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A B S T R A C T

Advances over the past decade at the intersection of information fusion methods and Semi-Supervised Learning
(SSL) are investigated in this paper that grapple with challenges related to limited labelled data. To do so, a
bibliographic review of papers published since 2013 is presented, in which ensemble methods are combined
with new machine learning algorithms. A total of 128 new proposals using SSL algorithms for ensemble
construction are identified and classified. All the methods are categorised by approach, ensemble type, and
base classifier. Experimental protocols, pre-processing, dataset usage, unlabelled ratios, and statistical tests
are also assessed, underlining the major trends, and some shortcomings of particular studies. It is evident
from this literature review that foundational algorithms such as self-training and co-training are influencing
current developments, and that innovative ensemble techniques are continuing to emerge. Additionally,
valuable guidelines are identified in the review for improving research into intrinsically semi-supervised and
unsupervised pre-processing methods, especially for regression tasks.
. Introduction

Information fusion, an important process that involves integrating
nd assimilating data from various sources and combining different
earner perspectives, has become a critical component in a variety
f fields such as natural language processing, computer vision, and
ffective computing [1]. This comprehensive approach yields a better
nderstanding of complex phenomena and facilitates the creation of
ore accurate and reliable decisions. However, acquiring labelled data

o implement supervised learning methods remains a major obstacle in
everal information fusion applications. The bottleneck persists, due to
igh costs, time constraints, and quite often the sheer impracticality of
abelling extensive datasets, all of which is compounded by the inherent
ature of the data, and in many areas a shortage of domain experts.

Additionally, recent advances within the field of information fu-
ion have led to increased interest in objective methodologies such as
nsemble learning, which amalgamates diverse models to enhance pre-
ictive performance, and Semi-Supervised Learning (SSL) that uses both
abelled and unlabelled data for training. Ensemble learning augments
ecision-making by combining multiple models, effectively mitigating
he bias of individual models and improving overall accuracy and
eliability. In turn, SSL utilises unlabelled data to supplement the
carcity of labelled samples, addressing the limitations of the all-too-
ften laborious labelling process. These techniques offer promising
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possibilities in information fusion, providing viable solutions to over-
come the constraints imposed by the lack of labelled data in various
application domains.

SSL has emerged as an outstanding paradigm for addressing the
challenges of partially labelled data [2]. The semi-supervised approach
takes advantage of the abundance of unlabelled data in many contexts,
together with a small set of labelled examples, in order to improve
learning performance. Furthermore, ensemble learning is used to im-
prove generalisation, which often solves the problems linked to the
poor adaptability of single-learned approaches. Thus, ensemble meth-
ods, which combine multiple models to make collective predictions,
have shown great potential in SSL. Semi-supervised ensembles can
exploit inherent structures and relations within the data, by aggregating
the outputs of diverse models trained on both labelled and unlabelled
data, to achieve enhanced predictive accuracy and robustness; a pro-
cess that is also known as information fusion in the field of machine
learning.

A query search on the Scopus database, using ‘‘semi-supervised’’ and
‘‘ensemble’’ as the search terms, for papers published between 2013
and 2023, returned 450 papers, which are addressed in this review.
Among those papers, 128 new semi-supervised ensemble methods were
identified in 127 studies. The methods were categorised according to
the semi-supervised approach (wrapper, pre-processing, intrinsically),
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Fig. 1. VOSViewer keyword co-occurrence clustering view. Each term is represented by a circle, where its diameter and the size of its label represents the frequency of occurrence
of the term. The lines in the visualisation indicate that the two keywords are present in the same paper, and the width of the line is proportional to the number of paper that
share these keywords.
the ensemble type (Bagging, Boosting...) and the base classifier type.
Moreover, the experimental protocol, settings, pre-processing methods,
number of data sets employed in the experimentation, unlabelled ratios,
and statistical tests were all analysed.

A keyword co-occurrence map was generated, based on the set of
results found in Scopus using VOSViewer software [3]. A thesaurus
was also compiled, in order to perform data cleaning: linking up
different spellings of the same term, abbreviated keywords with full
keywords, and synonyms. A total of 31 keywords were identified that
met the criterion of having a minimum frequency of 3 occurrences
from the initial pool of 210 keywords. Then, a co-occurrence analysis
was performed on these 31 keywords, as shown in Fig. 1. In this
map, the 5 clusters that were identified are shown in different colours.
Clustering in VOSviewer involves a process of minimising distances
between keywords and placing the most closely related keywords in one
cluster [4]. The node area and the font size depends on the weight of
the keyword: the higher the value, the more frequent the keyword, and
therefore the larger the corresponding node and label. The connecting
line between nodes represents a shared occurrence of a keyword with
another keyword. The keyword co-occurrence strength is represented
by the thickness of the connecting line: the thicker the connecting
line, the more frequent the co-occurrences between both keywords. In
the red-coloured cluster, the most frequently repeated keywords ‘‘en-
sembles’’ and ‘‘semi-supervised learning’’ are represented, followed by
the term ‘‘classification’’, together with machine learning methods, and
algorithms such as ‘‘co-training’’, ‘‘adaboost’’, and ‘‘random forest’’. The
yellow group includes the term ‘‘high-dimensional data’’ and related
applications, such as ‘‘social-networks’’ and ‘‘spammer detection’’. The
blue and purple clusters include machine learning terms and some
ensemble algorithms, such as ‘‘self-training’’ and ‘‘tri-training’’. Terms
related to ‘‘imbalanced learning’’ can be found in the green cluster,
together with applications where imbalanced data is a common issue,
such as ‘‘intrusion detection’’ and ‘‘anomaly detection’’.

Although there are state-of-the-art reviews on this topic, none offer
comprehensive analyses of ensembles used in combination with SSL.
2

The main objective of this review is to offer some valuable insight to
the scientific community into the use of ensemble methods for SSL.
Techniques employed for combining base classifiers, such as Bagging
and Voting, are explored. Additionally, an analysis of commonly used
base classifiers including Tree and Support Vector Machine (SVM)
classifiers are also examined. Likewise, experimental aspects, including
the number of datasets and statistical test routines, are employed.

A critical perspective is also provided in this comprehensive review
that clarifies the use of existing methods and their characteristics.
Another objective of this work is to present a comprehensive catalogue
of recent semi-supervised ensemble learning methodologies to the sci-
entific community, enabling future research to consider the current
state-of-the-art. Consequently, the evaluation of forthcoming literature
proposing novel algorithms can be performed against the most up-to-
date techniques. Moreover, certain inadequacies of current research are
outlined in this paper, so that such shortcomings may be remedied in
future studies.

Although there are already other review articles on SSL methods,
certain differentiating characteristics justify the inclusion of this review
in the literature on SSL:

1. First, this review is particularly focused on the intersection of
SSL and information fusion methods, specifically ensemble meth-
ods. By focusing on this intersection, this study goes beyond tra-
ditional reviews and provides valuable insight into the synergies
and novel approaches that emerge when both methodologies are
combined.

2. It also addresses a crucial gap in previous ones, in so far as it
provides an updated analysis that incorporates recent advances
to SSL, ensuring that readers are aware of the latest methods
proposed in the field.

3. A notable feature of this review, unlike previous reviews, is the
analysis of the number of datasets, metrics, and methodologies
used in each study, whenever new algorithms are compared with
existing ones. In most papers, the comparisons between proposed
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and existing methods are not methodologically substantiated
which might otherwise add reliability to their claims that the
new methods actually represent improvements.

4. Lastly, an analysis of the keywords used in the papers that are
under review, the growing interest in the different SSL methods,
and the citation graph and network of links between the papers
are all features that cannot be found in other reviews.

The remainder of this paper is organised as follows. The basic
oncepts, assumptions, and taxonomy of SSL methods are covered in
ection 2. In Section 3, the review of works on ensembles for SSL and
heir analysis is organised into three temporal stages: past, present, and
uture. Finally, the conclusions of the review are given in Section 4.

. Semi-supervised learning

As the name implies, semi-supervised learning is a machine learning
echnique somewhere between supervised learning, which requires

having a labelled dataset, and unsupervised learning, which aims to
discover patterns and interesting structures in unlabelled datasets. In
semi-supervised learning the ultimate goal is the same as in super-
vised learning: to obtain a predictive model that can assign labels to
unlabelled instances. However, in addition to the labelled instances
that are available, semi-supervised learning also utilises instances for
which their labels are unknown. The information contained in these
unlabelled instances can be exploited in various ways. In the simplest
approach, the unlabelled instances are used only at the beginning of
the learning process to initialise parameters of a supervised algorithm
or to identify groups on which the algorithm will act. Another approach
involves iteratively and incrementally expanding the set of labelled
instances by adding new instances as the models are refined and
confidence in the prediction of labels for unlabelled instances increases.
Finally, there are methods that directly use both labelled and unlabelled
instances in the computation of the loss function. This section presents
the taxonomy of all these semi-supervised learning methods, but first,
let us consider the characteristics that a dataset should have to ensure
that the use of unlabelled instances can benefit the learning process.

2.1. Underlying assumptions

It is important to note that semi-supervised learning is not always
guaranteed to improve a supervised model. For unlabelled data to help
build a better classifier it is important that sufficient unlabelled data is
available and that the distribution of the unlabelled data meets some
assumptions [5]:

• The smoothness assumption: If two instances look similar, they
should actually be of the same class.

• The low-density assumption: Class decision boundaries should
avoid areas of high density and prefer areas where there are few
instances.

• The manifold assumption: Instances appearing in the same low-
dimensional manifold should have the same class.

• The cluster assumption: Instances that are clustered together
should be assigned the same class. This principle is a generali-
sation of the other three.

.2. Taxonomy and SSL methods classification

SSL has traditionally been divided into inductive and transductive
earning, depending on the primary goal. While the aim of transduc-
ive methods is to obtain the labels of unlabelled data points within a
ataset, the aim of an inductive method is to find a generalised model
hat can generate predictions for any object in the input space.

Van Engelen and Hoos [2] presented a novel taxonomy for semi-
upervised methods (see Fig. 4). The first division separates the pre-
3

iously presented inductive and transductive methods. The methods
Fig. 2. Iterative process of a wrapper model [6]. 𝐿 is the supervised set, 𝑈 the
unsupervised set, 𝑈 ′ is a part of 𝑈 with pseudo-labels.

Fig. 3. General structure of a semi-supervised algorithm based on unsupervised
pre-processing. 𝐿 is the supervised set, 𝑈 the unsupervised set.

used in the transductive branch are called graph-based. They have to
undergo three phases: the first concerns the way that the graph is built;
the second, the way in which weights are attached to the links; and the
third, the way that the class of the unlabelled nodes can be inferred.

Inductive methods are divided into three branches depending on
how they exploit the unlabelled data. Firstly, wrapper methods, which
use an iteratively trained supervised method whose training data in-
cludes both instances from the unlabelled data and pseudo-labels (i.e.,
abels predicted from prior iterations of the model). These techniques
an be self-training, if a single classifier is used, co-training, if several
re simultaneously employed, and boosting, if several are sequentially
tilised. The main difference between these approaches stems from the
ay that pseudo-labels are included in the labelled subset. An example
f this process can be found in Fig. 2.

In the unsupervised pre-processing methods, the labelled and un-
abelled data are separately used, commonly using the unlabelled data
or extraction or transformation of the dataset, and to initialise some
f the algorithm parameters. In most of those methods, rather than
odifying the labelled set by adding new instances and pseudo-labels,
nsupervised techniques are used on the unlabelled (or the completed
raining set). Typical models include those that extract features, those
hat apply clustering to propagate classes, and those that include pre-
raining using autoencoders. Fig. 3 presents a general overview of the
bove-mentioned methods.

Additionally, intrinsically semi-supervised methods are charac-
erised by directly exploiting all the assumptions.
Deep-learning methods, in which the objective functions of the

nlabelled instances are directly considered, constitute most of the
ntrinsically semi-supervised methods. There are several methods for
SL with deep learning. A recent review can be found in [7]. It is
oteworthy that deep learning methods are intentionally omitted from
his study. A decision that was based on two primary considerations:
irst, image processing is primarily targeted in most of the deep-
earning approaches, a very distinct domain quite unlike the other
ethods under study; second, their operational characteristics differ

ignificantly from the other algorithms that are included in the study.
ence, it would be advisable to conduct a dedicated review exclusively
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Table 1
Pros and cons of inductive methods.
Source: Ramírez-Sanz et al. [8]. Licensed CC-BY.

Method Pros Cons

Wrapper methods 1. Easy to implement.
2. Configurable, easy to change base estimator/s.
3. Can be used with almost any supervised method.

1. Prone to add noise.
2. Dependent on supervised methods.

Unsupervised
pre-processing

1. Can be used with almost any supervised method. 1. Less impact of unlabelled data.

Intrinsically
semi-supervised

1. Unlabelled data is used on the lower level (objective function or optimization
procedure).
2. Usually easy to develop from its supervised version.

1. More complex models ∼ Harder to train.
2. Most of them require large amounts of data.
Fig. 4. The taxonomy of semi-supervised methods as proposed in [2]. In addition to the branches within the taxonomy, some representative methods are also shown in each
sub-category (some in grey because their categorisation is questionable, or because they could be assigned to more than one category).  is used to represent the set of unlabelled
instances, and 𝜃 to represent the parameters of algorithms.
for the examination of semi-supervised methods that employ deep
learning.

There are enormous differences between intrinsically semi-supervised
methods when leveraging the same assumptions. Four categories are
identified in the literature, including margin maximisers which utilise
the low-density assumption, to create dividing lines via clustering
and SVM. Manifold methods exploit the same assumption, so as to
generate topological variations that help achieve better data sepa-
ration. Generative models rely on adversarial models, and finally,
perturbation-based methods usually incorporate neural networks that
alter the acceptance function or the loss function.

Ramírez-Sanz et al. [8] underlined the pros and cons of all of these
methods, which can be seen in Table 1.

3. Ensembles for semi-supervised learning

Ensemble methods have emerged as effective strategies for im-
proving the generalisability and robustness of predictive models by
integrating the predictions of multiple base estimators constructed
using a given learning algorithm or combination thereof [9]. In the
aforementioned paper, for example, an overview of ensemble methods
used in semi-supervised environments can be consulted.
4

3.1. Past

In 2013, Triguero et al. [10] published a review of techniques for
SSL within wrapper methods. They delved into the state-of-the-art at
that time, focusing on wrappers, most of which employ ensemble learn-
ing techniques in the well-known co-training approach. A taxonomy
for wrapper methods was introduced, encompassing the categories of
single/multi view, single/multi learning, and single/multi classifier.
The authors described multi-learner as the combination of various tech-
niques to build the base classifiers, whereas multi classifier involved
the use of multiple classifiers to create an ensemble. It suggests that
there are no multi-learner methods that function as single classifiers,
but there are single learning methods that function as multi classifiers.

In that study, the performance of the selected methods was exhaus-
tively explored using fifty-five UCI classification datasets and varying
the ratio of labelled instances in the range of 10 to 40 percent of
the total instances in the training sets. A total of 18 methods were
investigated, of which 14 were co-training methods, thus utilising en-
semble techniques. Although the exploration was quite in-depth for the
analysis of each method’s performance, it was not notably extensive,
as only 18 methods proposed since the emergence of semi-supervised
methods over the past 15 years were examined.

Nevertheless, their focus remains on the most significant algorithms
that have made an impact, as is evident in their continued consideration
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in more recent reviews [7,11]. Additionally, comparisons were drawn
with other methods introduced in recent years [12,13].

Over the past 10 years, additional reviews on SSL have been pub-
lished, such as the one by Ning et al. [14], which was specifically
focused on Co-Training. The authors provided detailed information on
the fundamental stages of such an algorithm: view acquisition, learner
differentiation, and label confidence assessment.

In terms of view acquisition, they highlighted five methods [14]
for introducing diversity into classifiers: generating random subspaces,
with the RASCO [15] and the Rel-RASCO [16] algorithms as prominent
examples; adopting independent views, as initially proposed by Blum
and Michel in the original Co-Training algorithm [17]; ensuring the
sufficiency of views, as demonstrated in RSCO [18]; utilising automated
partitioning, as found in the CODA algorithm [19]; and the more recent
strategy of segmenting views based on knowledge space, an approach
that only has one reference specifically oriented towards deep learning:
the DeCoTa algorithm [20].

Regarding learner differentiation, the use of different base learners
was considered in such methods as Democratic CoTraining [21]. More-
over, the use of different optimisation algorithms was likewise proposed
in [22] where genetic algorithms and particle swarm optimisation were
used to obtain slightly different SVM; and different ways of setting
the parameters of the base learner, for example, in [23] where the
Minkowski distance exponent was changed to obtain two different
regression models within a co-training algorithm. Additionally, they
analysed different ways with which to measure and to maintain learner
differences.

The final parameter taken into consideration was the evaluation
of pseudo-label confidence. The same authors drew a distinction be-
tween implicit confidence derived from classifier certainty and explicit
confidence using ten-fold cross-validation techniques, among others.

Despite such an interesting perspective in their proposal to charac-
terise the different co-training methods, they only considered some of
the early methods, neglecting the most recent.

A more recent review focused on self-training was authored by
Amini et al. in 2022 [24]. Among the methods they considered, only
four used ensemble techniques. Much like the review of Triguero
et al. [10], whose more in-depth than broad analysis included an
empirical study, while only focusing on a few selected methods.

3.2. Present

In the last 10 years there have been many new contributions to
semi-supervised learning that have not been covered by previous litera-
ture reviews, making them outdated. In this section, we review articles
published since 2013, focusing on the combination of semi-supervised
learning with ensemble construction methods. In what follows, the
search and filtering process of the reviewed articles is explained, as well
as the identification of subgroups depending on the base method, the
use of pre-processing techniques or the size of the data sets. Finally,
a study of the experimental validation carried out in the articles is
presented.

3.2.1. Search and filtering process
Research into semi-supervised ensembles over the past decade is

thoroughly explored in this review paper. Its aim is to provide a
comprehensive understanding of the current state of research and its
evolutionary trajectory. To do so, the following search terms were used
to extract a set of papers from the Scopus database:

(KEY (ensemble) AND KEY (semi-supervised)) AND PUB-
YEAR > 2012
5

Fig. 5. Number of algorithms in each of the semi-supervised types proposed by Van
Engelen and Hoos [2], some of which appear in more than one category.

This initial search yielded a total of 450 papers, and a preliminary
filtering process was carried out to include only those that introduced
new methods, while excluding reviews and applications. As a result
of this initial filter, a total of 186 new semi-supervised ensemble
methods were identified, spanning various categories. Two additional
studies that fitted the search parameters were also included, which
were referenced in some of the sample papers.

Subsequently, to refine the analysis towards these algorithms, the
focus was narrowed down to those associated with classification and
regression, leaving a total of 128 SSL methods. It required the exclusion
of certain branches of SSL, including transductive learning, which
lacks predictive capacity, despite functioning with both classifiers and
regressors, and active learning, due to its reliance on user intervention.

The 127 papers for the review were classified according to the
taxonomy of Van Engelen and Hoos [2]. The results showed that 94 of
the papers proposed wrapper methods, 16 were on intrinsically semi-
supervised methods, and 21 on unsupervised pre-processing methods.
A certain subjectivity may be noted in this categorisation, in so far as
four of the papers fell into more than one category, hence the sum of
the papers within each category was not equal to the total number of
papers. An UpSet plot [25] with intersections is shown in Fig. 5. The
intersections are shown within a matrix, with the matrix rows corre-
sponding to the sets, and the columns corresponding to the intersections
between those sets. The size of the sets and the intersections are shown
as horizontal and vertical bar charts, respectively. The distribution of
the papers over the years and the three main categories are shown in
Fig. 6. As expected, most methods were wrapper methods and the large
number of papers published between 2018 and 2021 is striking.

3.2.2. Analysis of methods
With a specific focus on ensemble methods, this study encompasses

a wide range of techniques functioning in accordance with the co-
training and the boosting paradigms, both of which are frameworks
embedded within wrapper methods.

Another analysis was conducted with regard to the ensemble tech-
niques and the most common base classifiers. These techniques are
often combined. The most widely used techniques are weighted and
majority voting (both represented as ‘‘Voting’’ in Fig. 7), followed
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Fig. 6. Evolution in the last ten years of the production of algorithm grouped by type and year.
Fig. 7. Number of algorithms that use the different types of ensembles or combinations thereof that were described in the sample of papers. Another six combinations were used
n only one article. All possible combinations can be seen in the Appendix A with their respective papers. The Set Size shows the global size, including the combinations that are

not displayed.
by methods which employed Bagging, Forest,1 and Boosting. Apart
from the minority methods grouped in the category ‘‘Other’’ (which
includes the use of the softmax function and Bayesian networks, among
others), stacking was the least used method. The UpSet plot in Fig. 7
shows the different combinations of techniques. In 101 of the 127
papers, (80%), the authors preferred to use a single technique instead
of a combination. A total of 2 or more techniques were combined in
26 of the 127 papers, the most commonly used combination being
Bagging-Voting.

The most widely used base classifiers were decision trees, followed
by the SVM algorithm. Those results were expected, as the SVM was
one of the first algorithms adapted for semi-supervision [26] and deci-
sion trees were among the most widely used algorithms for ensemble
classification [27,28]. Extensive usage of Artificial Neural Networks
was also noted, such as Multilayer Perceptrons, and lazy techniques,
such as KNN. To a lesser extent, some techniques were based on Bayes’
theorem and linear methods, the latter being mainly for regression
problems. The distribution diagram of these base classifiers can be
found in Fig. 8. The combination of learners obtained with different

1 For this study, Random Forests, despite being a sub-type of bagging, has
een treated as a distinct category with other methods such as Rotation Forest
nd CoForest as ‘‘Forest’’.
6

methods is a common practice in SSL where it is usually referred to as
Co-Learning [10,21]. The type of base estimator determines whether
it is a classifier or a regressor. Over the past ten years, algorithms
for semi-supervised regression were presented in only 13 articles; the
remaining 114 algorithms presented over that same period were for
classification.

An interesting point for evaluation is whether the algorithms in
the papers under review utilised any form of pre-processing. A total
of 45 algorithms made use of some type of pre-processing, among
which 7 employed two or more methods. Those methods primarily
included subspaces and feature extraction, along with a wide variety
of techniques such as normalisation, feature selection, manifolds, and
noise reduction. The distribution can be observed in Fig. 9.

3.2.3. Evaluating the experimental validation
The way that the experimentation was conducted to evaluate the

proposed algorithms is another detail for assessment. It includes the
number of datasets used, labelling ratios, whether train–test splitting or
cross-validation was employed, and the number of executions, as well
as whether statistical tests were conducted in comparison with other
models, specifying the statistical methods used for such comparisons.

In Fig. 10, a histogram is presented in intervals of five, illustrating

the number of datasets used for experimentation. The most common
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Fig. 8. Distribution of base learner methods used in the proposed ensembles. There are seventeen other combinations, which can be either Co-Learning, or testing with various
techniques, used only in one article. All possible combinations can be seen in Appendix A alongside their respective references. The Set Size shows the global size, including the
combinations that are not displayed.
Fig. 9. Pre-processing techniques used in some algorithms. There are a further seven
combinations, only used in one paper. All possible combinations can be seen in the
supplementary material. The Set Size shows the global size, including the combinations
that are not displayed.

approach is to use less than ten datasets. In relation to the labelling
ratio, a fixed number of labels were utilised in twelve algorithms for the
entire dataset or a fixed number per class. One labelling ratio was tested
in a total of 28 papers. The most common minimum and maximum
labelling ranges were both within 0.1−0.15. Train–test splitting was the
most typical evaluation after cross-validation techniques, with a ratio
of 63 train–test splits to 37 cross-validations. Concerning the number
of executions, only one was reported in most papers, with multiple
executions described in only 40 of the papers. The mean was 21
executions and the most frequent value was 10 for the papers reporting
more than one execution routine.

The general trend is unfortunately not to employ any statistical
test, so comparisons with other methods are complicated. In Fig. 11,
it can be observed that no tests of any type were used in most of
7

the papers, totalling 73 (57%). In decreasing order of usage, the tests
were as follows: Friedman test, Student-t test, Wilcoxon test, Nemenyi
test, Holm test, Bonferroni test, and Bayesian test. Additionally, there
are some others, such as Iman–Davenport or Finner used in certain
articles. It was noteworthy that Bayesian tests, proposed by Benavoli
et al. in 2017 [29], were used in only one of the papers found in this
study. Demšar also proposed many statistical tests in 2006 [30], so it is
all the more remarkable that after so many years, algorithms without
statistical tests are still employed in many studies that might otherwise
have yielded some statistical verification of the improvements that were
proposed in those studies. In cases where statistical tests were utilised,
the typical alpha values were 0.01 and 0.05.

Lastly, it is interesting to discuss which metrics are most commonly
used to assess the performance of the algorithms. Here, a distinction is
made between classification and regression, as the metrics differ. The
intersection diagrams can be observed in Figs. 12 and 13. The metrics
used in classification are quite diverse, with a notable prevalence of
accuracy, found in 84 papers and exclusively used in up to 49 papers,
often presented as its inverse, the error rate. That metric is followed
by the F-Score metrics (primarily F1), precision, recall, the area under
the ROC curve, and Cohen’s kappa. Additionally, other metrics that are
less commonly used are the geometric mean and specificity. In contrast,
the Root Mean Square Error was the most common regression metric,
followed by the coefficient of determination and some other variations,
such as the Relative Root Mean Square Error, and the Mean Absolute
Error.

Numerous studies have been conducted, revealing two main types
of research. The first type involves general methods that are tested
on a large number of datasets. The second type involves methods
created to solve specific problems by exploiting a particular dataset.
This group includes several noteworthy examples that highlight the
proposed solutions to various problems.

One new method for detecting adverse effects in drugs is the
SSEL-ADE [31]. This recent study proposes a Co-Training and random
subspaces-based approach, using a dataset that combines various data
sources.

Another example worth highlighting is the EnSSL algorithm [32,
33], which has been tested for medical problems such as blood and
lung diseases. The algorithm combines several classical semi-supervised
techniques, including Tri-Training, Co-Training, and Self-Training.
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Fig. 10. Histogram of articles using different numbers of datasets.
Fig. 11. Statistical tests applied to evaluate the performance of the proposed algo-
rithms. There are a further eight combinations only used in one paper. All combinations
can be seen in the supplementary material. The Set Size shows the global size, including
the combinations that are not displayed.

3.3. Discussion and future guidelines

After extensive analysis, certain aspects of current machine learning
techniques may now be discussed. The first aspect concerns the preva-
lence of wrapper methods, specifically those utilising co-training tech-
niques. It prompts the question as to why unsupervised pre-processing
and intrinsically semi-supervised techniques are not as well-developed.
One explanation is that ensembles, which are closely related to co-
training techniques, are perhaps easier to design and to adapt. In any
case, exploring the development of varying types of methods would be
an interesting avenue to pursue.

Another point for discussion is the type of base estimator to be used.
SVMs are far less widely used than trees. On the one hand, it may be
expected and, on the other hand, it deserves some discussion. Ensemble
methods primarily consist of decision trees [27], so their widespread
usage is expected. However, it is surprising how the low-density as-
sumption can be exploited in SVMs, one of the oldest semi-supervised
methods, by maximising the distances between the frontier data [5].
Another noteworthy aspect is Co-Learning [10]; given the current trend
8

of combining methods, further exploration of those techniques is a
compelling area of research.

One observable trend is the significant number of studies that
have no experimental evaluation. Although all the papers presented
experiments and results, over half included no statistical comparison.
Additionally, many provided no implementations, posing challenges for
new methods to establish themselves as robust techniques. Conduct-
ing statistical tests that show a proposed method performing signifi-
cantly better than other comparative methods offers ample evidence for
other researchers wishing to apply it to similar problems. Furthermore,
if these scholarly works included access to the full implementation
of the researchers, it might facilitate implementation in production
environments and encourage further research.

An analysis of the citation graph of the papers and the temporal
evolution in Fig. 14 led to further exploration of the topic. It is worth
noting that 81 out of the 127 papers lacked references or were not
referenced in the other papers that formed the sample for this study.
Moreover, it was found that most papers that did reference each
other showed minimal cross-referencing. Considering the information
presented in the previous paragraph, it becomes clear why statisti-
cal assurance and accessible implementations are lacking and why
relationships are not established. A researcher encounters difficulties
when comparing their method to others with no evidence of significant
performance, and the implementation process requires interpretation. It
should be reiterated that numerous methods cannot be consolidated in
the current state of the art. Furthermore, while reviews prove useful
in evaluating method performance, such as the one conducted by
Triguero et al. [10], their implementation proves time-consuming for
each method.

Based on the above discussion, several future directions can be
identified.

1. There is significant potential to create methods that utilise semi-
supervised and unsupervised pre-processing techniques, as well
as exploring combinations of those methods.

2. The use of more statistical methods to evaluate newly developed
methods is recommended, given their recent growth and under-
utilisation in this field, and further exploration of the Bayesian
tests is suggested [29].

3. Statistical comparisons of SSL techniques with their supervised
counterparts is essential when employing supervised methods as
baseline learners.

4. It is also considered essential to provide accessible implemen-
tations of each new method that is presented, which can be
included in such libraries as Weka [34], LAMDA-SSL [35], and

the SSL Library (sslearn) [36], and to follow the API indications
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Fig. 12. Classification metrics to evaluate the performance of the proposed algorithms. There are another nineteen combinations, used only in one article. All combinations can
be seen in the supplementary material. The Set Size shows the global size, including the combinations that are not displayed.
Fig. 13. Regression metrics to evaluate the performance of the proposed algorithms.
he Set Size shows the global size, including the combinations that are not displayed.

for more established libraries such as SciKit-Learn [37]. Addi-
tionally, for greater accessibility, any such implementations can
be included in platforms such as Papers with code.2

Beyond these practical recommendations, there are some desirable
bjectives that could be considered in future work. Rather than guide-
ines, these objectives are for anyone wishing to delve deeper into the
ubject.

Firstly, conducting more specific studies on which types of problems
lign better with particular types of data, especially concerning fields
f knowledge (industrial, medical, ecological, etc.), data types (text,
mages, sounds, tabular, etc.), and their combinations.

Secondly, statistical assessments of the performance of various
ethods can be performed on specific datasets. It would be particu-

arly beneficial to have well-populated libraries of well-implemented

2 https://paperswithcode.com.
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methods and specific semi-supervised datasets, moving beyond the typ-
ical ‘‘unlabelling’’ approach. This would have significant implications,
requiring the proposal of new metrics to evaluate the performance
of algorithms in strictly semi-supervised settings, understood as those
in which the real class is impossible to determine without manual
labelling.

Lastly, methods must be created to ascertain how necessary SSL is
for specific datasets and to discern quickly whether utilising supervised
methods might be a better option.

4. Conclusions

A comprehensive overview of the combined use of SSL and in-
formation fusion methods, specifically ensemble methods, has been
presented in this review paper, focusing on recent developments since
2013. Several visualisation tools have been used to analyse the relation
between the sample of papers for review, such as a citation graph, as
well as a keyword co-occurrence map that revealed the main topics and
trends within the field. Furthermore, UpSet plots have been used to
analyse the frequency of use of the ensemble methods, base classifiers,
pre-processing techniques, statistical tests, and performance metrics.
A critical evaluation has been presented of past and present research
into semi-supervised ensembles, highlighting the strengths and weak-
nesses of different approaches, as well as the experimental aspects and
validation methods. Some of the main findings of this review are as
follows:

• Semi-supervised ensembles have shown their great potential for
improving the learning performance and robustness of predictive
models by exploiting the unlabelled data and the diversity of base
classifiers.

• There was a remarkable increase in papers published on the topic
between 2018 and 2020.

• Wrapper methods were the most popular and widely studied
category of semi-supervised ensembles, especially the co-training
and the self-training variants.

• Bagging and voting were the most common techniques for com-
bining base classifiers, while decision trees and support vector
machines were the most frequently used base learners.

• There was a lack of extensive and rigorous experimentation and
validation in many studies, as well as a need for more citations
and influence of the proposed methods.

https://paperswithcode.com
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Fig. 14. Citation graph between all papers forming the sample. The 81 papers not linked to the other papers through references are not included.
• There are several open challenges and future directions for semi-
supervised ensembles, such as exploring new techniques, ad-
dressing regression tasks, and conducting more comparative and
reproducible studies.

The intention behind this review paper has been to provide valuable
insight and guidance for researchers and practitioners interested in SSL
and ensemble methods. It is hoped that the study will stimulate further
research and innovation in this dynamic and promising field of study.
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Appendix A. Table with all algorithms in the study

See Table A.1. For full details please refer to the supplementary
material.

Appendix B. Supplementary data

Supplementary material related to this article can be found online

at https://doi.org/10.1016/j.inffus.2024.102310.
Table A.1
All the algorithms of the study, in bold the regression ones, in italic the algorithm that not appears in Scopus search.

Algorithm Year Taxonomy Ensemble Base classifier

AESSLa [38] 2020 Wrapper Bagging KNN
Amended SL Grey-box [39] 2020 Wrapper Forest Tree-Other
AP-HDD-SSL [40] 2017 Preprocessing Forest Tree-SVM-Linear-KNN
ASTM [41] 2021 Wrapper Voting Tree-SVM-Bayesian-KNN
BoostSTIG [42] 2020 Wrapper Boosting KNN
CascadeGeneralization [43] 2016 Wrapper Other Tree-Bayesian
CBCA [44] 2014 Wrapper Other Tree-Linear-Bayesian-Neural Network
CBoost-Semi [45] 2017 Wrapper Boosting SVM
CMLDSE [46] 2019 Wrapper Forest-Voting Tree-KNN
CoAdaBoost [47] 2014 Wrapper Boosting Tree
CoRFSVM [48] 2015 Wrapper Forest SVM
CSEL [49] 2014 Wrapper Bagging-Voting Other
CST-Voting [50] 2018 Wrapper Voting Tree-KNN-Other
DCE [51] 2020 Intrinsically Other Neural Network
DEFD-SSL [52] 2023 Intrinsically Voting Neural Network
Delta-Training [53] 2019 Wrapper Bagging Other
DLSR [54] 2017 Wrapper Boosting Linear
DTCo [55] 2020 Wrapper Bagging-Voting Tree-Bayesian-Neural Network
ECB [56] 2018 Preprocessing Boosting Other
ECL [57] 2015 Wrapper Bagging SVM-Bayesian
EcoRec [58] 2019 Wrapper Bagging-Voting KNN
ECSEL [59] 2014 Wrapper Voting Bayesian
EDCKR [60] 2020 Preprocessing Bagging-Voting Other
EDKL [61] 2018 Preprocessing Bagging-Voting SVM-Neural Network
ELAMD [62] 2023 Wrapper Voting-Other Tree-Neural Network
EMRF [63] 2019 Wrapper Voting Tree
EN-SSL [32] 2018 Wrapper Voting Tree-SVM-Bayesian-KNN
EN-SSL [33] 2019 Wrapper Voting Tree-SVM-KNN
EnAET [64] 2021 Preprocessing Stacking Other
EnEOPL [65] 2021 Wrapper Stacking Other
Ensemble S3VM [66] 2018 Intrinsically Other SVM
EnSSNCLELM [67] 2021 Wrapper Other Other
EpLapR [68] 2019 Intrinsically Other SVM
ERF [69] 2022 Wrapper Forest Tree
ERSA [70] 2019 Intrinsically Other Neural Network
ESFDA [71] 2019 Preprocessing Boosting KNN
ESS KNN [72] 2019 Wrapper Voting KNN
ESTL [73] 2018 Wrapper-Intrinsically Boosting Tree
FSCE [74] 2019 Wrapper-Preprocessing Voting Linear-Other
FSSL-El [75] 2018 Wrapper Bagging-Stacking Tree-Neural Network
GBB [76] 2020 Wrapper Boosting SVM-Other
GCSSE [77] 2020 Wrapper Bagging Tree-Neural Network
GREED [78] 2020 Wrapper Boosting Tree
Grey-Box [79] 2020 Wrapper Voting Tree-SVM-Bayesian-Neural Network
HEDGECLIPPER [80] 2015 Wrapper Forest Tree
HGCN [81] 2020 Preprocessing Other Neural Network
HiJoD [82] 2021 Intrinsically Other Other
HLB [83] 2019 Wrapper Boosting Linear
HMTS & DMTS [84] 2023 Preprocessing Other Bayesian
HSRF [85] 2021 Preprocessing Forest Tree
iCST-Voting [86] 2019 Wrapper Voting Tree-SVM-KNN
Inter-Training [87] 2013 Wrapper Boosting SVM-Bayesian-KNN
ISSBA [88] 2021 Wrapper Bagging-Voting Tree
JOSedRVFL & SS-edRVFL [89] 2022 Intrinsically Voting Neural Network
JSS_HSSE [90] 2018 Wrapper Forest-Voting Tree-SVM
LSSL-SSD [91] 2016 Wrapper Forest Tree
MLRMG [92] 2021 Preprocessing Forest-Voting Other
MMT-PSM [93] 2020 Preprocessing Voting-Other Neural Network
MOEA/D [94] 2020 Wrapper Voting Other
MOSSCE [95] 2019 Wrapper Bagging SVM

(continued on next page)
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Table A.1 (continued).
MSPASEMIBOOST [96] 2020 Intrinsically Boosting Linear
MSSRA [97] 2019 Wrapper Stacking KNN
Multi-Train [98] 2017 Wrapper Voting Tree-Bayesian-KNN
MVSE [99] 2021 Wrapper Boosting-Stacking Tree
NADBSLAMB [100] 2023 Wrapper Forest Tree
NER-SSEL [101] 2020 Wrapper Voting Neural Network-Other
NSSB [102] 2016 Wrapper Boosting SVM
ODDITY [103] 2022 Wrapper Boosting-Stacking SVM-KNN-Neural Network
PLAa [104] 2016 Wrapper Boosting SVM
PSEMISEL [105] 2018 Wrapper Voting Bayesian-KNN
PUED [106] 2018 Wrapper Forest-Voting Tree-Bayesian
PW-GL [107] 2015 Wrapper Boosting Neural Network
PWStE [108] 2022 Wrapper Voting Neural Network
RESSEL [109] 2021 Wrapper Bagging Tree-SVM-Bayesian-KNN
RESVM [110] 2015 Intrinsically Bagging SVM
ROSSEL [111] 2016 Wrapper Bagging-Other SVM
RS-Forest [112] 2014 Wrapper Forest Tree
RSSalg [113] 2013 Wrapper Voting Bayesian
S2MAID [114] 2019 Wrapper Boosting Other
S3C-MC [13] 2021 Wrapper Voting SVM
S3E-AL [115] 2020 Wrapper Bagging-Voting Tree-KNN-Other
S3EnL-DM [116] 2017 Preprocessing Other Other
SCBELS [117] 2020 Wrapper Other Tree-Other
SCMC [118] 2023 Wrapper Voting KNN
Self-Rot [12] 2017 Wrapper Forest Tree
SelfLogitM5 [119] 2015 Wrapper Boosting-Other Tree
SelfStacking [120] 2017 Wrapper Stacking Tree-SVM-Bayesian-KNN
Semi-Bagging [121] 2015 Wrapper Bagging Tree
Semi-Stacking [122] 2015 Wrapper Stacking Other
SemiMCL [123] 2022 Intrinsically Voting Neural Network
SMLC [124] 2018 Wrapper Voting Tree
SMSa [125] 2015 Wrapper Voting SVM-Bayesian
SMVCCAE [126] 2017 Intrinsically Voting Tree
SNTG [127] 2018 Intrinsically Other Neural Network
Social-training [128] 2017 Wrapper Other Tree-Linear-KNN
SoftEC [129] 2020 Wrapper Voting Tree-Linear-Bayesian-KNN
SPASC [130] 2016 Preprocessing Voting Bayesian
SSEF [131] 2021 Wrapper Stacking Other
SSESVR [132] 2022 Wrapper Bagging-Stacking SVM
SS MCS [133] 2014 Wrapper Voting KNN-Neural Network
SS Private Ensemble [134] 2023 Intrinsically Voting Tree
SS SRF [135] 2016 Wrapper Forest Tree
SS-Kiss [136] 2017 Wrapper Other Other
SSC-LR [137] 2019 Preprocessing-Intrinsically Other Other
SSC-RSDR [138] 2015 Wrapper Other Other
SSCLCR [139] 2018 Intrinsically Other Other
SSCTE [140] 2014 Wrapper Bagging Tree-Neural Network
SSE-PBS [141] 2021 Wrapper Voting Tree-Bayesian
SSEL-ADE [31] 2018 Wrapper Bagging-Boosting SVM
SSEP [142] 2014 Preprocessing Bagging SVM
SSFE [143] 2015 Preprocessing Forest-Voting Tree
SSkC [144] 2016 Wrapper Bagging Tree
SSL-EC3 [145] 2020 Preprocessing Other Tree-SVM-Linear-KNN-Other
SSML-CatBoost [146] 2021 Wrapper Boosting-Forest Tree
SSNEL [147] 2020 Wrapper Boosting-Voting KNN
SSRS [148] 2023 Wrapper Voting Linear
SSTI [149] 2022 Wrapper Bagging-Forest-Voting Tree-KNN
ST_OS [150] 2021 Wrapper Bagging-Forest Tree-SVM-Linear-Bayesian-KNN-Neural Network
ST_TT [151] 2019 Wrapper Voting Tree-SVM-KNN
STDPNaN [152] 2021 Wrapper-Preprocessing Voting Tree-SVM-KNN
Streaming Co-Forest [153] 2018 Wrapper Bagging-Forest Tree
Udeed [154] 2013 Wrapper Voting Linear
UPCSS [155] 2015 Preprocessing Voting Other
VBEUODa [156] 2020 Wrapper Voting SVM-Other
WvEnSSL [157] 2019 Wrapper Voting Tree-SVM-KNN
XGBOD [158] 2018 Preprocessing Boosting Tree
XSS detectiona [159] 2020 Wrapper Forest Tree-KNN

a Refers that the name is not given in the article.
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