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Abstract: Parkinson’s disease (PD) is a progressive neurodegenerative disorder whose prevalence has
steadily been rising over the years. Specialist neurologists across the world assess and diagnose patients
with PD, although the diagnostic process is time-consuming and various symptoms take years to appear,
which means that the diagnosis is prone to human error. The partial automatization of PD assessment
and diagnosis through computational processes has therefore been considered for some time. One
well-known tool for PD assessment is finger tapping (FT), which can now be assessed through computer
vision (CV). Artificial intelligence and related advances over recent decades, more specifically in the
area of CV, have made it possible to develop computer systems that can help specialists assess and
diagnose PD. The aim of this study is to review some advances related to CV techniques and FT so as
to offer insight into future research lines that technological advances are now opening up.

Keywords: Parkinson’s disease; finger tapping; machine learning; computer vision

1. Introduction

In 2015, the Global Burden of Disease study estimated that neurological disorders are
the leading cause of disability worldwide. The incidence and prevalence of neurodegenera-
tive diseases such as Parkinson’s disease (PD) increase considerably with age. PD is the
second most common neurodegenerative disease worldwide. According to the literature,
the number of cases estimated between 1990 and 2015 doubled, affecting 6.2 million people
worldwide, a figure that is likely to double again by 2040 [1].

PD is characterized by progressive primary motor disabilities following the degenera-
tion of the dopaminergic neurons located in the substantia nigra and associated areas of the
brain [2]. The pathophysiology of PD involves signature abnormalities in several parallels
and largely segregated basal ganglia thalamocortical circuits (i.e., the motor circuit). The
available evidence suggests that the varied movement disorders resulting from dysfunc-
tions within that circuit result from the propagated disruption of downstream network
activity in the thalamus, cortex, and brainstem, and neurotransmitters, including dopamine,
acetylcholine, noradrenaline, and serotonin [3,4].

Although PD is mainly associated with motor symptoms, characterized by the pres-
ence of motor asymmetry with bradykinesia (slowness), rigidity, resting tremor, and gait
difficulties with postural instability [5], it is also accompanied by other non-motor symp-
toms such as cognitive impairment, behavioral disturbances, sleep disorders, hyposmia
or autonomic dysfunction, among others [6,7]. As a result, PD is a highly heterogeneous
disease, both with respect to its symptoms and its progression over time [8].

There is no cure for PD, but pharmacological and non-pharmacological treatments are
available, providing symptomatic relief and improving the quality of life. In that regard,
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levodopa is the most effective medication available for treating the motor symptoms of PD,
but in certain instances, it can be associated with other dopaminergic and non-dopaminergic
drugs [9]. Other non-pharmacological treatments include deep brain stimulation of the
subthalamic nucleus or the internal globus pallidum and physical, occupational, and
neuropsychological interventions.

Early diagnosis of PD has profound implications for patients and their families, and
despite important advances, it is still a challenge [10]. Recent developments include the
validation of modified clinical diagnostic criteria, the introduction and testing of research
criteria for prodromal Parkinson’s disease, and the identification of genetic subtypes and a
growing number of biological biomarkers associated with Parkinson’s disease risk [10]. In this
regard, the International PD and Movement Disorder Society (MDS) has published clinical
criteria for the diagnosis of PD that are intended for use in clinical research and clinical practice.
These criteria include two levels of certainty: clinically established PD (maximizing specificity,
but with reduced sensitivity) and probable PD (balancing sensitivity and specificity) [11].

At present, the new MDS-revised version of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) is used to rate the progress of PD. It comprises four parts: the non-
motor aspects of daily life experiences (Part I); the motor aspects of daily life experiences
(Part II); the motor examination (Part III); and, finally, the motor complications (Part IV) [12].
However, administering the full scale is very time-consuming, so in order to optimize time
in clinical practice, several authors have tried to develop shorter rating scales or to use
specific items from Part III of the MDS-UPDRS [13,14].

Among the motor features associated with PD, bradykinesia, characterized by hy-
pokinesia (i.e., reduced movement amplitude, hesitations/halts, and sequence effect) has
a significant impact on PD-related disability. Finger tapping (FT), one item of the motor
examination included in the MDS-UPDRS, is a test in which the patient is asked to tap
their index finger on their thumb as rapidly as possible, separating both fingers as much as
possible. FT seems to be one of the most sensitive items, so it can be used to create a fast
clinical judgment of motor status. Consequently, the FT test could potentially be used as the
gold standard for video-based analysis [15]. However, interpreting objective bradykinesia
data, obtained through kinematic techniques, is an especially challenging task, particularly
when utilized for diagnostic purposes [16].

In recent years, there have been tremendous developments in the field of technologies
which, coupled with the improved capabilities of machine learning (ML) algorithms, has
led to increased research activity on the automatic monitoring of PD motor symptoms, the
monitoring of the hands being of particular interest [17]. Recent publications have explored
the use of AI in the diagnosis, progression, and assessments of PD motor and non-motor
symptoms; however, there is limited research on the application of AI to video motion analyses.
In this review, the aim is to highlight developing uses of AI-based technology for video motion
analysis of hand movements, so as to facilitate the diagnosis, management, and empowerment
of patients and to supervise the progression of their disease and their response to medication.

After this introduction, the remaining sections of this paper are as follows. Firstly,
related works with automatic PD diagnosis are reviewed in Section 2. Secondly, all the
papers on computer vision (CV) for PD diagnosis are carefully summarized in Section 3.
Finally, the discussion of the results is presented in Section 4, and the main conclusions and
future lines of research in Sections 5 and 6 respectively.

2. Related Works

Over the past decade, researchers have been trying to define a useful and efficient
method for PD assessment. This assessment could include diagnostic or/and PD ratings
in accordance with UPDRS levels. As previously noted, the focus of this paper is on
publications that use CV and FT; nevertheless, in the current section, some other approaches
are covered in a brief review.

One of the initial attempts at diagnosing PD using CV includes the handwritten traces
analysis [18]. In that test, patients have to fill out spirals and meanders on a piece of paper.
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Subsequently, the template and the drawings are identified and automatically split using
image processing techniques; both were compared for feature extraction. Finally, for PD
diagnosis (i.e., binary classification), they used traditional classifiers: Naïve Bayes, Optimum-
Path Forest, and the Support Vector Machine (SVM) algorithm with a Radial Basis Function.

Historically, another common approach for PD assessment has been the use of external
wearables [19] and sensors [20]. These devices are capable of recording movement-related
data in effective and accurate ways, yet they are rarely used and are very expensive. It
is a very interesting line of research, due to the reliability of the data capture methods
that can extract solid features on the basis of a patient’s movements. In both cases [19,20],
traditional classifiers, such as SVMs, k-Nearest Neighbors, and Decision Trees were used for
PD diagnostis (i.e., classification). Jeon et al. [19] researched the use of a wristwatch-type
wearable device with an accelerometer and a gyroscope to capture PD patients’ movement
(acceleration, angular velocity, displacement, and angle) and, after the classification process,
the authors performed a comparison of the UDPRS rating assigned by two neurologists.
Related to Moshkova et al. [20], they focused their article on capturing hand movement
signals from a LeapMotion sensor, which was placed at a distance of 15–30 cm from the
patient’s hand. Their main aim was to perform PD assessment based on three different hand
movements: FT, pronation–supination of the hand, and opening–closing hand movements.

In some studies [21–23], PD severity has been assessed through videos, thanks to
the technological advances with CV systems. For example, Zhang et al. [21] focused
on tremors, while Lu et al. [22,23] sought to quantify the severity of PD through the
analysis of videos showing patients performing MDS-UPDRS. Zhang et al. [21] focused
their research in analyzing tremor severity. For this purpose, they used OpenPose [24] for
extracting 2D skeleton features; after this step, classification was performed using a graph
neural network with a spatial attention mechanism. They also compared the results using
other standard classifiers such as decision tree, convolutional neural network, and SVM.
Meanwhile, Lu et al. [22,23] developed their own classifier, called Ordinal Focal Double-
Features Double-Motion Network. In the previous paper [22], they only included gait
analysis, but in the second one [23], FT was also evaluated. For gait analysis, they used
VIBE [25] (video inference for human body pose and shape estimation) from extracting the
3D skeleton; for FT, they used the OpenPose [24] detection system.

A more recent article [17] must also be highlighted, which demonstrated the excellent
correlation between data extracted using CV (more specifically MediaPipe [26]) and data
captured with hand-held accelerometers. That study showed that non-intrusive methods
such as CV can extract similar data to physical devices. Williams et al. [27] sought to prove
a correlative relationship when assessing whether or not smartphone video recordings
could be enough for evaluating bradikynesia. Standard smartphone video recordings
of patients performing FT were tracked with DeepLabCut [28]. Three features such as
tapping speed, amplitude, and rhythm were correlated with clinical ratings made by
22 movement disorder neurologists using the Modified Bradykinesia Rating Scale (MBRS)
and the Movement Disorder Society revision of the MDS-UPDRS.

With a similar purpose in mind, Jaber et al. [29] sought to show how CV can be
a suitable framework for PD assessment. The research showed a way of capturing FT
movements using CV libraries (i.e., LabelImg and YOLO [30]) and transforming them into
valuable metrics and features that can help with PD diagnostics.

Additionally, with the rise and democratization of Information Technology (IT), other
researchers have approached PD assessment on the basis of IT interactions; for example,
using mobile devices [31,32] and web browsers [33]. In both approaches, PD patients
are invited to enter a gamified situation and are prompted to perform movements, either
by tapping directly on the mobile phone screen [31,32] or by tracking mouse operations
and keyboard inputs on the web browser [33]. Based on rhythm, accuracy, fatigue, and
reaction time, among other factors, data are gathered for use as input for machine learning
classifiers performing an assessment of PD. Regarding mobile phone usage, some of these
investigations also took patient voice recordings into consideration [32].
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Finally, the use of a CV framework for the diagnosis of movement disorders [34] or
specifically PD [35] must be mentioned. In both papers, the way that deep-learning-based
markerless motion tracking techniques can improve PD diagnosis and assessment were
highlighted. Tien et al. [34] reviewed and discussed the potential clinical applications and
technical limitations of these techniques, with a focus on DeepLabCut [28]. To evaluate
the use of DeepLabCut for automated movement disorder disease assessment, they built a
mobile frame with three synchronized cameras for recording hand movements, including
healthy control subjects and movement disorder patients with various diagnoses, such as
PD and essential tremor. In this case, authors share the utility of DeepLabCut, mention-
ing three ongoing studies, but without providing additional details. On the other hand,
Sibley et al. [35] published an article wherein they reviewed the techniques, software li-
braries, and commercial approaches to video analyses of PD. Additionally, they identified
challenges and possible solutions associated with rating motor symptoms of PD using video.

As it has been previously noted, traditional classifiers have been evaluated historically
for appraising models’ performance and for carrying out statistical comparison with previ-
ous articles. To provide a summary view, Table 1 shows the classifiers which have been
used in the articles mentioned in this section. After a first insight, decision tree, random
forest, and SVM (in its different variations) seem to be the most used classifiers across the
dissected articles. The use of ad hoc algorithms by some authors is also worth noting.

Table 1. Summary of the related works and the classifiers used in each study. When more than one
classifier was used, the one that achieved the best performance is highlighted in bold (SVM: support
vector machine).

Ref. Year Brief Description Classifiers

[18] 2016 Handwritten traces
Naïve Bayes
Optimum-Path Forest
SVM-R

[19] 2017 Tremor severity analysis using a wristwatch-type
wearable device

Decision tree
SVM-L
SVM-P
SVM-R
k-nearest neighbors
Discriminant Analysis

[31] 2018 On-screen tapping on a mobile phone (iPhone app)

Logistic regression
Random forest
Deep Neural Network
Convolutional Neural Network

[32] 2018 PD-related activities (voice, finger tapping, gait,
balance, and reaction time) assessment (Android app) Machine-Learning algorithm [36]

[20] 2019 Hand movements data capturing using
LeapMotion sensor

Decision tree
SVM
k-nearest neighbors
Random forest

[22] 2020 Gait analysis using videos Ordinal Focal Double-Features Double-Motion Network

[23] 2021 Gait and FT analysis using videos Ordinal Focal Double-Features Double-Motion Network

[21] 2022 Tremor severity analysis using videos

Graph Neural Network
Decision tree
Convolutional Neural Network
SVM

[33] 2023 Gamified website tracking keyboard and mouse inputs

Random forest
Decision tree
SVM
Multilayer perceptron

3. Finger Tapping and Computer Vision on Parkinson’s Disease Evaluation

In recent years, suitable methods have been proposed in several works for improving
the diagnosis and/or the PD rating using CV and FT. In this section, the most interesting
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studies on CV and FT are briefly reviewed and compared. To do so, a state-of-the-art review is
conducted with papers published no earlier than 2014 (e.g., [37]). As shown in Table 2, most of
the papers were written over the past 4 years. There are two main reasons for this: first of all,
the improvement in CV-related devices (cameras, smartphones, etc.) offers useful capabilities
at affordable costs; secondly, the increasingly effective performance and accuracy of detection
and pose estimation libraries [24,26,38] also make them effective choices.

All the studies share common points (see Figure 1): first of all, the thumb and the
index fingers are automatically identified to perform feature extraction, before a dataset is
compiled. Then, one or more algorithms are trained to produce a model, which can finally
be used for testing with unseen instances/examples.

Shooting and collection 
of video instances

Landmark detection by 
computer vision

Feature 
extraction

- Amplitude
- Frequency/Rhythm
- Speed
- Fatigue
- etc.

For each 
frame

Construction of 
train and test 

datasets

Machine 
Learning 

model

Training and 
validation

Figure 1. General process for the detection of PD using CV and FT.

Most of the works are intended to solve classification problems: a few of them face
the simplest problem (binary classification, i.e., either has PD or no PD), whereas most of
them are designed to predict a class among more than two values (multiclass classification);
for that purpose, the common approach is to predict the UPDRS rating. The distribution
between classes is uneven (both for binary and multiclass classification papers), and a
summary of the number of videos for each class is shown in Figure 2. It must be noted that
UPDRS 3 and 4 level severity are especially underrepresented in most of the works.

The main characteristics of the research papers under analysis are summarized in Table 2.
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Table 2. Summary of the main characteristics of the computer vision (CV)-related papers reviewed in this research. In the studies with more than one classifier, the one that
achieved the best performance is highlighted in bold (PD: Parkinson’s disease, HC: healthy control, AUC: area under the ROC, SVM: support vector machine).

Ref. Year Capture Finger Identification Classifiers ML Problem Dataset Performance Measures

[37] 2014 2D OpenCV SVM-PUK Binary Multiclass (3) 13 PD
6 HC Accuracy

[39] 2019 2D Convolutional Neural Network

Naïve Bayes
Logistic regression
SVM-L
SVM-R

Binary 20 PD
15 HC

Accuracy
Sensitivity
Specificity
AUC

[40] 2019 3D Custom-made trackers Artificial neural network
SVM Binary 16 PD

14 HC

Accuracy
Sensitivity
Specificity

[41] 2021 2D OpenPose Convolutional Neural Network Multiclass (5) 157 PD
0 HC

Accuracy
AUC
Precision
Recall
F1-score

[42] 2021 2D Single Shot MultiBox Detector (SSD) + OpenPose
Logistic Regression
Naïve Bayes
Random forest

Binary 22 PD
20 HC

Accuracy
AUC

[43] 2021 2D OpenPose SVM-R Multiclass (5) 55 PD
0 HC

Weighted κ
Intraclass corr. coeff.

[44] 2022 2D MMPose Deep Neural Network Multiclass (4) 300 PD
0 HC

Precision
Recall
F1-score

[45] 2022 2D MediaPipe Fully Connected Network Multiclass (5) 93 PD
27 HC

Accuracy
Precision
Recall
F1-score

[46] 2022 3D Spatial-Temporal Anchor-to-Joint Regression Network
(ST-A2J)

k-nearest neighbors
Random forest
XGBoost
SVM-L
SVM-R

Multiclass (5) 48 PD
11 HC Accuracy

[47] 2023 3D MediaPipe

k-nearest neighbors
Random Forest
XGBoost
SVM

Binary 35 PD
60 HC

Accuracy
Precision
Recall
F1-score
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Figure 2. Barplot with the number of videos for each class (severity of UPDRS) for the papers that perform
multiclass classification. References to the papers presented in the figure: Khan et al. [37], Li et al. [41],
Park et al. [43], Yang et al. [44], Li et al. [45], and Guo et al. [46].

3.1. Feature Extraction

As might be expected, the preference for deep neural networks for CV [48] meant
that they were used for finger identification in all the studies. The most popular ones are
listed below:

• Mediapipe [26] is an open-source framework, developed by Google, which provides
real-time processing of multimedia data, including video and audio. It includes several
modules for CV tasks, including pose estimation, face detection, hand detection, and
object tracking.

• Openpose [24], developed by the Computer Vision Center at the Autonomous Uni-
versity of Barcelona, was released in 2016. It is a real-time multi-person human pose
detection library with the capability of jointly detecting the human body, foot, hand,
and facial keypoints on single images.

• MMPose [38] is an open-source toolbox for pose estimation based on PyTorch. It
supports: multi-person human pose estimation, 133 keypoint whole-body human
pose estimation, hand pose estimation, and 3D human mesh recovery.

The increasing use of Mediapipe must be noted in some of the most recent studies that
were reviewed [17,45,47], replacing OpenPose [24], which was the most widely used in
previous years [41–43].

The most common features used in the research papers are summarized in Table 3. One
of the studies [41] was intentionally excluded from the table, due to a lack of information
on the topic. Moreover, features used in no more than one paper were not included. At this
point, it is important to mention the linguistic discrepancies between the notations in the
different works, as well as the agreements that were reached for the purposes of this study
on correct specification of the features that appear in the table.

• Amplitude and Speed: the two most common features to be analyzed for PD as-
sessment using FT. Nevertheless, they are not considered in quite the same way in
all works, although there are no semantic differences regarding the way that those
features are to be understood in FT:

– Amplitude: distance between thumb and index fingers.
– Speed: amplitude difference over time.

For example, a common approach is to obtain the values during the time series, but
other authors also compute the mean or maximum value, a maximum value during
the opening or the closing phases, minimum, standard deviation, etc. In other words,
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once the feature is considered, several metrics could be extracted, which will obviously
differ across the different studies.

• Fatigue: this feature is evaluated in few articles, yet the approaches used for its
estimation vary. It should be noted that it is not a physical value, such as amplitude
and speed. The concept itself is similar in the different articles, but essential nuances
in its estimation were identified. For example:

– Difference between the highest and the lowest values of amplitude peaks [42].
– Gradient in amplitude according to time [43].
– Other authors [37] evaluated fatigue on the basis of different measures:

* Difference between number of taps in two time slots.
* Variation coefficient (VC) in tapping speed.
* Difference between the average/VCs maximum amplitude of finger taps in

two time slots.
* VC in the maximum amplitude of finger taps.
* Tapping acceleration.

• Frequency/Rhythm: without a doubt, the most abstract feature. Both concepts are
used indistinctly, but not always for representing the same concept:

– In some studies [17,27], its calculation is based on undertaking Fast Fourier Transform.
– Another common approach [37,39] is to use a feature called “cross-correlation

between the normalized peaks” (CCNP) for estimating consistency and rhythm
in tapping.

– Buongiorno et al. [40] used the averaged value of the division between the ampli-
tude peak reached in a single exercise trial and the time duration of the trial.

Table 3. Summary of finger tapping features used in the CV papers reviewed in this research. The
symbol (✓) represents that the feature is used in the work.

Feature [37] [39] [40] [27] [42] [43] [29] [44] [45] [46] [17] [47]

Amplitude ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Frequency/Rhythm ✓ ✓ ✓ ✓ ✓ ✓

Speed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fatigue ✓ ✓ ✓

3.2. Classifiers

As previously mentioned, all the papers that were reviewed had the common aim
of performing a classification prediction (binary or multiclass). In other words, the main
target of the studies was to implement a PD prediction according to UPDRS ratings for FT.
In no more than a couple of studies [37,44] could the five levels of UPDRS not be predicted,
due to the lack of enough examples during the training phase.

Different classifiers can be trained to perform the classification, once feature extraction
has been completed, with SVM [49] (with its different variants/kernels) being by far the
most popular [37,39,40,43,46,47].

Broadly used, especially in recent years, deep neural networks can also be applied as
classifiers [40,44,45] (not only for finger identification) with different configurations and
variations. Ad hoc designs and deployments have even been proposed [41].

On the other hand, multi-classifiers [50] (a.k.a. ensembles) are popular, the most
widely used being random forest (RF) [42,46,47,51] and XGBoost [46,47,52]. Last but not
least, conventional classifiers (such as Naïve Bayes [39,42], k-nearest neighbors [46,47], and
logistic regression [39,42]) have commonly been used as baselines.

No insight could be given into which classifier was the best for the task of FT classifi-
cation without further experimentation, due to the differences between the experimental
setups, the datasets, the classification tasks, and the classifiers that were used.
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3.3. Datasets

One of the main problems that severely complicates comparisons of the proposals is
the lack of benchmark datasets. A particular dataset is used in every single study, usually
containing small numbers of individuals: the smallest included 11 while the largest had
300. It must be noted that it can be extremely difficult to assess the performance of the
proposals with such small-sized samples.

Deep analysis of this topic reveals great variability. Commonly, most of the research pa-
pers include PD patients and healthy controls (HCs). The problem here is that, sometimes,
there are large differences related to class proportions. It is well known that imbalanced
datasets (i.e., when a class is under-represented) are challenging, as algorithms will invari-
ably ignore the underrepresented class/es. The class proportion is usually measured by
means of the imbalance ratio (IR) [53].

IR =
Number o f majority
Number o f minority

In this way, datasets can be further classified:

• Fairly balanced datasets (IR < 2): the proportions between Parkinson’s disease
patients and healthy controls are balanced [27,39,40,42,47].

• Imbalanced datasets (IR > 2): the proportions are sufficient to take into account the
imbalance problem [37,45,46].

In some studies, only videos from PD patients were taken into consideration [17,41,43,44].
There was no attempt to distinguish between PD patients and healthy controls, but only
the differences between patients were considered, e.g., to rate them according to UPDRS.

3.4. Measures

After analyzing the articles, similar performance measures based on ML tasks were
used. Brief explanations appear below alongside notes on their use in the papers that
were reviewed.

• Accuracy: by far the most common measure [37,39–42,45–47], the foundation and
common understanding of its meaning is what makes accuracy so popular (e.g., the
number of successful outcomes divided by the total number of examples). Even a non-
familiar reader could determine the achievement level by interpreting the accuracy
percentage. However, this measure also has some drawbacks; a common complaint
about accuracy is that it fails when the classes are imbalanced.

• Area Under ROC Curve (AUC): also considered a popular measure for classification
problems [39,41,42]. It is commonly used in ML and data analytics to assess the
performance of models at predicting binary outcomes and, in contrast to standard
accuracy, it is particularly useful when processing imbalanced datasets, where accurate
prediction of minority classes is of high importance.

• F1-score [41,44,45,47] is the harmonic mean of precision (the number of true positive
divided by the predicted as positives) and recall (the number of true positives di-
vided by the number of all samples of the class of interest). F1-score gives the same
importance to both precision and recall, what can be considered as its main draw-
back [54]. Nonetheless, in real-world problems usually different costs are associated
to different errors.

4. Discussion

First of all, as previously stated, PD assessment is still a major challenge for clinical
neurologists. Few of the proposed solutions have been certified by the Movement Disorder
Society for UPDRS rating. Despite the fact that this certification is meant to provide a
common framework and to objectify a complex scenario, some voices are skeptical of
its generalized use [55]. Firstly, previous knowledge is usually necessary as well as a
case study with some clues on patient evolution, family background, and so on [39,42].
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Secondly, some studies have shown some moderate agreement between neurologists and
the rating provided for the same patients [46,55]. And finally, it is obvious that a subjective
component is always present when the rating is provided by a human and it therefore
depends to some extent on professional experience, among other things. On the other
hand, the inclusion of several promising biomarkers including digital measures in future
iterations for the clinic biomarkers PD staging system has been proposed [56]. In this
regard, stages that distinguish between increasing degrees of motor impairment will be
required to provide the space within which to develop sensitive quantitative measures
including digital biomarkers [57].

Some authors have resorted to external devices in order to provide tools for improving
the assessment of symptom severity among PD patients. Some can be mentioned here,
such as wristwatch-type wearable devices [19], LeapMotion sensors [20], including depth
cameras [46], motion controllers, i.e., Microsoft Kinect [40,47], and even trackers with
reflective materials [40]. These external devices have some drawbacks. First, they are costly
and specialized, which deter their generalized usage as effective devices. Second, they can
alter the normal patient behavior, causing unusual movements.

Taking into account the previous arguments, CV appears to be the right technique for
providing an objective and non-intrusive tool to perform PD assessment. The first articles
which used CV for PD evaluation [37] needed a manual and/or additional calibration;
nevertheless, the impressive technological improvements over recent years have led to the
creation of self-provisioned models. Mobile phone cameras and webcams have increased
their performance exponentially, being able to capture images and videos at very high
resolution and recording them at different frequencies (frames per second). Furthermore,
several software libraries and frameworks that have high accuracy rates have been de-
veloped for object and human detection. Some of those libraries, previously used for PD
assessment and diagnosis, have yielded promising results: OpenPose [41,42], DeepLab-
Cut [27,34], MediaPipe [17,45,47], etc. It must be noted that most of the studies used 2D
capture, while 3D capture was only selected in a few of the studies [40,46,47]. In strictly
technical terms, 3D capture systems can perform FT detection better, but 2D capture is
arguably still preferable for several reasons. The 3D specialized systems are more expensive
and complex to install and use. Other 3D capture systems like Microsoft Kinect are more
accessible, but they still need a controlled environment and achieve similar results to 2D
capture using a general purpose camera. The need to install specialized systems that
require a controlled environment and, in some cases, specialized personnel, can result in
delays in accessing PD assessment and/or diagnostics, which defeats the purpose of such
systems. Two-dimensional cameras, on the other hand, are already in most doctor’s offices
and do not require any special training. At this point in time, the performance of basic and
inexpensive vision-related devices continues to improve, offering exciting new possibilities.

Combining these two improvements and the use of AI and ML techniques, all the
tools are in place for precise assessments of human movements. Once movement has been
accurately detected and converted into time series data, machine learning, which has shown
its efficiency for PD assessments, is the next step; for example, SVM [20,37,39,40,43,46,58],
extreme gradient boosting [46,47], k-nearest neighbors [46,47], random forest [42,46,47],
and Naive Bayes [39,42].

Regarding the classifiers used, they can usually be grouped into white and black boxes,
according to its interpretability [59]. Black-box classifiers, such as SVMs, are able to achieve
high accuracy but it is difficult (if not impossible) to explain why. On the other hand,
white-box classifiers, such as decision trees, can be easily interpretable for a human. In
some contexts, as the medical one, explainability is essential. Experts need to know why a
decision is taken: which features are involved, in which ranges... Interpretable models are
preferred in some occasions even when they are not the best ones for the task at hand.

Nonetheless, the interpretation of the data detecting FT bradykinesia using AI and
ML techniques should be taken with caution. Information about the association of motor
impairment detected by these techniques with functionality, and impairment of daily living
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activities should be taken into consideration. In addition, by using the FT impairment
information exclusively, we are losing information about other disabling motor signs of PD
such as gait impairment.

5. Conclusions

As previously noted, PD assessment is a great challenge in itself and the use of non-
invasive techniques is the accepted path toward improved assessment. On the one hand, it
makes it possible to take advantage of CV performance improvement and its democratization,
a generalized use without incurring high expenses. On the other hand, ML algorithms have
already shown themselves to be an efficient movement disorder classification methodology.

Following the review of relevant papers, some insights can be provided into the
objective characterization of FT using CV technologies. FT is one motor task, among many
others that are commonly assessed in clinical neurology, due to its ease of performance and
evaluation, after which the severity of the symptoms of bradikynesia may be diagnosed
and related to functional impairment. Advances in CV offer promising results that can
assist physicians when assessing PD. However, the differences between the studies have
made it impossible to compare the performance of the various proposals.

With this in mind, some recommendations must be taken into account for the future
of automatic FT identification. One of the main concerns is the lack of public benchmarks
of FT videos, which means that the studies cannot be reproduced and compared. The
proportional distribution of the classes must also be considered with regard to the datasets,
because the imbalance ratio on some of them can mean some measures such as accuracy are
misleading. Thus, a proper classifier (i.e., one that can address imbalanced problems) and a
proper measure (i.e., one that is insensitive to imbalance) are mandatory for future studies.
Another aspect concerns the irregular usage of feature names in the different studies, which
make it extremely difficult to ascertain the exact features that were used. Finally, the FT
bradykinesia information using AI and ML techniques should be interpreted in the context
of related functional impairment.

6. Future Work

In accordance with the majority of studies included in this review, it is necessary to
conduct studies with a greater number of FT videos at different stages of PD and to classify
FT according to functional impairment. In doing so, an ordered classification based on the
MDS-UPDRS scale could be achieved. Furthermore, it will be essential to expand the scope
of this type of studies, not only for the evaluation of bradykinesia in PD, but also for other
motor disorders that can be characterized through CV.

As previously noted, the studies under review were focused on classification and not
on the level of impairment. In this regard, in terms of impairment, we should consider that
much of the data captured by FT videos could be underrepresented or not well assessed
by the MDS-UPDRS. On the contrary, digital quantification of FT and related impairment
could be interpreted differently by the neurologist using the MDS-UPDRS. Therefore, there
is an inherent order between the different classes, and ordinal classification or ordinal
regression may be more advisable [60,61]. Further studies designed to study FT prediction
for PD using ordinal classification should be encouraged.
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