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A B S T R A C T   

Background: Consumer and research activity monitors have become popular because of their ability to quantify 
energy expenditure (EE) in free-living conditions. However, the accuracy of activity trackers in determining EE in 
people with Huntington’s Disease (HD) is unknown. 
Research question: 
Can the ActiGraph wGT3X-B or the Fitbit Charge 4 accurately measure energy expenditure during physical 
activity, in people with HD compared to Indirect Calorimetry (IC) (Medisoft Ergo Card)? 
Methods: We conducted a cross-sectional, observational study with fourteen participants with mild-moderate HD 
(mean age 55.7 ± 11.4 years). All participants wore an ActiGraph and Fitbit during an incremental test, running 
on a treadmill at 3.2 km/h and 5.2 km/h for three minutes at each speed. We analysed and compared the ac-
curacy of EE estimates obtained by Fitbit and ActiGraph against the EE estimates obtained by a metabolic cart, 
using with Intra-class correlation (ICC), Bland-Altman analysis and correlation tests. 
Results: A significant correlation and a moderate reliability was found between ActiGraph and IC for the incre-
mental test (r = 0.667)(ICC=0.633). There was a significant correlation between Fitbit and IC during the in-
cremental test (r = 0.701), but the reliability was poor at all tested speeds in the treadmill walk. Fitbit 
significantly overestimated EE, and ActiGraph underestimated EE compared to IC, but ActiGraph estimates were 
more accurate than Fitbit in all tests. 
Significance: Compared to IC, Fitbit Charge 4 and ActiGraph wGT3X-BT have reduced accuracy in estimating EE 
at slower walking speeds. These findings highlight the need for population-specific algorithms and validation of 
activity trackers.   

1. Introduction 

Huntington’s Disease (HD) is an inherited autosomal dominant 
neurodegenerative disorder caused by an expanded triplet (CAG) repeat 
in HTT gene on chromosome 4p [1]. The disease has an estimated 
prevalence of 3–7/100.000 people and it is characterized by movement 
disorders, cognitive alterations, and psychiatric symptoms [1,2]. HD 
patients tend to be frail, highly dependent on others, prone to losing 

weight, and physically inactive. Inactivity can have negative health 
consequences such as cardiovascular complications and sepsis [3]. 

Physical activity (PA) is one of the various lifestyle factors which 
seems to modify neurodegenerative disease progression [4]. Regular 
participation in PA is associated with a decreased risk of premature 
mortality and has positive effects on maintaining function and inde-
pendence as well as improving quality of life. Furthermore, participation 
in regular exercise has potential to result in improved strength, exercise 
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tolerance, cardiovascular fitness, mood and mobility [5,6]. 
Several studies suggest that PA may be beneficial for individuals with 

HD in terms of motor function, gait speed, and balance [7]. However, in 
order for training to have a significant impact on the management of HD, 
it is important to exercise at the right volume and intensity. For this 
reason, it is crucial to have accurate devices to measure these metrics in 
research and clinical practice, being particularly interesting to multi-
disciplinary health teams [8]. 

Estimates of daily energy expenditure (EE) are an important 
component in studies of PA. Indirect Calorimetry (IC) is a non-invasive 
technique that has been used as a gold standard for assessing intensity 
and EE of PA by measuring oxygen consumption (O2) and carbon di-
oxide production (CO2) (pulmonary gas exchanges). Although it is the 
best tool to measure and monitor EE, it is a costly and complexity 
method that cannot be used in free-living environments [9,10]. 

With advances in technology, commercial activity trackers (also 
referred to as accelerometers) such as Garmin, Fitbit devices or Acti-
graph are increasingly used in PA research and allow an estimate of EE. 
Recent studies have compared PA measurements taken by low-cost and 
easy-to-interpret devices with measurements taken by high-cost devices, 
with some research focused on healthy populations and others focused 
on populations with disease [10]. For example, the Actigraph has been 
used in large-scale epidemiological studies [9] as well as a review article 
that reported an exponential increase in the use of a popular commercial 
activity monitor (Fitbit) in research [12]. These devices that are typi-
cally worn on the wrist or waist, can be summarized in "counts per 
minute" or transformed using different algorithms to estimate EE of the 
task and Metabolic equivalents (METs), where 1 MET is how much en-
ergy a person uses up while at rest [13]. Although most of the monitors 
currently available have been validated in different populations, the 
accuracy of low-cost devices has not been evaluated for participants 
with HD [9]. Because people with HD have difficulties with gait and 
walking performance due to hyperkinetic and hypokinetic movements, 
it is especially important to evaluate the validity of monitors in order to 
avoid inaccurate conclusions [7]. 

To begin to fill this gap in information about the use of accelerom-
eters in HD, this study aimed to determine the accuracy of two accel-
erometers (research-focused device and low-cost device) in estimating 
EE compared to IC (the gold standard) in participants with HD. 

2. Materials and methods 

2.1. Design 

A cross-sectional, observational study was conducted at the Univer-
sity Isabel I and Burgos University Hospital, Spain. The study was con-
ducted in two visits. In the first one, we collected clinical information, 
and in the second visit, within three months, we collected total EE data. 

2.2. Participants 

A convenience sample of symptomatic, ambulatory people diagnosed 
with HD with a confirmed genetic mutation of > 36 CAG repeats in the 
HTT gene was recruited. Considering the low prevalence of HD and 
sample sizes included in previous validation studies [14], 14 HD par-
ticipants were included. Symptomatic HD participants were defined 
with a score greater than 4 on the motor subdomain of the Unified 
Huntingtońs Disease Rating Scale (UHDRS) [15], and a diagnostic 
confidence level (DCL) of 4, able to walk with minimal support. 

People diagnosed with diabetes mellitus, thyroid disturbances, 
active cancer, neurodegenerative conditions, cardiac, pulmonary, or 
skeletal-muscular diseases were excluded. People who were pregnant or 
breastfeeding, or taking medication that could affect metabolism/ 
endocrine function were also excluded. 

This study was conducted in accordance with Good Clinical Practice 
standards involving humans and was approved by the Institutional 

Review Board (University Isabel I and Burgos University Hospital, Cer-
tificate number: CEIM-2429, January 26th, 2021). All participants 
provided informed consent by signing the consent form prior to 
participating. 

2.3. Test protocol 

Participants were instructed to avoid vigorous exercise on the day 
before testing and refrain from alcohol, nicotine, and caffeine four hours 
before the study visit. The determination of total EE was performed by 
fasting for at least 5 h. 

In the second session, all participants received adequate time to 
familiarize themselves with the treadmill prior to the test. Participants 
were accustomed to walking at different speeds without using the 
handrails while breathing through the facemask. They were advised to 
stop at any time by giving an agreed signal or pressing the stop button. 
EE related to PA was evaluated with a treadmill walk (Cosmos Pulsar 
4.0, Cosmos Sports & Medical, Nussdorf-Traunstein, Germany) with a 
constant slope (1%), under three different speed conditions: i) walking 
at 3.2 km/h for three minutes, ii) walking at 5.2 km/h for three minutes 
and iii) walking speed started at 1.5 km/h and was increased by 0.5 km/ 
h every minute until the participant expressed, they were unable to 
continue. The participant used a harness throughout the test (risk pro-
tection) and were encouraged to only use the sidebars if they needed to. 

Walking at a constant intensity of 3.2 km/h with a constant gradient 
of 1%, served as a measure of the activity of daily living – walking; at a 
constant intensity of 5.2 km/h with a constant gradient of 1% as a 
measure of moderate activity; and the incremental test as a measure of 
vigorous activity [16]. During the test protocol, participants breathed 
through the mask equipped with inspiratory valves that transmitted the 
O2 data to a computer for analysis [17]. Gas exchange was continuously 
monitored to analyse O2 and CO2 concentrations by the use of a 
breath-by-breath system (Ergo Card®, Medisoft, Sorinnes, Belgium). 
Prior to each test, the analyser was calibrated by means of a syringe 
(Hans Rudolph®. Model 3800. Kansas. USA) and gas cylinder with gas 
mixture (G5512 5.04% CO2 and 11.87% O2. Airliquide), coupled to a 
pressure reducer (Gloor®. Switzderland). The data were analysed by 
specific software (Medisoft®, Sorinnes, Belgium). 

2.4. Functional assessments 

A certified movement disorder neurologist evaluated all HD partic-
ipants at baseline using a standardized HD assessment tool, the UHDRS, 
including the motor subscale (UHDRS-TM) with high scores denoting 
greater impairment [15]. Disease severity was assessed using the Total 
Functional Capacity (TFC) [18], with higher scores indicating more 
intact functioning. The severity of psychiatric symptoms was assessed 
using the Problem Behaviors Assessment (PBA), with higher scores 
indicating greater severity [19]. Cognition was screened using the 
Mini-Mental State Examination (MMSE) [20]. 

2.5. Activity monitors 

The ActiGraph accelerometer (wGT3X-BT), the most commonly used 
accelerometer for assessing PA in research under free-living conditions, 
was used for PA assessment [10]. It was a small (4.6 cm × 3.3 cm×1.5 
cm) and lightweight (19 g) device that used a triaxial accelerometer to 
measure accelerations in the range of 8 G G’s with a band-limited fre-
quency of 30–100 Hertz. Ten minutes before starting the protocol, the 
device was attached to a nylon belt and positioned on the right hip 
following the manufacturer’s instructions. Raw accelerometer data were 
downloaded using Actilife 6 software and then transformed into 10-sec-
ond epochs files. Freedson and colleagues [21] developed an equation to 
convert counts per minute into METS, the standard unit for measured 
activity intensity. This equation allowed for meaningful interpretation 
of ActiGraph data and the classification of activity intensities into light, 
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moderate or vigorous. All data were transformed using the following 
equation: “activity intensity (METS) = 1.439008 + (0.000795 x 
counts.min1)”. 

The Fitbit Charge 4, a wrist-worn activity monitor (3.58 ×2.27 
×1.25 cm and weighs 20 g) that measures distance, active minutes, step 
counts, and calories, was also used. Ten minutes before starting the 
protocol, the device was positioned on the dominant hand’s wrist [12]. 
This activity monitor calculates METs through a ratio (rate of energy 
expended during an activity: rate of energy expended during rest), 
considering that during rest or sitting quietly people expend 1 MET [22]. 
Raw data were exported to CSV and then converted into an Excel file for 
data interpretation. 

2.6. Statistical analysis 

Similar to previous studies [10], EE estimation was compared to IC. 
Descriptive statistics for participants and main outcomes are presented 
as the mean and standard deviation (SD) for continuous variables, the 
median, and the 25th-75th percentiles for non-normally distributed or 
ordinal data. The normality of the variables was evaluated using the 
Shapiro Wilk test. We calculated the frequency distribution and per-
centages to describe categorical variables. 

The accuracy of METs obtained from Fitbit Charge 4 and the Acti-
Graph wGT3X-BT compared to IC (gold standard) was calculated with 
Intra-class correlation (ICC) using two-way mixed models with absolute 
agreement and correlation assessment with Pearson and Spearman’s 
test. ICCs were analysed separately for both activity monitors measuring 
EE. ICC values can range from 0 (measurements are not in agreement) to 
1(measurements are reliable). These values may be interpreted as 
excellent reliability if ICC > 0.90, ICC between 0.75 and 0.90 indicates 
good reliability, values between 0.5 and 0.75 indicate moderate reli-
ability and ICC < 0.5 is interpreted as poor reliability [23]. 
Bland-Altman statistics were performed to determine the limits of 
agreement (LoA) for each device compared with the criterion measure. 
Data were analysed using SPSS version 28 for Windows (SPSS Inc., 
Chicago, IL, USA) and Microsoft Excel. The level of significance was set 
at p < 0.05. Scatterplot were used to evaluate the linearity of the asso-
ciation between IC with ActiGraph wGT3X-BT and Fitbit Charge 4. 

3. Results 

A total of 14 HD participants (7 women) with a mean age of 55.7 ±
11.47 years were included in this study. Clinical and Anthropometric 
data are provided in Table 1. Compared to IC, ActiGraph wGT3X-BT 
provided lower mean measures of EE at the speed of 3.2 km/h and 
higher mean measures at the speed of 5.2 km/h as well as during the 
incremental test. Compared to IC, Fitbit Charge 4 provided higher mean 
measures of EE in all tests (Table 2). During the incremental test, Acti-
Graph wGT3X-BT, could not provide values when the speed was very 
low. 

Across the devices, we found a moderate agreement between Acti-
Graph wGT3X-BT and IC during the incremental test (ICC=0.633) and a 

poor agreement in the overall treadmill walk in relation to Fitbit Charge 
4 and IC (Table 3). The criterion of IC derived activity EE yielded the 
strongest correlations with activity EE estimates from ActiGraph 
wGT3X-BT (p = 0.667, p ≤ 0.001) and with Fitbit Charge 4 during in-
cremental test (p = 0.701, p ≤ 0.001). 

Bland-Altman plots (Fig. 1) reflect the difference between ActiGraph 
wGT3X-BT EE with IC, and Fitbit Charge 4 EE estimates with IC. 
Compared to IC, at the speed of 3.2 km/h (light intensity), ActiGraph 
wGT3X-BT provided the narrowest 95% LoA. In relation to Fitbit Charge 
4, the narrowest 95% LoA were at a speed of 3.2 km/h. In addition, the 
plots indicated a lower systematic bias for IC and ActiGraph wGT3X-BT 
at 5.2 km/h, followed by the incremental test. In this regard, Fitbit 
Charge 4 overestimated EE at a speed of 3.2, 5.2 km/h, and during in-
cremental test compared to IC. 

Regarding the percentage of error, ActiGraph wGT3X-BT was more 
accurate than Fitbit Charge 4 in all tests (3.2 km/h, 5.2 km/h, and in-
cremental). ActiGraph showed the lowest error percentage at 3.2 km/h 
and Fitbit at 5.2 km/h (Table 3). 

4. Discussion 

To our knowledge, this is the first study that analyses the accuracy of 
two accelerometers to quantify EE at different exercise intensities under 
controlled conditions for HD participants. 

We found that both devices in all speeds have poor agreement with 
IC, the gold standard for EE measurements, except during the incre-
mental test, for which the Actigraph wGT3X-BT indicated moderate 
reliability. During the incremental test, there was a moderate correlation 
of both devices with IC, but as exercise intensity increased, the Fitbit 
Charge 4 overestimated EE compared to IC and the ActiGraph wGT3X- 
BT. 

Previous studies have examined the accuracy of various commercial 
activity accelerometers during different activities on the treadmill in 
healthy adults [10,12,24]. Vanhelst et al. [25] found a high correlation 
(r = 0.89) between accelerometry and oxygen consumption, with a 
mean difference very close of 0 (1.1 ± 1.3), with the LoA ranging from 
− 2.9 to 2.9, suggesting that is a valid measure of PA at varying levels of 
intensity. 

By contrast, Brazeau et al. [26] evaluated the accuracy of SenseWear 
Armband and Actical compared to IC. These authors found a significant 
correlation between both activity monitors with IC (r = 0.804; 
r = 0.807; p < 0.05, respectively), with good and excellent reliabilities 
(ICC of 0.892 and 0.906, respectively), but these devices were not ac-
curate for EE estimations during specific exercise and rest. Similarly, 
Anastasopoulou et al. [27] found a moderate correlation between 
ActiGraph GT3X (r = 0.53; r = 0.70; p < 0.05) and IC (for both walking 
and fast walking activity), but the devices did not show agreement 
(ICC=0.23; ICC=0.35). Kossi et al. [28] compared the EE estimations by 
ActiGraph GT3X+ with a gold standard measurement and also found 
that the agreement between both were poor (ICC=0.32; ICC=0.21). 
Furthermore, the device does not provide accurate EE estimates across a 
range of placement locations during moderate and high-intensity PA. 

Table 1 
Descriptive characteristics of the participants.  

Variable n ¼ 14 

Height (cm), mean ± SD 161.1 ± 6 
Weight (kg), mean ± SD 64.2 ± 11.6 
BMI (kg/m2), mean ± SD 24.8 ± 5.1 
TMS, mean ± SD 29.3 ± 13.6 
TFC, median (range) 10 (8-13) 
PBA, median (range) 1 (0-9.25) 
MMSE, mean ± SD 27.2 ± 2.7 

BMI, Body mass index; TMS, Total Motor Score; TFC, Total 
Function Capacity; PBA, Problems Behaviors Assessment; MMSE, 
Mini-Mental State. 

Table 2 
Instrument variability.   

Test Mean ± SD SEM 

Indirect Calorimetry 3.2 km/h 2.61 ± 0.31  0.086 
5.2 km/h 3.35 ± 0.47  0.135 
Incremental 2.96 ± 0.96  0.081 

ActiGraph wGT3X-BT 3.2 km/h 1.68 ± 0.74  0.212 
5.2 km/h 3.45 ± 1.14  0.345 
Incremental 2.69 ± 1.8  0.161 

Fitbit Charge 4 3.2 km/h 5.75 ± 1.47  0.425 
5.2 km/h 6.17 ± 1.6  0.480 
Incremental 5.36 ± 2.28  0.204 

SEM: Standard error of the mean 

L. Simón-Vicente et al.                                                                                                                                                                                                                         



Gait & Posture 109 (2024) 89–94

92

Table 3 
Comparison of EE of ActiGraph and Fitbit with Indirect Calorimetry (criterion).  

Activity Monitor Test n Mean 
difference1 

Lower 
LoA2 

Upper 
LoA2 

Absolute percentage 
error 

ICC 95% CI Correlation 
coefficient 

Lower Upper 

ActiGraph wGT3X- 
BT 

3.2 km/h  14  0.924  -0.803  2.651  132  -0.055  -0.253  0.308 -0.160 (0.601)3 

5.2 km/h  14  -0.097  -2.482  2.287  142  0.131  -0.520  0.65 0.159 (0.622)4 

Incremental  125  0.169  -2.383  2.723  165  0.633  0.515  0.728 0.667 * * (<0.001)4 

Fitbit Charge 4 3.2 km/h  14  -3.169  -6.304  -0.033  243  -0.009  -0.084  0.177 0.579 (0.170)4 

5.2 km/h  14  -2.9  -6.121  0.321  197  0.020  -0.088  0.272 0.523 (0.081)4 

Incremental  122  -2.59  -6.143  0.962  260  0.188  -0.080  0.435 0.701 * * (<0.001)4 

Mean difference= difference between the gold standard and the activity monitors for each speed 1 

95% LoA= Limits of agreement 2 

ICC= Intra-class correlation 
CI= Confidence interval 
Pearson’s test 3 

Spearman’s test 4 

Fig. 1. - Bland-Altman plot visualizing agreement of energy expenditure (MET) (A) Actigraph v’s IC at 3.2 km; (B) Fitbit v’s IC at 3.2 km/h; (C) Actigraph v’s IC at 
5.2 km; (D) Fitbit v’s IC at 5.2 km/h; (E) Actigraph v’s IC during Incremental test; (F) Fitbit v’s IC during Incremental test. 
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In diseased populations, including participants with Multiple Scle-
rosis, ActiGraph estimates of EE compared to IC have shown good 
agreements (ICC= 0.859). However, in Bland Altman plots, the differ-
ences per treadmill speed between both measurements were generally 
within 2 SD, with up to 30.3% discrepancy on slow-walking speeds. The 
disagreement between both devices could be explained by the difference 
in output under slow-walking conditions [29]. Likewise, Abel et al. [30], 
found that ActiGraph was not accurate for low-intensity movements. 
These results agree with our results, with poor sensitivity for EE of the 
Actigraph at low speeds during the incremental test. The lack of 
agreement could be because the device may not be sensitive by clinical 
characteristics of the participants, the disease itself, or that the loga-
rithms used are not validated for people with chorea. 

In other populations, Sean et al. [31] evaluated the validity of 
ActiGraph in people with acquired brain injury and they found positive, 
moderate correlations (range 0.58 – 0.70, p < 0.05). However, 
Bland–Altman plot spanned 5.1 METs and, when compared with 
measured MET levels, METs ranged from 1.6 METs overprediction to 4.3 
METs underprediction, so the absolute agreement between measured 
and predicted METs was not strong, limiting the validity of the Acti-
graph. Again, the discrepancy between devices may be because people 
with acquired brain injury who participated in the study had related gait 
pattern impairments affecting the conditions and performance of the 
study substantively. Mandigout et al. [32] also compared the EE eval-
uated by IC, this time in subacute post-stroke patients. During a scenario 
consisting of everyday activities, they estimated the EE using several 
sensors and concluded a low correlation (r = 0.04) and a very poor 
agreement for all sensors. 

Overall, our results agree with previous research with healthy adults. 
In these studies, reported Fitbit Charge 4 overestimated EE with a 
negative bias when activities were performed on the treadmill (− 19.3% 
[SD 28.9]) [33], and a trend to overestimate EE compared with IC with a 
difference for estimates of total EE of − 29.6% [34]. Our findings agree 
with a previous study carried out by Sjöberg [35] that concluded that 
Fitbit systematically overestimated EE in participants with chronic pain 
(ICC= –0.03). Likewise, in agreement with our results, Herkert et al. 
[36] demonstrated low accuracy of Fitbit (ICC=0.10) in estimating EE in 
people with coronary artery disease. A possible explanation for these 
results might be due to Fitbit algorithm employs an equation for esti-
mating resting metabolic rate that is still not debugged [37]. On the 
other hand, in people with Chronic Obstructive Pulmonary Disease, 
ActiGraph seems to measure standardized and common physical activ-
ities accurately, and it is recommended for assessing activities of pa-
tients in terms of intensity and/or amount. However, ActiGraph seems to 
be still imperfect for measuring EE in this population [38]. 

Differences between ActiGraph and Fitbit estimates may be due to 
the location of the device. Hip-worn monitors, which are close to the 
center of mass, estimates MET values and total EE better than wrist-worn 
devices [11]. A review performed to evaluate the influence of body 
placement to the accuracy of EE estimation concluded that wrist-worn 
monitors generally lead to overestimating EE [39]. This could be why 
Fitbit Charge 4, located on the wrist, estimated METs values worse than 
ActiGraph wGT3X-BT, located on the hip. In addition, other confusing 
factors including HD motor abnormalities such as chorea, involuntary 
jerking or writhing movements, may affect and cause differences in the 
estimation of the EE [40]. 

5. Limitations 

A potential limitation of this study is that the accuracy of the Acti-
Graph wGT3X-BT and Fitbit Charge 4 was examined only during 
walking and jogging exercise intensities (i.e., light, moderate, and 
vigorous intensity) in a laboratory under controlled conditions. How-
ever, it is unclear whether similar findings would be observed under 
different environmental conditions. 

Because this was a laboratory-based study, participants only had to 

wear the wearables for approximately 1 h 30 min. This study cannot 
determine whether people with HD would be willing to wear the devices 
for longer periods. In addition, we cannot extrapolate the results to a 
community-dwelling individuals with HD in free-living conditions. 
However, despite these limitations, we believe that our study has several 
strengths, including being the first study providing evidence about the 
accuracy of two common accelerometers in detecting EE in people with 
HD in different body positions. 

6. Conclusion 

There is a growing interest in using activity monitor devices to 
promote healthy lifestyles and physical exercise. Compared to IC, our 
results suggest that Fitbit Charge 4 and ActiGraph wGT3X-BT have 
reduced accuracy in estimating EE at slower walking speeds. The loca-
tion of the device is another parameter to consider since hip-worn 
monitors estimate total EE better than wrist-worn devices. These find-
ings highlight the need for population-specific algorithms and validation 
of activity trackers. 

Despite the finding that the Fitbit device overestimated METS, it 
could still be a beneficial tool for clinical applications in people with HD 
given the ease of use, the relatively low cost, and its ability to give im-
mediate feedback. Furthermore, when people with HD monitor their PA 
behaviours, this can increase their motivation and promote the adoption 
or maintenance of healthy PA habits. Over time, these behaviours could 
have a significant positive impact on peopleś daily lives by increasing 
their levels of autonomy and independence as well as potentially 
delaying their age of institutionalization. 
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