the

Table 3 Results of the leave-one-out cross-validation of PPR detection performance for all PPR types (upper) and only for Type-4 PPR (lower)
in channel Fz of the 2C-KNN classifier with K=21 neighbours. Mn = Mean. Mdn = Median. StD = standard deviation

Acc Sens Spec F1

Foldi Mn Mdn StD Mn Mdn StD Mn Mdn StD Mn Mdn StD

F1 0.9660 0.9838 0.0342 0.4602 0.5385 0.3318 0.9768 0.9901 0.0295 0.3360 0.3963 0.2482

F2 0.9703 0.9746 0.0278 0.4826 0.6226 0.3562 0.9831 0.9921 0.0265 0.4193 0.4560 0.3197

F3 0.9687 0.9762 0.0311 0.4622 0.4848 0.3430 0.9805 0.9940 0.0319 0.3733 0.4237 0.2235

F4 0.9672 0.9833 0.0330 0.3937 0.5385 0.3365 0.9805 0.9942 0.0280 0.2886 0.3162 0.2594

F5 0.9560 0.9716 0.0373 0.3702 0.3927 0.3078 0.9722 0.9885 0.0298 0.2888 0.3207 0.2247

P6 0.9625 0.9781 0.0350 0.4121 0.4251 0.3506 0.9772 0.9915 0.0310 0.3279 0.3386 0.2661

F7 0.9650 0.9794 0.0313 0.5038 0.6216 0.3542 0.9802 0.9890 0.0259 0.3857 0.4118 0.2311

F8 0.9660 0.9786 0.0307 0.4748 0.5007 0.3577 0.9807 0.9936 0.0256 0.3924 0.4291 0.2487

F9 0.9685 0.9839 0.0306 0.4934 0.5423 0.2881 0.9815 0.9944 0.0240 0.3992 0.4314 0.1997

F10 0.9652 0.9757 0.0268 0.4073 0.3651 0.3121 0.9778 0.9862 0.0225 0.2554 0.2972 0.1737

Mn 0.9655 0.9785 0.0318 0.4460 0.5032 0.3338 0.9790 0.9914 0.0275 0.3467 0.3821 0.2395

Mdn 0.9660 0.9783 0.0312 0.4612 0.5196 0.3397 0.9803 0.9918 0.0273 0.3547 0.4041 0.2397

StD 0.0027 0.0033 0.0025 0.0401 0.0695 0.0191 0.0024 0.0023 0.0026 0.0473 0.0511 0.0289

Foldi Mn Mdn StD Mn Mdn StD Mn Mdn StD Mn Mdn StD

F1 0.9575 0.9562 0.0203 0.6580 0.6250 0.2532 0.9675 0.9708 0.0186 0.1726 0.0000 0.2164

F2 0.9551 0.9587 0.0236 0.4866 0.4731 0.2763 0.9676 0.9718 0.0240 0.1816 0.0000 0.2293

F3 0.9567 0.9564 0.0167 0.6004 0.7188 0.3280 0.9675 0.9663 0.0150 0.1735 0.0658 0.1971

F4 0.9527 0.9551 0.0212 0.4786 0.4097 0.3080 0.9652 0.9619 0.0197 0.1445 0.0000 0.1952

F5 0.9535 0.9527 0.0188 0.5718 0.5396 0.3431 0.9678 0.9665 0.0156 0.1933 0.1175 0.1989

F6 0.9576 0.9577 0.0164 0.6385 0.6816 0.3282 0.9700 0.9663 0.0127 0.2250 0.2038 0.2146

F7 0.9541 0.9543 0.0207 0.6063 0.5932 0.3426 0.9674 0.9670 0.0173 0.2242 0.2165 0.2116

F8 0.9557 0.9549 0.0195 0.6118 0.6138 0.3337 0.9689 0.9709 0.0166 0.2197 0.2371 0.2028

F9 0.9529 0.9501 0.0180 0.6162 0.6217 0.3471 0.9659 0.9632 0.0157 0.2200 0.2105 0.2099

F10 0.9642 0.9654 0.0187 0.5662 0.5397 0.3570 0.9712 0.9731 0.0177 0.1494 0.0000 0.1883

Mn 0.9560 0.9561 0.0194 0.5834 0.5816 0.3217 0.9679 0.9678 0.0173 0.1904 0.1051 0.2064

Mdn 0.9554 0.9556 0.0191 0.6033 0.6035 0.3310 0.9676 0.9667 0.0170 0.1874 0.0916 0.2063

StD 0.0024 0.0027 0.0017 0.0461 0.0729 0.0255 0.0013 0.0031 0.0022 0.0261 0.0920 0.0100
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amount of available data allows us to do so, such as auto-

encoders plus dense layers or long short-term memory

networks. All of these improvements represents future

research work.
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