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Abstract: In this study, machine learning techniques based on the development of a pattern–
recognition neural network were used for fault diagnosis in an analog electronic circuit to detect
the individual hard faults (open circuits and short circuits) that may arise in a circuit. The abil-
ity to determine faults in the circuit was analyzed through the availability of a small number of
measurements in the circuit, as test points are generally not accessible for verifying the behavior
of all the components of an electronic circuit. It was shown that, despite the existence of a small
number of measurements in the circuit that characterize the existing faults, the network based on
pattern-recognition functioned adequately for the detection and classification of the hard faults. In
addition, once the neural network has been trained, it can be used to analyze the behavior of the
circuit versus variations in its components, with a wider range than that used to develop the neural
network, in order to analyze the ability of the ANN to predict situations different from those used to
train the ANN and to extract valuable information that may explain the behavior of the circuit.

Keywords: modeling; analog circuits; fault diagnosis; neural networks

1. Introduction

In analog electronic circuits, the limited access to measurement points makes deter-
mining faulty components a very complex task. On the other hand, when defining a set
of measurement variables to characterize faults, many of the states that are generated by
faults in the circuit are equivalent from the point of view of the values of the measured
inputs, because the test points are generally not accessible to verify the behavior of all
the components of the electronic circuit. In addition, performing measurements in each
component of the circuit is not feasible from a practical point of view.

The present study deals with an application of supervised learning, based on the use
of a pattern-recognition artificial neural network (ANN), for the detection of the individual
hard faults (open circuits and short circuits) that may arise in an analog electronic circuit.
The fact that the test points cannot be placed at all locations may cause several equivalent
states to exist, depending on the points chosen to monitor the behavior of the circuit. This
makes the detection of existing faults in an analog circuit a very complex task and much less
developed than the same task in digital electronic circuits. In order to detect the hard faults
that may arise in an electronic circuit, measurements are to be taken at accessible points in
the circuit. Specifically, for the analysis to be carried out in this study, measurements of DC
voltage and voltage gain were considered as input values so that it was possible to monitor
the circuit and to determine, from these easily obtainable measures, whether the circuit
was in a hard fault situation (open circuit or short circuit).

The first circuit under test (CUT) used in the present study was a single-stage small-
signal BJT amplifier, in which it is difficult to detect the hard faults that may arise because
some faults lead to an equivalent state, from the point of view of the inputs used to monitor
the behavior of the circuit, and later a more complex CUT was also studied. First, in the
present study, the outputs of the CUTs versus variations that may arise from the tolerances
of the passive elements of the circuit were obtained through a Monte Carlo analysis by
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using Cadence® OrCAD® (CA, USA) design electronic simulation software. The values
thus obtained were then used to train the ANN applied to predict the faulty components of
the circuit. Moreover, a dataset obtained from the simulation software was used to validate
and test the obtained results. In addition, once the pattern-classification neural network
had been obtained, it was used to predict the behavior of the circuit subject to variations
in the faulty components at wider ranges than those used to develop the neural network.
This was carried out to determine the ranges of the parameters from which it is possible to
detect hard faults in the CUTs.

Nowadays, determining faults in analog electronic circuits is being deeply studied
by several research studies. For example, as shown in a review of Binu and Kariyappa [1],
fault diagnosis in electronic circuits has been extensively researched in the last few years,
for which machine learning approaches have been widely applied for fault detection.
As shown by Binu and Kariyappa [1], open circuits and short circuits are some of the
main failure sources in analog electronic circuits, and these hard faults can be modeled by
including a 1 Ω parallel resistance with the component in a short-circuit situation and a
1 MΩ series resistance with the component in an open-circuit situation.

As previously mentioned, fault diagnosis in analog electronic circuits is a very complex
task and is much less developed than the equivalent task in digital electronic circuits.
The methods for analyzing faults in analog electronic circuits may be classified, roughly
speaking, into two main categories: simulation before test (SBT) and simulation after test
(SAT), as shown in the research study of Aizenberg et al. [2].

In the SBT approach, the development of a fault dictionary is very useful for detecting
the faults in a circuit. In that way, the main faults that may arise in the circuit are simulated
along with the nominal behavior of the circuit. In addition, in order to detect the faults
that can occur in the analog circuit, it is important to consider both ambiguity groups, that
is, the set of components of the electronic circuit that do not provide a unique solution if
considered as a potential fault, and the canonical ambiguity groups, where a canonical
ambiguity group is a group that does not contain other ambiguity groups [2–4], because
it is very difficult to determine which component is faulty within one of these ambiguity
groups.

Over the last few years, soft computing techniques for modeling and analyzing the
behavior of electronic devices, as well as other kind of devices, have been widely used. As
a consequence, several research studies dealing with this subject have been developed, as
can be observed, for example, in [5–9], among many others research studies. With regard
to the application of ANNs for detecting faults in analog electronic circuits, the study of
Gao et al. [10] could be mentioned, where a dual-input fault diagnosis model based on
convolutional neural networks, gated recurrent unit networks, and a softmax classifier
was proposed. Likewise, Zhang et al. [11] used a convolutional neuronal network and
backward difference for soft fault diagnosis in analog circuits, where the circuits being
tested were the Sallen–Key band-pass filter and a four-opamp biquad high-pass filter.

Another studyworth mentioning is that of Wang et al. [12], which used a long short-
term memory neural network for fault detection and classification in modular multilevel
converters in high-voltage direct current systems.

On the other hand, Xiao and Feng [13] used Monte Carlo analysis and SPICE sim-
ulation along with particle swarm optimization to tune the neural networks for analog
fault diagnosis. Likewise, Aizenberg et al. [2] presented a method for detecting single
parametric faults in analog circuits. They used a multi-valued neuron-based multilayer
neural network (MLMVN) as a classifier, and a comparison with support vector machines
(SVMs) was also presented in their study. These authors found that the MLMVN was
highly accurate for classifying the fault class (FC) in the circuits under analysis in their
study. Likewise, in the research of Kalpana et al. [14], Monte Carlo analysis was combined
with machine learning techniques for fault diagnosis in analog circuits based on SBT.

Neural networks and genetic algorithms were also used in Tan et al. [15] for analog
fault diagnosis, in which PSPICE simulations were used, and three different circuits were
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analyzed. These authors applied back propagation neural networks with 28–36 hidden
layers, depending on the CUT, and with a binary coding scheme for the outputs, where the
open-circuit faults were modeled with 1 × 106 times the nominal parameters and the short
circuit as 1 × 10−6 the nominal values of each element. On the other hand, Viveros-Wacher
et al. [16] used a CMOS RF negative feedback amplifier as the CUT for diagnosing faults
using ANNs.

Some other studies on diagnosing analog circuit faults used neural networks and
fuzzy logic, as shown by Bo et al. [17], who used a negative feedback amplifier as the
CUT. Simulation and deep learning were also used by Pawlowski et al. [18] for identifying
circuit faults in post-market circuit boards. In other studies, Li et al. [19] used a radial basis
function (RFB) neural network and a back propagation algorithm for fault detection in a
differential amplifier circuit. An RBF and back propagation were also used by Wuming
and Peiliang [20], who employed a particle swarm optimization algorithm to adjust the
neural network. SPICE and a quantum Hopfield neural network were employed by Li
et al. [21] for fault analysis in a Sallen–Key band pass filter. Likewise, Monte Carlo analysis
combined with deep learning and convolutional neuronal networks were used in Moezi
and Kargar [22] for fault detection in analog circuits. In another study, Mosin [23] applied
a three-layer feedforward neural network for fault diagnosis, where a tan-sigmoid function
was used as the transfer function for the input and intermediate layers, and a log-sigmoid
function was employed for the output layer, with a Sallen–Key bandpass filter being the
CUT.

Further studies are that of Grasso et al. [24], which applied a procedure based on
multifrequency fault diagnosis, where the CUT was a two-stage CE audio amplifier, and
that of Li and Xie [25], which used a method based on the cross-entropy between a circuit
under nominal behavior and one with faults, where the CUT was analyzed by Monte
Carlo simulation. Some other studies are that of Sheikhan and Sha’bani [26], which used a
modular neural model for soft fault diagnosis in analog circuits; that of Liang et al. [27],
which applied a support vector machine classifier and fuzzy feature selection for analog
circuit fault diagnosis; and that of Wang et al. [28], which used a semi-supervised algorithm
for parametric fault diagnosis in analog circuits, among many others.

The remainder of this article is structured as follows: In Section 2, the methodology
used to develop the ANN used to detect circuit faults is shown. In Section 3, the results
are presented. A discussion of these results is provided in Section 4. Finally, the main
conclusions of this study are outlined in Section 5.

2. Fault Diagnosis Method

As previously mentioned, this study analyzed the application of a pattern-classification
ANN to detect hard faults in two analog circuits in which the faults that could arise were
difficult to diagnose because several faults could provide similar results, from the point of
view of the selected test points used to monitor the behavior of the circuit, because the test
points should be selected in accessible points of the circuit and cannot simply be located
anywhere due to practical considerations. Therefore, to detect the faults that may arise in
the circuit, three measurements of DC voltage and the gain voltage were considered as
input variables in the first CUT and six measurements of DC voltage and the gain voltage
were considered as input variables in the second one. In order to develop the ANN used
in this study, the software Cadence® OrCAD® Design Systems was first used in order to
carry out a Monte Carlo analysis of the tolerances of the passive components of the circuit.
The first CUT is shown in Figure 1, for which it is assumed that only the DC voltage in the
transistor and the gain voltage are available. In addition, a simulation was first used to
determine the failure situations that presented ambiguity because it was not possible to
determine precisely which was the faulty component.

Figure 1 shows the first CUT used in the present study, which is a single-stage small-
signal BJT amplifier, similar to that shown in [29]. Likewise, Figure 1 shows the test points
in this study. As can be observed, these test points are easily accessible. The nominal
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values of the circuit’s components are shown in Tables 1 and 2. First, the application of
the pattern-recognition ANN to the CUT shown in Figure 1 is analyzed, and later, a more
complex circuit that incorporates two amplification stages is analyzed in order to show
that the ANN developed is capable of adequately predicting fault situations, as well as
nominal behavior, in the second CUT.
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Figure 1. Electrical diagram of the first CUT (a single-stage small-signal BJT amplifier).

Table 1. Nominal values and tolerances of the passive components of the circuit.

R1 (kΩ) R2 (kΩ) R3 (kΩ) R4 (kΩ) C1 (µF) C2 (µF) C3 (µF)

Nominal
value 15 2.7 5.6 1.8 82 10 56

Tolerance 10% 10% 10% 10% 20% 20% 20%

Table 2. Values of the load resistance and voltage sources of the circuit.

VIN (Sinusoidal Voltage Source) Vdc (Power Supply) RL (Load Resistance)

VINmax = 10 mV; frequency = 1 kHz 20 V 8.2 kΩ

Table 3 shows the possible individual faults that may arise in the first CUT obtained
when the hard faults (a short circuit (sc) or an open circuit (oc)) arise in the passive
components. From Table 3, it is possible to see that, in this CUT, there are 14 individual
hard faults, as well as the nominal behavior of the circuit {Nominal, R1oc, R1sc, R2oc, R2sc,
R3oc, R3sc, R4oc,R4sc, C1oc, C1sc, C2oc, C2sc, C3oc, C3sc}, which were coded as {F01, F02, F03,
F04, F05, F06, F07, F08, F09, F10, F11, F12, F13, F14, F15 }. Therefore, these were the working
modes that were analyzed. As previously mentioned, in order to characterize the behavior
of the CUT, an electronic simulation was carried out by using Cadence® OrCAD® design
electronic simulation software for each of the failure modes shown in Table 3. As can be
observed, the faults were grouped into ambiguity groups, from the point of view of the
inputs considered to diagnose the circuit’s behavior, where a hard fault in a component of
the circuit due to an open circuit (oc) was simulated by placing a resistance (RFault = 10 MΩ)
in series with the component, and a hard fault due to a short circuit (sc) was simulated by
placing a resistance (RFault = 1 Ω) in parallel with the component. The ambiguity groups
were determined from the values of the inputs, which were obtained from an electronic
simulation. These ambiguity groups (Mj classes) were coded as {M01, M02, M03, M04, M05,
M06, M07, M08, M09, M10, M11}. It should be mentioned that there are some fault events,
such as those obtained, for example, in the M04 class, which include hard faults {F10, F12}, in
the event of which it would not be possible to determine the faulty component. Moreover,
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in case of a situation due to a catastrophic fault leading to an actual open circuit or a short
circuit, the DC voltages and the gain voltage (Av) could be different from those obtained
by the model employed in this study. These situations were obtained from the simulation
when a 10 MΩ resistance was placed in series with the faulty component to simulate the
open circuit (oc), and when a value of 1 Ω resistance was placed in parallel with the faulty
component. Therefore, to consider the actual catastrophic fault, the values obtained in the
test points were also obtained from the simulation and considered as additional inputs to
those provided by the Monte Carlo analysis in order to train the ANN.

Table 3. Nominal behavior and hard faults grouped by ambiguity groups (Mj classes).

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11

F01 F13 {F02, F05, F11} {F10, F12} F14 {F09, F15} F07 F08 F03 F04 F06

Nominal C2sc {R1oc, R2sc, C1sc} {C1oc, C2oc} C3oc {R4sc, C3sc} R3sc R4oc R1sc R2oc R3oc

A Monte Carlo analysis considering the tolerances of the passive elements of the circuit
shown in Table 1 was first carried out for each of the hard faults (open circuits and short
circuits) in order to train the ANN, and 64 results were generated for each fault (63 results
from the Monte Carlo analysis and 1 additional result from the actual catastrophic fault).
Likewise, 64 results were obtained for the nominal behavior. These results were then
used to train the pattern-recognition ANN considered in this study. Figure 2 shows the
ANN applied, which was trained to detect the nominal behavior and the individual faults
shown in Table 3. The hard faults that may arise in the circuit shown in Figure 1, as well
as the nominal behavior, were characterized from the outputs of the ANN as shown in
Equation (1):

Sj = columnj−th{I} (1)

where Sj corresponds to the ANN outputs, so that the j-th output class corresponds to the j-
th column of the identity matrix (I). The nominal behavior corresponds to M01(F1) and the
remaining classes shown in Table 3 correspond to the short-circuit and open-circuit faults,
where the hard faults were grouped by the ambiguity groups obtained from the inputs
used to characterize the behavior of the circuit. Therefore, the coding used to characterize a
fault should provide a “1” in the position of the fault and “0” in the rest of the outputs, and
hence, all outputs will have a “0” value except the j-th class (the fault class to be identified),
which will have a “1” value. The same is applicable for the nominal value.

As can be observed, in Figure 2, the first ANN used in the present study was made
up of an input layer that has four inputs (VB, VC, VE, AV), which correspond to the DC
voltages in the base, collector, and emitter of the BJT transistor and to the gain voltage (AV),
respectively, as well as a single hidden layer (with two neurons and a hyperbolic tangent
as the transfer function) and one output layer with a softmax transfer function, which is
commonly used in pattern-recognition neural networks. As can be noted, the output layer
has 11 outputs, which correspond to the 10 fault classes identified in the electronic circuit
and to the nominal working mode.

As shown later in this study, with the configuration given in Figure 2, it is possible
to have high accuracy in the ANN for detecting both the hard faults of the circuit and the
nominal behavior. It should be mentioned that different ANN topologies were analyzed
with one and two hidden layers and by using different training algorithms to adjust
the ANN parameters. Finally, a Levenberg–Marquardt back propagation algorithm was
selected to update the weights and biases of the ANN by using the Deep Learning Toolbox™
of MATLABTM 2020a [30]. The ANN shown in Figure 2 was used, since it was able to
provide accurate results without having to increase the number of neurons or the number
of hidden layers. The metric used to test the models was the mean squared error (MSE).
Different transfer functions were also analyzed in the hidden layer but, finally, a hyperbolic
tangent was used in this study. On the other hand, the Levenberg–Marquardt algorithm
was able to provide, in this case, more accurate results than the others analyzed, such as
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the Scaled Conjugate Gradient. Therefore, the topology was that shown in Figure 2, where
W1 and b1 are the weights and bias of the hidden layer, and W2 and b2 are those of the
output layer. As previously mentioned, a hyperbolic tangent ( f1) was used as the transfer
function in the hidden layer and a softmax transfer function ( f2) was used in the output
layer.

Outputs = f2(W2 ∗ f1(W1 ∗ Inputs + b1) + b2) (2)

As Figure 2 shows, the number of outputs was 11, where each output corresponds to
the class identified (Mj); one of them represents the nominal behavior and the remaining
classes representing the ambiguity groups, where the outputs of the ANN can be obtained
from Equation (2). In order to obtain the results shown in this study, the Deep Learning
ToolboxTM of MATLABTM R2020a [30] was used.
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3. Results

After training the ANN shown in Figure 2 with the data obtained from the Monte
Carlo simulations and following the procedure shown in the previous section, it was
possible to obtain the confusion matrices shown in Figures 3–6, for training, validation,
testing, and all data, respectively, where 70% of data were used for training, 15% for testing
and 15% for the validation. As can be observed, in Figures 3–6, a perfect classification of
the results was obtained with this ANN comprising a single hidden layer that contains two
neurons.
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Figure 6 shows the results of the confusion matrix for each of the hard faults and for
the nominal behavior considering all the Monte Carlo data. As previously mentioned,
64 values were used for each fault and for the nominal behavior in the Monte Carlo analysis
by considering the tolerances of the components.

It can be noted in Figure 6 that, in the confusion matrix generated from all data,
there are classes with a greater number of elements because the ambiguous failure modes
were grouped into failure classes. Thus, for example, class M03 has 192 elements, since it
encompasses three failure modes (R1oc, R2sc, C1sc). In addition, it can be seen that 100% of
the data were classified correctly.

Figure 7a shows the mean squared error (MSE) obtained with the ANN and Figure 7b
shows the error histograms for training, validation, and testing.
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As Figure 8 shows, the ROC (receiver operating characteristic) curves have an area un-
der the curve (AUC) of 1, which demonstrates that the pattern-recognition ANN developed
was able to diagnose the working modes of the BJT amplifier once they were classified
into the 11 classes shown in Table 3. In order to show that the pattern-recognition ANN is
capable of predicting the behavior of other circuits, a two-stage small-signal BJT amplifier,
such as that shown in Figure 9, was also analyzed in the present study.
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The nominal values of the circuit’s components are shown in Tables 4–6.

Table 4. Nominal values and tolerances of the passive components of the circuit (R).

R1
(kΩ)

R2
(kΩ)

R3
(kΩ)

R4
(kΩ)

R5
(kΩ)

R6
(kΩ)

R7
(kΩ)

R8
(kΩ)

Nominal value 15 2.7 5.6 2.2 15 2.7 7.5 1.8

Tolerance 10% 10% 10% 10% 10% 10% 10% 10%

Table 5. Nominal values and tolerances of the passive components of the circuit (C).

C1 (µF) C2 (µF) C3 (µF) C4 (µF) C5 (µF)

Nominal value 100 1 0.56 10 47

Tolerance 20% 20% 20% 20% 20%
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Table 6. Values of the load resistance and the voltage sources of the circuit.

VIN (Sinusoidal Voltage Source) Vdc (Power Supply) RL (Load Resistance)

VINmax = 1 mV; frequency = 1 kHz 20 V 8.2 kΩ
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Table 7 shows the possible individual faults that may arise in the second CUT obtained
when the hard faults (short circuit (sc) or open circuit (oc)) arise in the passive components.
From Table 7, it is possible to see that, in this second CUT, there are 27 individual hard
faults, as well as the nominal behavior of the circuit {nominal, C1oc, C1sc, C2oc, C2sc, C3oc,
C3sc, C4oc, C4sc, C5oc, C5sc, R1oc, R1sc, R2oc, R2sc, R3oc, R3sc, R4oc, R4sc, R5oc, R5sc, R6oc, R6sc,
R7oc, R7sc, R8oc, R8sc }, which were coded as {F01, F02, . . . , F26, F27}, where F01 corresponds
to the nominal behavior. Therefore, these are the working modes that are analyzed in the
second case. As can be observed, the faults were grouped into ambiguity groups, from
the point of view of the inputs considered to diagnose the circuit’s behavior, following
the previously mentioned procedure, where a hard fault in a component of the circuit due
to an open circuit (oc) was simulated by placing a resistance (RFault = 10 MΩ) in series
with the component, and a hard fault due to a short circuit (sc) was simulated by placing a
resistance (RFault = 1 Ω) in parallel with the component.

Table 7. Nominal behavior and hard faults in the second CUT grouped by ambiguity groups
(Mj classes).

M01 M02 M03 M04 M05 M06 M07 M08 M09

Nominal C2sc {R1oc, R2sc, C1sc} {C1oc, C2oc, C4oc} C3oc {R4sc, C3sc} R3sc R4oc R1sc

M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

R2oc R3oc {R8sc, C5sc} {R5oc, R6sc} C4sc C5oc R5sc R6oc R7oc R7sc R8oc

As in the previous case, the ambiguity groups were determined from the values of the
inputs, which were obtained from an electronic simulation. These ambiguity groups (Mj
classes) were coded as {M01, M02, . . . , M19, M20} because, in this second case, 20 classes
were detected. It should be mentioned that there are some fault events, such as those
obtained, for example, in the M03 class, that include hard faults {R1oc, R2sc, C1sc} for which
it would not be possible to determine the faulty component. Moreover, in case of a situation
due to a catastrophic fault leading to an actual open circuit or a short circuit, the DC voltages
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and the gain voltage (Av) could be different to those obtained by the model employed in
this study. Therefore, to consider an actual catastrophic fault, as in the previous case, the
values obtained in the test points were also obtained from the simulation and considered as
additional inputs to those provided by the Monte Carlo analysis in order to train the ANN.

Figure 10 shows the ANN for the second CUT, which is shown in Figure 9. As can be
seen in this case, the number of inputs is seven, which correspond to the voltages at the
base, emitter and collector of both transistors as well as the gain voltage (VB1, VC1, VE1,
VB2, VC2, VE2, AV), and the outputs are 20, corresponding to the detected fault classes and
the nominal behavior. Similar to the previous case, the same network topology is used,
although, in this case, there are four neurons in the hidden layer. As was done with the
ANN developed for the first CUT, a Levenberg–Marquardt back propagation algorithm
was selected to update the weights and biases of the ANN by using the Deep Learning
Toolbox™ in MATLABTM 2020a [30].
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Figure 11a shows the MSE values obtained versus the number of epochs, and Figure 11b
shows the training state values for the ANN employed to analyze the faults in the second
CUT.
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Figure 11. (a) Validation performance (MSE) and (b) training state of the ANN for the second CUT.

Figure 12 shows the results obtained in the confusion matrix when 70% of the data
from the Monte Carlo analysis were employed to train the ANN shown in Figure 10, which
was employed to model the behavior of the second CUT. It can be seen that there are
fault classes that present a larger amount of data due to the fact that they agglutinate fault
configurations that belong to the same ambiguity group. As can be seen, 100% of the data
are classified correctly in the second case, similar to the previous one. As can be observed,
the fault classes do not have the same number of elements because the data used to train,
validate, and test the ANN were randomly selected.
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Figure 12. Confusion matrix obtained with the ANN (training data) for the second CUT.

Figure 13 shows the results obtained in the confusion matrix when 15% of the Monte
Carlo data were used for validation of the ANN, and Figure 14 shows the results for the test
case. Similar to the results obtained during training, the ANN was able to diagnose 100%
of the working modes correctly (hard faults and nominal behavior). As can be observed,
the same results as those obtained with the first CUT were obtained with the second CUT.
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Finally, Figure 15 shows the confusion chart for all data, and Figure 16 shows the ROC
curve (all data) for the second CUT. In this curve, the true positive rate (TPR) versus the
false positive rate (FPR) was plotted at different threshold settings. The ANN developed
in this study is a perfect classifier for the electronic faults in the second CUT because it is
perfectly able to distinguish each fault class for any FPR. Similar to the results obtained
with the first CUT, it can be seen that 100% of the data were classified correctly.
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Figure 16. ROC curve (all data) for the second CUT.

4. Discussion

As Figures 8 and 16 show, the pattern-recognition ANN can correctly diagnose both
the nominal behavior and the fault classes of the CUTs considered in the present study,
with 100% of the data correctly classified when considering 64 Monte Carlo points for
each fault and for the nominal behavior. However, in order to analyze the ability of the
ANN to explain situations different from those used to train the ANN and to extract
valuable information that may explain the behavior of the circuit, wider ranges of the
fault resistances placed in series and in parallel with the components to simulate the hard
faults in the CUT were used. These values were chosen in order to generate different
fault scenarios to determine the ability of the developed ANN to diagnose possible fault
situations before a hard fault occurs. To test the ANN with these fault resistances, a new
Monte Carlo analysis was performed. In this later case, the number of runs generated for
the fault resistance was 1024, for each fault, instead of the 64 runs used to train the ANN,
following a uniform distribution, as shown in Figure 17a, for the case of a fault resistance
in series with the faulty component to simulate an open circuit, and in Figure 17b for the
case of a fault resistance in parallel with the faulty component to simulate a short circuit.
On the other hand, the rest of the components of the CUT were allowed to vary within the
specified tolerances.
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That is, to train the neural network, an initial Monte Carlo analysis was performed
for the CUT in which 64 runs were used for each fault event as well as for the nominal
value. This results in a total of 960 input vectors (VB, VC, VE, AV) in the case of the first
CUT and a total of 1728 input vectors (VB1, VC1, VE1, VB2, VC2, VE2, AV) in the case of the
second CUT. Therefore, this study employed a supervised learning technique in order to
develop a pattern-recognition neural network. It should be noted that, in the case of the
first CUT, 70% of these 960 data, obtained by Monte Carlo analysis, was used to train the
neural network (i.e., 672 data). The remaining 15% of the data was used for validation
and the other 15% for testing. The same procedure was followed for the second CUT
(70% train, 15% test, 15% validation). Once the neural network was developed, the values
predicted by the network for the different modes of operation were analyzed. This first
Monte Carlo analysis was generated from the tolerances of the circuit components, which
were considered commercial and standardized values with tolerances of 10% for resistors
and 20% for capacitors. As shown in the present study, the proposed ANN is a perfect
classifier since it is able to discriminate 100% of the data, not only with those used for
training, but also with those used for validation and testing, in both CUTs. This can be
observed in the ROC curves shown in Figure 8 (for the first CUT) and Figure 16 (for the
second CUT). Once the network was developed, another Monte Carlo analysis was carried
out to analyze how the ANN is able to predict other fault events, where the resistances
used were different from those used to develop the ANN. This was done by varying the
fault resistances (which are placed in series and in parallel with the potentially faulty
components) with values of 10 MΩ ± 99.9% to simulate the open circuit and values of
1 Ω ± 99.9% for the short circuit. These values of the resistors are shown in Figure 17 and
were chosen in order to generate different fault scenarios to determine the ability of the
ANN to diagnose possible fault situations before a hard fault occurs. In the latter case, the
Monte Carlo analysis was carried out using 1024 values for each fault event. From this,
it was possible to obtain the outputs of the ANN for these fault events and to determine
the thresholds from which the fault will be detected in each component. In the case of
the nominal behavior, it was also considered that the tolerance of the components was
increased by 50% relative to the nominal values, as shown in Figure 18, so that, in this case,
the resistance tolerances were increased to 15% and up to a value of 30% in the case of the
capacitors.
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Figure 19 shows the results of the confusion matrix obtained in the case of a wider
range of variation in the fault resistance, for the first CUT. As can be noted, the ANN was
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able to correctly diagnose most of the fault classes that may arise in the first CUT, as well
as the nominal behavior. A similar analysis could be carried out with the second CUT.
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Figure 19. Predicted faults in the first CUT when the fault resistances had 99.9% variation.

Specifically, it can be observed in Figure 19 that, when the first CUT works with
the nominal values of the passive components, with their tolerances increased by 50%,
the ANN predicted nominal behavior in all cases (100%), which is logical, since the BJT
amplifier considered as the first CUT in this study was robust to variations in the tolerances
of the passive components, so it was not greatly affected by the fact that these tolerances
were increased by 50% with respect to the design values, as can be observed in Figure 20.
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Figure 20. Response of the amplifier (Monte Carlo analysis of the nominal behavior) vs. variations in
the components (increased by 50% with respect to the design values).

On the other hand, regarding the M02 and M03 classes, these were correctly diagnosed.
In the case of M04, there were some faults that were classified as M02 and M05 classes,
which, at first, may seem like a detection failure by the ANN, but may have actually been



Mathematics 2021, 9, 3247 17 of 20

caused by the fact that varying the resistance in series with C1 and C2 within the range
of values analyzed (by setting 99.9% variation in the series fault resistance) can lead to a
similar configuration from the point of view of the DC voltages of the transistor. In any
case, 93.6% of the cases analyzed were correctly detected. Additionally, in the case of M05,
M06, and M07, 100% of the cases were detected correctly. Moreover, regarding the M08 class
the network predicted 94.6% of the faults. For the rest of the classes (M09, M10, and M11),
the ANN detected 100% of the faults.

Therefore, the ANN developed in this study could accurately predict the behavior of
the first CUT when faced with variations in the fault resistance. Figures 21–26 show the
values predicted by the ANN versus the values of the fault resistance.
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Figure 21. Predicted values (ANN) vs. fault resistance (R) in parallel with C2.

Figure 21 shows the values predicted by the ANN for the fault class M02. It can be
noted that the ANN detected all the faults in the circuit for the values of parallel resistance
considered.

Figure 22 shows the values predicted by the ANN for fault class M03. It can be noted
that the ANN detected all the faults in the circuit for the values of serial and parallel
resistances (R) considered. Likewise, Figure 23a shows that, in the case of C1 for low values
of resistance in series (R) with the faulty component, some of these situations could be
detected as M02{C2sc} and M05{C3oc} since the values of the fault resistance in series with
C1 presented a minimum value of 64 kΩ, which was obtained in this study through Monte
Carlo analysis with 1024 runs. The same behavior was obtained in the case of C2, although
for different thresholds of resistance (R), as can be observed in Figure 23b.
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Figure 23. Predicted values (ANN) vs. fault resistance (R) (a) in series with C1 and (b) in series with C2.

Figure 24a shows the values predicted by the ANN for the hard faults of class M05
{C3oc}, and Figure 24b shows those for the M06 {R4sc, C3sc} and M07 {R3sc} fault classes. As
can be observed, the ANN detected all the faults in the circuit.

Figure 25 shows the results predicted by the ANN for the M08 fault class (94.6% faults
were detected). Finally, Figure 26 shows the results predicted for the remaining fault classes.
As can be observed, 100% of fault data were correctly diagnosed in the case of R1sc (M09),
R2oc (M10), and R3oc (M11).
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5. Conclusions

In the present study, a pattern-recognition neural network with a hyperbolic tangent
as the transfer function in the hidden layer, along with a softmax transfer function in the
output layer, was used to diagnose individual hard faults in two CUTs. First, a single-stage
small-signal BJT amplifier was studied, followed by a two-stage small-signal BJT amplifier.
It was shown that the ANN was able to predict the hard faults accurately in both CUTs
considered in this work.

It was shown that a pattern-recognition ANN such as the one considered in this study
can be used to model hard faults in the CUTs by training the ANN with a reduced number
of measurements that have been taken at accessible points of the circuit and by using only
one hidden layer with a reduced number of neurons.

Moreover, in case of applying the neural network to situations different from those
used to train the neural network, where these situations have been modeled by expanding
the ranges of failure resistance, it was shown that the ANN developed had high precision
in diagnosing the failures in the first CUT, and it was able to explain situations different
from those used to train the ANN and to extract valuable information that may explain the
behavior of the circuit.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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