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Abstract: The rise of straintronics—the possibility of fine-tuning the electronic properties of nanosys-
tems by applying strain to them—has enhanced the interest in characterizing the mechanical proper-
ties of these systems when they are subjected to tensile (or compressive), shear and torsion strains.
Four parameters are customarily used to describe the mechanical behavior of a macroscopic solid
within the elastic regime: Young’s and shear moduli, the torsion constant and Poisson’s ratio. There
are some relations among these quantities valid for elastic continuous isotropic systems that are being
used for 2D nanocrystals without taking into account the non-continuous anisotropic nature of these
systems. We present in this work computational results on the mechanical properties of six small
quasi-square (aspect ratio between 0.9 and 1.1) graphene nanocrystals using the PM7 semiempirical
method. We use the results obtained to test the validity of two relations derived for macroscopic
homogeneous isotropic systems and sometimes applied to 2D systems. We show they are not suitable
for these nanostructures and pinpoint the origin of some discrepancies in the elastic properties and
effective thicknesses reported in the literature. In an attempt to recover one of these formulas, we
introduce an effective torsional thickness for graphene analogous to the effective bending thickness
found in the literature. Our results could be useful for fitting interatomic potentials in molecular
mechanics or molecular dynamics models for finite carbon nanostructures, especially near their edges
and for twisted systems.

Keywords: graphene; mechanical properties; stretching; shear; torsion; straintronics

1. Introduction

Strain engineering or “straintronics” has emerged as a way to change the behavior of
materials, in particular, 2D nanomaterials, especially graphene [1–9]. In this case, strain-
tronics has been considered in recent years as a way to fine-tune, among other properties,
its band gap in order to use it in many different applications [10–19]. In fact, strained
graphene nanobubbles have been recently proposed as qubits for quantum computing [20].
It is also possible to take advantage of the changes in properties caused by strain in sensing
devices [21]. For instance, a graphene strain sensor that can detect various types of strain
induced via stretching, bending and torsion [22] and a graphene-based torsion balance [23]
have been constructed. Graphene’s properties make it suitable to be used as an actuator to
build artificial muscles [24] and in many other biomedical applications [25].

Material simulation methods can be classified according to, among other criteria,
two distinct features. The first one uses classical or quantum mechanics, and the second
considers materials as continuous media or takes into account their discrete atomistic nature.
Therefore, we can consider four different approaches in the study of carbon nanostructures:

1. Quantum atomistic calculations, which explicitly treat materials as atoms obeying
the rules of quantum mechanics. This category includes methods that solve either
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full (like quantum chemistry and Density Functional Theory approaches) or approx-
imate quantum equations (like tight-binding and semiempirical methods). See, for
instance, [14,26];

2. Quantum continuous models, in which approximate quantum equation solutions are
extrapolated to the continuum limit. See, as an example, [27,28];

3. Classical atomistic simulations, which consider matter as being built of particles that
interact following the equations of classical mechanics with potentials (force fields)
that try to mimic experimental properties (or those calculated by quantum methods)
using empirical parameters. This category includes static calculations called molecular
mechanics (MM), also known as molecular structural mechanics (MSM) or nanoscale
continuum modelling (NCM)—in which molecular bonds are considered as springs
or beams—as well as classical molecular dynamics (MD). See, for instance, [29,30];

4. Classical continuous models, traditionally used in engineering. See, as an example, [31,32].

Present computational power precludes using quantum atomistic calculations for very
large systems, and multi-scale approaches are employed. In these models, macroscopic
parameters for approach 4 are obtained from classical atomistic calculations (approach 3)
that, in turn, fit their microscopic parameters using quantum mechanical results (ap-
proach 1). Therefore, these multi-scale models need a hierarchy of calculations. Jumping
from approach 1 to 3 in the case of deformed graphene is still an open question, and
better comprehension of the atomistic mechanisms at work in graphene deformations
is needed [33].

There are many studies on the different mechanical properties of both infinite graphene
and finite graphene nanostructures [30,34–44]. Nevertheless, there is a lack of a compre-
hensive study on the three different deformations a graphene nanoflake can be subjected
to—stretching, shear and torsion (especially the last one)—and on the validity of the use of
macroscopic formulas for isotropic materials [45,46] for this clearly anisotropic system.

We have studied the behavior of six different nearly square graphene nanoflakes of
various sizes subjected to the three aforementioned deformations along their two edges
(zigzag and armchair) and calculated for each of them Young’s and shear moduli and
the torsion constant, as well as Poisson’s ratio. Our results could be useful for fitting
interatomic potentials in MM/MSM/NCM or MD models for finite carbon nanostructures,
especially near their edges and for twisted carbon systems. We have also tested how well
commonly used formulas for calculating the torsion constant for a thin slab, as well as
Poisson’s ratio from Young’s and shear moduli, perform.

The structure of the paper is as follows. We present in Section 2 (Materials and
Methods) first the theoretical model employed, then the systems studied and, finally,
the computational method used. Our results are presented in Section 3 in four different
subsections: Young’s Modulus, Shear Modulus, Torsion Constant and Poisson’s Ratio.
Finally, the conclusions of the study are summarized in Section 4.

2. Materials and Methods
2.1. Theoretical Model

Hooke’s law states that when a material is loaded within the elastic limit, stress T is
proportional to strain q:

T = −κq . (1)

The proportionality constant κ is the so-called elastic constant and can be calculated as
the stress/strain ratio associated to a given deformation within the elastic limit.

From a computational point of view, it is easier to adopt a different approach and
calculate this constant from the expression for the deformation energy (taking the solid in
the absence of any external load as the energy origin) as follows:

U =
1
2

κq2 . (2)
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Using this energy approach yields values closer to the experimental results than the
stress–strain approach since the latter requires an additional process, the differentiation of
the energy, which introduces some inaccuracies [47].

Let us consider the elastic homogeneous and isotropic rectangular parallelepiped solid
with length l, width w and height h depicted in Figure 1.

Figure 1. An elastic homogeneous and isotropic rectangular parallelepiped solid with length l,
width w and height h.

We can load the solid in three different ways in order to obtain three small deforma-
tions: stretching, shear and torsion. In the case of uniaxial normal stress (either tensile or
compressive), the ratio of the stress (force per unit area) applied to the solid, as depicted
in Figure 2 (σ = F

wh ), and the resulting axial strain (ε = x
l ) is called the (tensile) elastic

modulus or Young’s modulus and can be calculated as follows:

E =
σ

ε
=

Fl
whx

. (3)

Figure 2. The solid in Figure 1 subjected to a tensile stress caused by fixing the rear face (colored in
green) and pulling with a normal force F⃗ uniformly distributed over the front face.
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It is easy to prove that the elastic energy of the stretched system is given by using a
particular case of Equation (2),

U =
1
2

EVε2 , (4)

where V = whl is the volume of the solid.
In the case of uniaxial tangential stress, the ratio of the shear stress (force per unit

area) applied to the solid, as depicted in Figure 3 (τ = F
wl ), and the resulting shear strain

(γ = ϕ ≃ tan ϕ = x
h ) is called the rigidity modulus or shear modulus and can be calculated

as follows:
G =

τ

γ
≃ Fh

wlx
. (5)

Figure 3. The solid in Figure 1 subjected to a shear stress caused by fixing the lower face (colored in
green) and tearing with a tangential force F⃗ uniformly distributed over the upper face.

It is straightforward to prove that the elastic energy of the deformed system is given
by using another particular case of Equation (2):

U =
1
2

GVγ2 ≃ 1
2

GVϕ2 . (6)

Finally, in the case of torsion, shown in Figure 4, the ratio of the applied torque M to
the twist angle θ is known as torsional stiffness, calculated as follows:

k =
M
θ

. (7)

Once again, it is easy to prove that the elastic energy of the twisted system is given by
using a third particular case of Equation (2):

U =
1
2

kθ2 . (8)
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Torsion can be seen as a special case of shear, and there exists a relationship between
their elastic constants. Taking into account this [48,49],

θ =
Ml
GJ

, (9)

where J is the so-called torsion constant, torsional constant or polar second moment of area
(also known as polar moment of inertia). Using this expression and Equation (7),

k =
GJ
l

. (10)

J can be calculated by reordering this equation as follows:

J =
kl
G

. (11)

Figure 4. The solid in Figure 1 subjected to a torsional stress caused by fixing the rear face (colored in
green) and twisting with torque M⃗ on the front face.

Graphene is considered as a 2D system. It is, in fact, extremely thin, but it has a
small thickness due to the electron cloud surrounding the honeycomb structure of carbon
nuclei. The accepted value for this thickness is 3.4 Å [50] (though other values are used
by different studies, especially in the case of graphene sheets rolled up to build carbon
nanotubes [43,51–54]). Therefore, in principle, rectangular graphene nanoflakes could
be considered as elastic solids of the type shown in Figure 1 with h = 3.4 Å. When the
thickness of a homogeneous isotropic solid is much smaller that its other two dimensions,
there is a formula for calculating the torsion constant [46] that, in our notation, reads:

J =
1
3

h3w

[
1 − 192

π5
h
w

∞

∑
n=1,3,5,...

1
n5 tanh

nπw
2h

]
, (12)

where, in practice, going up to n = 7 in the series is enough.
Another consideration to take into account is that the situation depicted in Figure 2

is only a first approximation. When a solid is stretched, its perpendicular cross section
w × h usually changes. In most cases, it decreases. This phenomenon can be measured
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by using the so-called Poisson’s ratio (denoted by ν), which is the opposite of the ratio
of transverse strain to axial strain. For small deformations, ν can be calculated as the
transversal compression divided by the axial elongation. In our case, for small deformations,
the height of the system (i.e., the thickness of the nanoflake) does not change since the
breadth of the electron cloud with an appreciable density practically remains constant
around the central carbon plane. Therefore,

ν = − transverse strain
axial strain

=
transverse compression

axial elongation
= −∆w

x
. (13)

For homogeneous systems, the following expression links Poisson’s ratio to Young’s
and shear moduli:

ν =
E

2G
− 1 . (14)

2.2. Systems Studied

In order to test whether all the equations valid for homogeneous isotropic systems
hold for graphene, which is clearly an anisotropic system, we have selected six small
quasi-square hydrogen-passivated carbon nanoflakes. The selection criteria were that the
aspect ratio w

l must lie between 0.9 and 1.1 and that the electronic ground state has to be a
spin singlet. The reason for these rules was the need to be able to analyze the effect of the
kind of border (zigzag or armchair) without contamination from changes in aspect ratio or
spin state. In order to label the nanoflakes, we have used n × m, where n (m) is the number
of hexagons along the zigzag (armchair) edge. Figure 5 presents as an example the 6 × 7
case, while Figure 6 shows all the nanoflakes studied.

The six stresses considered in this study are shown in Figure 7 for the 3 × 3 nanoflake.

Figure 5. A 6 × 7 nanoflake with the hexagons along zigzag and armchair edges numbered.
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Figure 6. The six nanoflakes considered in this study.
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Figure 7. The six different stresses considered applied on a 3 × 3 nanoflake: tensile (top row), shear
(middle row), torsion (bottom row); zigzag (left column), armchair (right column).

2.3. Computational Method

As we pointed out in the Introduction, quantum calculations are needed in order to fit
the interatomic potentials used in MM/MSM/NCM and MD methods. Taking into account
that these methods only deal with mechanical properties and do not try to explain electronic
properties, in order to provide data useful for potential fitting, it is not necessary to use
full ab initio quantum mechanics calculations (which would be unavoidable when, for
instance, establishing the minimum size for antiferromagnetic ordering to appear in finite
graphene nanostructures), and semiempirical approaches (much faster than first-principles
calculations) are enough for our purpose.

We have selected the semiempirical PM7 method [55], as implemented in Gaus-
sian16 [56] (i.e., PM7R8 [57]), because it is a fast quantum model that explicitly includes
dispersion as well as hydrogen bonding corrections and has been successfully used to
analyze interactions in graphene nanostructures [58–65].

We have fully relaxed all atomic positions to obtain the different initial geometries.
We have calculated all vibrational frequencies to check for the absence of imaginary values
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and thus are sure that our initial geometries correspond to minima in the potential energy
surface. We have then moved and fixed some boundary atoms in order to deform the
nanoflakes and relaxed the positions of the rest of the atoms using the same algorithm to
obtain deformation energies. As an example, we present in Figure 8 the final optimized
geometries for the six stresses applied to the 3 × 3 nanoflake. The carbon atoms fixed in
each case to achieve the desired deformation are highlighted in blue.

Figure 8. The six different optimized geometries corresponding to the maximum deformations
applied to the 3 × 3 nanoflake: tensile (top row), shear (middle row), torsion (bottom row); zigzag
(left column), armchair (right column). The carbon atoms fixed to achieve the desired deformation
are highlighted in blue.

3. Results
3.1. Young’s Modulus

We have displaced the carbon atoms on one of the edges along the stretching direction
between 0.1 Å and 0.5 Å in 0.1 Å steps, as shown in the upper row of Figure 7, relaxed the
rest of the atoms until the new equilibrium geometry depicted in the upper row of Figure 8
is reached and calculated the corresponding strain energies. We have fitted the results to a
second-order polynomial and used the quadratic coefficient to calculate E.
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As an example of this procedure, we show in Figure 9 the stretching energies corre-
sponding to both armchair and zigzag edges for the 10 × 11 nanoflake. The graphs for
other nanoflakes are similar.

Out[ ]=

0.005 0.010 0.015 0.020
ϵ

0.1

0.2

0.3

0.4

0.5

U / aJ
10x11 nanocrystal stretching energy

armchair edge

zigzag edge

Figure 9. Stretching energies U as a function of strain ε for the 10 × 11 nanoflake. Points correspond
to calculated energies, while lines show a second-order polynomial fit.

We present in Table 1 the geometrical characteristics of the fully relaxed nanoflakes
(the lengths of the two carbon atoms’ edges and the aspect ratio) as well as our results for
their Young’s moduli, obtained using Equation (4).

Table 1. Young’s modulus of square carbon nanoflakes.

Nanoflake Aspect Ratio Edge Edge Length/Å E/TPa

3 × 3 1.03 zigzag 7.099 0.927
armchair 7.288 1.224

5 × 5 1.07 zigzag 11.368 0.869
armchair 12.191 1.229

6 × 7 0.94 zigzag 15.618 1.061
armchair 14.667 1.200

8 × 9 0.98 zigzag 19.879 1.105
armchair 19.580 1.220

10 × 11 1.01 zigzag 24.143 1.217
armchair 24.484 1.134

12 × 13 1.04 zigzag 28.388 1.127
armchair 29.409 1.205

For small nanoflakes, the zigzag results are smaller than the armchair ones, but they
increase (while armchair Young’s moduli remain practically constant), and both edges
show similar E values, for large nanoflakes. Results from other calculations (in ascending
order) are presented in Table 2. It can be seen that our results are in the upper part of the
interval defined by all of them, excluding Shi et al.’s value, which is very far from the rest.
The table also includes the thicknesses (assumed or calculated) when available.
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Table 2. Young’s moduli (E) and thicknesses (h) of graphene found in the literature.

Source E/TPa Method h/Å

Reddy et al. [30] 0.671 interatomic potential 3.4

Lebedeva et al. [66]
0.7058–1.343
(depending on the
potential used)

interatomic potential 3.34

Giannopoulos [67] 0.745208 for zigzag
graphene nanoribons

spring-based
structural mechanics N/A

Giannopoulos [67] 0.745204 for armchair
graphene nanoribbons

spring-based
structural mechanics N/A

Scarpa et al. [68]
0.762–1.000
(depending on the
potential used)

cellular material
mechanics theory 0.74–0.84

Polyakova et al. [69] 0.820 molecular dynamics N/A

Tsai and Tu [38] 0.912 molecular dynamics 3.4

Tzeng and Tsai [70] 0.912 molecular dynamics 3.4

Zhang et al. [71] 0.985 spring finite element
model N/A

Sakhaee-Pour [37] 1.040 for zigzag
graphene interatomic potential 3.4

Sakhaee-Pour [37] 1.042 for armchair
graphene interatomic potential 3.4

Sha’bani and
Rash-Ahmadi [72] 1.05 molecular dynamics N/A

Zaeri et al. [73] 1.040
molecular structural

mechanics finite
element method

3.4

Tapia et al. [74] 1.042 atomistic finite
element method 3.4

Anastasi et al. [34] 1.061 for zigzag
graphene molecular dynamics 3.35

Anastasi et al. [34] 1.035 for armchair
graphene molecular dynamics 3.35

Chandra et al. [40] 1.082 atomistic finite
element method 1.46

Tahani and
Safarian [75] 1.13 homogenization

composite shell model N/A

Cho et al. [35] 1.153 for graphite molecular mechanics 3.35

Shi et al. [51] 2.81
atomic interaction
based continuum

model
1.27

The experimental value for the (infinite) graphene Young’s modulus is 1.0 TPa [76],
very similar to the in-plane Young’s modulus in graphite (1.020 TPa [77]). Our results for
small nanoflakes are, globally, slightly bigger. This is not surprising since Young’s modulus
tends to decrease when the size of the system grows from a few tens to a few hundreds
of angstroms [78]. The reason is the edge effect on C–C distances. In infinite graphene,
all distances are equal. This is not the case for graphene nanoflakes. To show this, we
present in Table 3 a comparison between average C–C distances in the central ring (we have
selected the nanoflakes with a central hexagon) and on the edge. C–C distances in the center
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ring are very close to the experimental infinite graphene value (1.42 Å), but they slightly
decrease on the edges. This means C–C bonds are a little bit stronger on the edges of carbon
nanoflakes than in graphene, and this translates into an increase in Young’s modulus. As
can be seen in the table, the percentage of edge carbon atoms, logically, decreases with the
size of the system, but, for our nanoflakes, it is high. For our biggest nanoflake (12 × 13,
not shown in the table because it has no central C ring), it is 28%. This explains our values
for E being bigger than that for infinite graphene.

Table 3. Average C–C distance in square carbon nanoflakes and percentage of edge C atoms.

Nanoflake Average C–C Distance Percentage of Edge C AtomsCentral Ring Edge

5 × 5 1.420 1.399 58 %

6 × 7 1.418 1.402 48 %

10 × 11 1.418 1.403 33 %

As we have pointed out, graphene is clearly an anisotropic system because the prop-
erties in the direction perpendicular to the honeycomb plane are completely different to
those in plane. Nevertheless, infinite graphene is transversely isotropic, i.e., its properties
are symmetric about an axis normal to the honeycomb plane [79]. This means zigzag and
armchair Young’s moduli should be equal. In order to test how far our nanoflakes are
from this transverse isotropy, we define their transverse isotropicity TI as the ratio of their
zigzag and armchair Young’s moduli as follows:

TI =
E(zigzag)

E(armchair)
.

With this definition, transverse isotropy corresponds to TI = 1, and anisotropy can
be measured as the absolute deviation from this value |δ| = |1 − TI|. Using the data in
Table 1, we have calculated these two quantities for the six nanoflakes studied. The results
are presented in Figure 10. For very small flakes (3 × 3 and 5 × 5), aspect ratio is more
important than nanoflake size, and the anisotropy increases with size, but, for the rest of
the flakes, as expected, the bigger the flake, the smaller the anisotropy.

3x3 5x5 6x7 8x9 10x11 12x13

5 10 15 20 25 30
L / Å0.0

0.2

0.4

0.6

0.8

1.0

TI

δ

Transverse isotropicity

Figure 10. Transverse isotropicities of the Young’s moduli TI of the six nanoflakes studied and their
anisotropies (absolute deviations from unity) |δ| as a function of the zigzag edge length L.
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3.2. Shear Modulus

We have displaced the carbon atoms on one of the edges along the shear direction
between 0.1 Å and 0.5 Å in 0.1 Å steps, as shown in the middle row of Figure 7, relaxed
the rest of the atoms until the new equilibrium geometry depicted in the middle row of
Figure 8 is reached and calculated the corresponding strain energies. We have fitted the
results to a second-order polynomial and used the quadratic coefficient to calculate G.

As an example of this procedure, we show in Figure 11 the shear energies correspond-
ing to both armchair and zigzag edges for the 8 × 9 nanoflake. The graphs for other
nanoflakes are similar.

Out[ ]=

0.005 0.010 0.015 0.020 0.025
ϕ

0.02

0.04

0.06

0.08

0.10

0.12

U / aJ
8x9 nanocrystal shear energy

armchair edge

zigzag edge

Figure 11. Shear energies U as a function of the shear angle ϕ (in radians) for the 8 × 9 nanoflake.
Points correspond to calculated energies, while lines show a second-order polynomial fit.

Table 4 presents our results for the shear modulus of the nanoflakes calculated using
Equation (6).

Table 4. Shear modulus of square carbon nanoflakes.

Nanoflake Edge G/GPa

3 × 3 zigzag 221
armchair 255

5 × 5 zigzag 226
armchair 259

6 × 7 zigzag 189
armchair 288

8 × 9 zigzag 263
armchair 279

10 × 11 zigzag 222
armchair 240

12 × 13 zigzag 229
armchair 250

Armchair values for G are bigger than zizgzag ones, in agreement with Sakhaee-
Pour [37] and Min and Aluru [36].

Results from other calculations (in ascending order) are presented in Table 5. Our
results agree very well with most of them and are similar to the experimental value for
graphene, which is 280 GPa [80]. It is worth noting that the shear modulus for graphite is
440 GPa [77]. This is proof of the fact that using in-plane graphite properties for isolated
graphene is not always valid.
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Table 5. Shear moduli (G) and thicknesses (h) of graphene found in the literature.

Source G/GPa Method h/Å

Mukhopadhyay et al. [81] 125.4 molecular mechanics 3.4

Scarpa et al. [68] 202–270 (depending on
the potential used)

cellular material
mechanics theory 0.74–0.84

Tahani and Safarian [75] 212 homogenization
composite shell model N/A

Sakhaee-Pour [37] 213 for zigzag graphene interatomic potential 3.4

Sakhaee-Pour [37] 228 for armchair graphene interatomic potential 3.4

Tapia et al. [74] 213 atomistic finite element
method 3.4

Zhang et al. [71] 242 spring-based finite
element model N/A

Georgantzinos et al. [82] 280 spring-based finite
element model 3.4

Polyakova et al. [69] 302 molecular dynamics N/A

Reddy et al. [30] 384 interatomic potential 3.4

Tsai and Tu [38] 358 molecular dynamics 3.4

Zheng et al. [83] 434 beam finite element
method 3.4

Zakharchenko et al. [39] 445
atomistic Monte Carlo

based on empirical bond
order potential

N/A

Min and Aluru [36] ≈460 for zigzag graphene molecular dynamics 3.335

Min and Aluru [36] ≈360 for armchair
graphene molecular dynamics 3.335

Cho et al. [35] 482 for graphite molecular mechanics 3.35

Zaeri et al. [73] 490
molecular structural

mechanics finite element
method

3.4

Chandra et al. [40] 606 atomistic finite element
method 1.46

3.3. Torsion Constant

We present in Table 6 our results for the torsion constant of the nanoflakes calculated
using Equations (11) and (12). In the first case, we have twisted one of the edges between
1◦ and 5◦ in 1◦ steps, as shown in the lower row of Figure 7, relaxed the rest of the atoms
until the new equilibrium geometry depicted in the lower row of Figure 8 is reached and
calculated the corresponding strain energies. We have fitted the results to a second-order
polynomial and used the quadratic coefficient to calculate the torsional stiffness according
to Equation (8). We have then used our values for G and l and employed Equation (11) to
determine J.

As an example of this procedure, we show in Figure 12 the torsion energies corre-
sponding to both armchair and zigzag edges for the 6 × 7 nanoflake. The graphs for other
nanoflakes are similar.
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Out[ ]=

0.02 0.04 0.06 0.08
θ / rad
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0.4
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0.8

U / zJ
6x7 nanocrystal torsion energy

armchair edge

zigzag edge

Figure 12. Torsion energies U as a function of the torsion angle θ for the 6 × 7 nanoflake. Points
correspond to calculated energies, while lines show a second-order polynomial fit.

Table 6. Torsion constant and effective torsional thickness of square carbon nanoflakes.

Nanoflake Edge J/(10−40 m4)
h̃/ÅEquation (11) Equation (12)

3 × 3 zigzag 3.89 64.9 0.71
armchair 7.02 62.6 0.98

5 × 5 zigzag 10.0 126 0.88
armchair 6.76 116 0.75

6 × 7 zigzag 10.1 157 0.80
armchair 12.2 169 0.85

8 × 9 zigzag 7.08 219 0.58
armchair 12.6 223 0.76

10 × 11 zigzag 16.6 280 0.79
armchair 22.2 276 0.92

12 × 13 zigzag 28.7 342 0.94
armchair 30.1 329 0.99

The first thing to notice is that the direct use of Equation (12) with the standard value
for graphene thickness h is not valid. This expression for homogeneous isotropic systems
overestimates the value of J by an order of magnitude. The situation is similar to what
happens for graphene bending rigidity B. Using continuous mechanics expressions for
thin plates leads to a value for B one order of magnitude larger than B values obtained
based on atomic-level calculations [84–87]. In fact, as we have already pointed out, there
are several proposals for graphene thickness, and some of them arise precisely from trying
to apply equations valid for homogeneous isotropic solids to 2D systems. Values of h
determined from calculations on bent graphene sheets and carbon nanotubes (which
can be seen as a particular case of bent carbon nanoribbons) are very different from the
standard value h = 3.4 Å used in stretched (or compressed) planar graphene (the so-called
“Yakobson’s paradox”). Using molecular mechanics calculations, Duan et al. reported
0.52 Å [88], Scarpa et al. 0.84–1 Å [68] and Shi et al. 1.27 Å [51], while Yakobson et al.
obtained 0.66 Å using molecular dynamics simulations [29]. From ab initio calculations,
Kudin et al. [89] obtained 0.894 Å, Wang et al. 0.665 Å [90] and Shenderova et al. 0.9 Å [91].
Following this idea of an effective bending thickness, we report in the last column of the
table the effective torsional thickness h̃ defined as the value of h that has to be used in
Equation (12) in order to obtain the same value for J as the one obtained directly from
torsion data and Equation (11). Our values for the effective torsional thicknesses are similar
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to these effective bending thicknesses and compatible with the upper limit for the effective
single-walled carbon nanotube thickness determined by Pine et al., h ≤ 1 Å [92].

Focusing on the results obtained using Equation 11, with the exception of in the
5 × 5 case, the torsion constant is greater when the nanoflake is twisted around the armchair
edge, and, globally, J increases with the size of the system. Both behaviors are in agreement
with results obtained in previous studies [93–95]. In this case, we cannot compare our
numerical results to those in the literature because we have found neither calculations
nor experiments dealing with any of our nanoflakes, and neither torsional stiffness nor
torsion constant are intrinsic material properties but depend on the exact geometry of the
system. Results for twisting are by far less abundant than those for other deformations,
and our results could be useful for fitting interatomic potentials (especially for torsion
and out-of-plane sp2 hybridization terms in MM/MSM/NCM and MD models) for finite
carbon nanostructures.

3.4. Poisson’s Ratio

Table 7 includes our results for the Poison’s ratio of the nanoflakes calculated using
Equations (13) and (14). In the first case, we have used the optimized stretched geometries
obtained for determining Young’s moduli, measured the transverse compression at the
center of the nanoflake and computed ν.

Table 7. Poisson’s ratio of square carbon nanoflakes.

Nanoflake Edge ν
Equation (13) Equation (14)

3 × 3 zigzag 0.33 1.09
armchair 0.43 1.40

5 × 5 zigzag 0.30 0.93
armchair 0.39 1.38

6 × 7 zigzag 0.33 1.81
armchair 0.35 1.09

8 × 9 zigzag 0.31 1.10
armchair 0.34 1.19

10 × 11 zigzag 0.31 1.74
armchair 0.36 1.36

12 × 13 zigzag 0.31 1.46
armchair 0.33 1.41

It is clear that Equation (14) overestimates the value of ν and cannot be used for these
systems. This fact has been previously found for boron nitride nanoflakes [96,97], which
also have a honeycomb structure. Results obtained by applying the definition of Poisson’s
ratio given by Equation (13) indicate that ν is bigger for stretching and pulling on the
armchair edges (in agreement with Sakhaee-Pour [37]) but that the difference decreases as
the size of the nanoflakes increases.

Results from other calculations are presented (in ascending order) in Table 8. We
do not include thicknesses in this case because h is not needed in order to calculate ν.
Poisson’s ratio is strongly dependent on the strain applied (it can even become negative
for large strains) [98,99]. In the table, we have selected the values corresponding to the
smallest strain possible, but not all cases correspond to the so-called zero-strain limit. That
is the reason for the variety of results reported, except for in the last case; Sakhaee-Pour’s
results [37] are much higher that those from other calculations because he uses Equation (14)
to determine ν.
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Table 8. Poisson’s ratios (ν) of graphene found in the literature.

Source ν Method

Tapia et al. [74] 0.072 atomistic finite element
method

Zakharchenko et al. [39] 0.16 ± 0.03
atomistic Monte Carlo based

on empirical bond order
potential

Shodja et al. [47] 0.19–0.20 Density Functional Theory

Cho et al. [35] 0.195 for graphite molecular mechanics

Scarpa et al. [68] 0.211–0.848 (depending on the
potential used)

cellular material mechanics
theory

Lebedeva et al. [66] 0.221–0.987 (depending on the
potential used) interatomic potential

Tsai and Tu [38] 0.26 molecular dynamics

Caillerie et al. [100] 0.26 interatomic potential

Huang et al. [33] 0.28–0.30 bond-orbital tight-binding

Jiang et al. [98] 0.3 molecular mechanics

Cadelano et al. [101] 0.31 tight-binding

Tahani and Safarian [75] 0.333 homogenization composite
shell model

Wang et al. [99] 0.35 molecular dynamics

Polyakova et al. [69] 0.36 molecular dynamics

Zhang et al. [71] 0.366 spring-based finite element
model

Huang and Hwang [54] 0.397 interatomic potential

Lu and Huang [102] 0.398 molecular mechanics

Reddy et al. [30] 0.428 interatomic potential

Zheng et al. [83] 0.46 beam finite element method

Koberidze [103] 0.51 density-functional
tight-binding

Georgantzinos et al. [82] 0.603 spring-based finite element
model

Chandra et al. [40] 0.62 atomistic finite element
method

Sakhaee-Pour [37] 1.285 for zigzag graphene * interatomic potential

Sakhaee-Pour [37] 1.441 for armchair graphene * interatomic potential
* taking into account that his naming convention is the opposite to ours.

Our results should be compared to those from Jiang et al. [98] and Wang et al. [99],
which correspond to the zero-strain limit. The agreement with those results is complete.
Regarding experiments, the experimental value of ν for graphite is 0.160 [77] and, for
graphene, 0.19 [104], but those papers do not indicate the strain, and it is not possible to
know how far they are from the zero-strain limit.

4. Conclusions

We have studied the mechanical properties of six small nearly square graphene
nanoflakes using the semiempirical PM7 model. We have considered stretching, shear
and torsion deformations along zigzag and armchair edges, calculating Young’s and shear
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moduli as well as the torsion constant and Poisson’s ratio. Results obtained could be useful
for fitting interatomic potentials (especially for torsion and out-of-plane sp2 hybridization
terms and for near-the-edge bonds in MM/MSM/NCM and MD models) for finite carbon
nanostructures. Our results are close to other calculations and to experimental values
corresponding to infinite graphene, when these are available. Additionally, by making
use of these results, we have tested two formulas valid for macroscopic homogeneous
isotropic systems that are sometimes used for 2D nanostructures. We have shown that they
do not hold for graphene and explained some strange results reported in the literature.
In an attempt to recover one of these formulas, we have introduced an effective torsional
thickness for 2D crystals analogous to the effective bending thickness found in the literature.
The fast methodology developed in this work can be extended to two other dimensional
nanostructures—fully planar and buckled—providing valuable results in order to fit inter-
atomic potentials for faster and more reliable molecular mechanics and molecular dynamics
calculations in these systems.
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