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A B S T R A C T   

In this study, a method for evaluating the uncertainty of stress-optic coefficient measurements of photoelastic 
materials on a uniaxial tension/compression specimen is presented. The same problem is also approached in 
other previously used methods, in which multiple data fitted with ordinary least squares are considered. How
ever, only the repeatability contribution to uncertainty is considered in those other methods, which are therefore 
not consistent with the ISO–Guide to the expression of Uncertainty in Measurement. All possible contributions to 
uncertainty can be taken into account using the General Least Squares-Lagrange Multipliers (GLS-LM) method 
presented here. The application of the method is illustrated with an example, from which it can be seen that 
uncertainty has been underestimated in the other methods used to date. As well as the estimate of the stress-optic 
coefficient and its corresponding standard uncertainty, the method also provides a data consistency test and an 
outlier identification tool.   

1. Introduction 

Since the first studies on birefringence [1] and its subsequent 
application through photoelasticity [2], one of the first steps for the use 
of this physical phenomenon in stress/strain measurements is to obtain 
the stress-optic coefficient of photoelastic materials. This coefficient 
(also known as the material’s photoelastic constant and denoted by C) 
relates the relative retardation between the two polarized light rays that 
emerge from the illuminated photoelastic material to the principal stress 
difference within it1: 

σ1 − σ2 =
Nλ
hC

(1) 

In this equation, known as the stress-optic law, σ1 − σ2 is the principal 
stress difference at a given point, N is the fringe order at that point, i.e., 
the retardation expressed in multiples of λ (the wavelength of the light in 
use), and h is the thickness of the material through which the light 
passes. 

The stress-optic coefficient is a property that varies with time and 
from batch to batch, so it is necessary to measure its value at the time of 
use. Normal procedure to obtain the stress-optic coefficient for a given 
material is to measure the fringe order on a specimen for which the stress 
field is known and use Eq. (1). The uniaxial tension/compression 
loading specimen is the most widely used, due to its simplicity [3–16]. If 
we review the published works in which this measurement procedure 

has been employed, we can see that there is no clear and metrologically 
correct way to report a value of the stress-optic coefficient. A mea
surement must have an associated uncertainty for it to be valid, com
parable, and reproducible. Thus, the ISO/IEC 17025:2005 standard [17] 
that relates to the competence of laboratories states that in order to 
accredit their technical competence ‘testing laboratories shall have and 
shall apply procedures for estimating uncertainty of measurement’. The 
‘Guide to the expression of Uncertainty in Measurement’ (GUM) [18], 
first published in 1993, is the standard that describes the internationally 
accepted method for its evaluation. In some of the aforementioned 
–mostly pre-GUM– works, measurement uncertainties are not reported 
[3,6,8], or uncertainty is simply estimated as a percentage/last signifi
cant figure [5,9,10]. In the other –mostly post-GUM– works, measure
ment uncertainties are expressed, but they are not always evaluated in 
the same way. In those works, uncertainties are sometimes calculated as 
the standard deviation of repeated measurements in different trials or on 
different specimens [7,12], and sometimes through the uncertainty of a 
linear regression on measurements made under different applied loads 
[4,11,13–16]. As we will see below, none of these methods for evalu
ating the uncertainty of measurements is correct; both underestimate 
the uncertainties. The purpose of this work is to provide a correct 
method, consistent with the GUM, to evaluate the stress-optic coefficient 
measurements and their uncertainty obtained by means of a uniaxial 
tension/compression specimen. Thus, these measurements will comply 
with international metrological requirements. 
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2. Conventional method 

The conventional method for measuring the stress-optic coefficient 
of a photoelastic material consists of measuring the fringe order in a 
rectangular specimen subjected to a given tension or compression 
(Fig. 1). In the central part of the specimen, the stress state is uniaxial so, 
at any point within it, σ2 is zero and Eq. (1) can be recast to evaluate the 
stress-optic coefficient, C: 

C =
Nλ
hσ1

=
Nλb

P
(2)  

where, P is the applied load and b is the width of the specimen2. 
The fringe order is measured for different values of the load, and load 

vs. fringe order is plotted on a graph. Then, a least squares line is fitted to 
the data, and the slope, N/P, of this line is used in Eq. (2) to determine 
the stress-optic coefficient. Proceeding in this way, the value obtained 
will be valid over the entire load application range. 

As commented above, the authors of previous works have evaluated 
measurement uncertainty in two ways. The simplest consists of 
repeating the measurements, either on the same specimen or on several 
different ones, and taking the mean and the standard deviation of the 
results as the stress-optic coefficient value and its standard uncertainty, 
respectively. As established in the GUM, this method is valid to evaluate 
the component of the uncertainty that is due to the variability/repeat
ability (or reproducibility, if different specimens are used) of a direct 
measurement. The case here is otherwise. The measurement is indirect 
and multiple other contributions to uncertainty are involved. The 
measurement uncertainties of all the quantities in Eq. (2) must be 

considered. These quantities, in turn, have different uncertainty com
ponents (calibration of the instruments, their resolution, variability of 
the measurements, etc.). Then, all the uncertainty components should be 
properly combined, bearing in mind that several measurements of the 
fringe order are taken for different values of the load and a least squares 
adjustment is performed to find the N/P term. This process differs 
greatly from the simplified and incorrect method used in the above- 
mentioned works. 

The second way of evaluating measurement uncertainty used in 
previous works is also described in the GUM (example H.3), but that 
does not mean that it can be applied here. Like the former method, many 
contributions to uncertainty are also ignored in the latter method, in 
which only the uncertainty of the linear least squares fit is considered. 
The method consists of evaluating the estimate for the slope parameter, 
B, of a linear least squares fit, y = A+ Bx, with A = 0, x = P, y = N, and 
n pairs of data, as well as its standard uncertainty, u(B) [19]: 

B =

n
∑n

i=1
xiyi −

∑n

i=1
xi
∑n

i=1
yi

n
∑n

i=1
x2

i −

(
∑n

i=1
xi

)2 (3)  

u(B) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
n− 2

∑n

i=1
(yi − A − Bxi)

2

n
∑n

i=1
x2

i −

(
∑n

i=1
xi

)2

√
√
√
√
√
√
√
√

(4) 

With these values, the estimate of C and its corresponding standard 
uncertainty, u(C), are evaluated using Eq. (2), considering that B =

N /P: 

C = Bλb (5)  

u(C) = u(B)λb (6) 

The use of these expressions assumes that the measurements of y = N 
have the same uncertainty (due solely to its variability) and that the 
uncertainties in the measurements of x = P and the other quantities (b 
and λ) are negligible. With these assumptions, there are components of 
uncertainty that are lost, whose contribution to the uncertainty of C 
should not be ignored. The least squares fitting must be performed using 
the Generalized Least Squares-Lagrange Multipliers (GLS-LM) method 
[20,21], to account for all contributions in the evaluation of the un
certainty. This method has proven to be the appropriate tool for eval
uating uncertainty through least-squares fitting [22]. 

3. The GLS-LM method for uncertainty evaluation 

It is necessary to consider the uncertainties of all the quantities 
involved, and to take into account the relationships between them, for 
uncertainty evaluation in measurements based on least squares fitting. 
The uncertainties of those quantities and the relations between them are 
considered in the GLS-LM method, because it incorporates observation 
errors in all input quantities through the objective function to be mini
mized, and possible relationships between quantities are considered 
through the mathematical strategy of Lagrange multipliers. 

The objective function in the GLS-LM method, known as the chi- 
square function, is the sum of squares and cross products of the differ
ences between all observed data involved in the measurement process 
and their predicted values, weighted by the inverse of the covariance 
matrix of the observations: 

χ2(x̂; x) = (x − x̂)T Σ− 1(x − x̂) (7)  

where, the terms x = (x1, ..., xM)
T are the estimates of the input quan

tities X = (X1, ...,XM)
T of the measurement process, the terms x̂ =

(x̂1, ..., x̂M)
T are their refined values as a result of least-squares fitting, 

Fig. 1. Rectangular specimen subjected to uniaxial tension.  

2 Note that the specimen thickness, h, is not necessary to evaluate the stress- 
optic coefficient. The reason is that the relative retardation is proportional to h, 
but for a given force, P, the stress is inversely proportional to h. The net effect is 
a result for C that is independent of h. 
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and Σ− 1 is the inverse of the covariance matrix of the input estimates. Its 
elements are the variances, u2(xj), and covariances, u(xi,xj), associated 
with the input estimates, the values of which are known prior to the 
fitting process: 

Σ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u2(x1) u(x1, x2) ... u(x1, xM)

u(x2, x1) u2(x2) ... u(x2, xM)

.

.

.

.

.

.

.

.

.

.

.

u(xM , x1) u(xM , x2) ... u2(xM)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8) 

In the stress-optic measurements process, the input quantities, X 
(those for which prior information is available either from direct mea
surements or from other sources), are: b, λ, and the applied force, P, and 
the fringe order, N, at each step of the process. Therefore, if there are n 
steps in the specimen loading process, the total number of input quan
tities is M = 2+ 2⋅n. In the application case that will be presented in the 
next section, the fringe order is measured at n = 20 values of the load; 
there will therefore be M = 42 input quantities: 

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
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X4
...

X41
X42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b
λ

P1
N1
...

P20
N20

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9) 

In the measurement process, the output quantities, Y, are those for 
which no prior information is available. In this case, there is only one 
output quantity, the stress-optic coefficient, C. 

The estimate of the output quantity, y, and the refined estimates of 
the input quantities, x̂, are related by n constraints, from the use of Eq. 
(2) at each load step, so there are n constraints or model functions. In the 
application case of the next section, n = 20: 

h(y, x̂) =

⎛

⎜
⎜
⎜
⎜
⎝

λbN1 − CP1
λbN2 − CP2

...

λbN20 − CP20

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

(10) 

The objective function (7) is minimized through the strategy of 
Lagrange multipliers for which an auxiliary function, the Lagrangian 
Function, is defined that incorporates the constraints (10) into Eq. (7)3: 

L(y, x̂,λ; x) = (x − x̂)T Σ− 1(x − x̂) + 2βT h(y, x̂) (11)  

where, β = (β1, ..., βn)
T are a set of n parameters –as many as the con

straints– known as Lagrange multipliers. With these, the minimization 
problem involves solving the gradient equations 

∇
(y,̂x,β)L(y, x̂, β; x) = 0 (12) 

This system of 1 + M + n = 3(n+1) nonlinear equations with 
3(n+1) unknowns is iteratively solved with the Gauss-Newton algo
rithm. Hence, denoting the iteration number by the superscript l = 1,2,
..., the estimates of the output quantities are refined by successive 
approximations: 

yl+1 = yl + Δyl

x̂l+1
= x̂ l

+ Δx̂l (13) 

At each iteration the model functions are linearized by approxima
tion to a first-order Taylor series expansion around yl and x̂ l, which 
transforms Eq. (12) into a linear system [21]4: 
⎛

⎜
⎜
⎜
⎜
⎝

0(1,1) 0(1,2+2n) [
∇yh

(
yl,x̂l)]T

0(2+2n,1)
∑− 1 [

∇ x̂ h
(
yl,x̂ l)]T

[
∇yh

(
yl,x̂ l)]

[∇ x̂ h
(
yl,x̂l)] 0(n,n)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

Δyl

Δx̂l

βl+1

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0(1,1)

∑− 1 (
x − x̂l)

− h
(
yl,x̂ l)

⎞

⎟
⎟
⎟
⎟
⎠

(14) 

The values obtained for Δyl and Δx̂l are used in (13) to improve the 
estimates of the quantities for the next iteration, stopping the process 
with an appropriate convergence criterion. 

The left-hand side matrix in (14) is called D(yl, x̂l
) and it may be 

demonstrated [21] that its inverse contains, in its upper left 
(3+2n) × (3+2n) submatrix, the estimated covariances associated with 
the estimates of the quantities: 

D
(
yl, x̂l)− 1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u(y,y) u(y, x̂1) ⋯ u(y, x̂2+2n) ()
(1,n)

u(x̂1,y) u(x̂1, x̂1) ⋯ u(x̂1, x̂2+2n)

⋮ ⋮ ⋅. ⋯ ()
(2+2n,n)

u(x̂2+2n,y) u(x̂2+2n, x̂1) ⋯ u(x̂2+2n, x̂2+2n)

()
(n,1)

()
(n,2+2n)

()
(n,n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15) 

Then, in addition to the estimates y and x̂, their associated standard 
uncertainties can also be calculated, considering that 

u(y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅
u(y, y)

√

u(x̂i) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u(x̂i, x̂i)

√ (16)  

4. Application case 

We will calculate the measurement uncertainties in an application 
case, to illustrate how these uncertainties are evaluated using the GLS- 
LM method. A rectangular specimen was cut to nominal dimensions of 
160 × 40 × 3.05mm from a Vishay PS-1 photoelastic sheet [23]. The 
specimen was annealed at 150 ◦C for an hour to remove any internal 
stresses that might have been introduced. It was then loaded in a uni
versal testing machine, so that it was subjected to an increasing tensile 
load from zero to 2000 N, in steps of approximately 100 N. The testing 
machine was placed in a dark-field circular polariscope illuminated by 
monochromatic light from a sodium lamp (λ = 589.3nm). The fringe 
order was measured at the central part of the specimen, through a 
Babinet–Soleil compensator, for each load step, so that n = 20 pairs of 
data load vs. fringe order were recorded. 

The following considerations were taken into account when defining 
the input quantities of the measurement process:  

- The width, b, of the specimen was measured at different points using 
a Vernier caliper, and the mean and standard deviation of its values 
were obtained. According to the GUM [18], and considering the 
uncertainties due to resolution (0.02mm) and calibration of the 

3 To improve the final appearance of the resulting system of Eq. (14), the 
second term of the well-known Lagrangian function has been multiplied by 2. 

4 The notations 0(a,b) and ()(a,b) are used to indicate an a × b zero submatrix 
and an a × b submatrix with no relevant information, respectively. 
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caliper (in the certificate of calibration), a standard uncertainty u(b)
= 0.32mm was obtained for an estimated value, b = 39.93mm 
(Table 1).  

- Regarding the wavelength of the light, sodium-vapor discharge 
lamps have two primary emission wavelengths, 589.0 nm and 589.6 
nm. Then, according to the GUM [18], this quantity can be described 
by a rectangular distribution over its range, which provides a mean 
value λ = 589.3nm with a standard uncertainty u(λ) = 0.7 /

̅̅̅̅̅̅
12

√
nm.  

- The measurement of the load P was carried out at the time of the test, 
so it was decided to adjust a calibration line with which a single 
uncertainty value is obtained for the entire range of application. In 
accordance with the GUM [18], a standard uncertainty u(P) = 0.97N 
was obtained by combining, the variability, calibration and resolu
tion uncertainty components for the load cell of the testing machine 
(Table 2).  

- Finally, calibration of the measurement of the fringe order followed 
the draft standard proposed by the Standardization Project for Op
tical Techniques of Strain Measurement [24,25]. This calibration 
uncertainty was combined, for each measurement, with the compo
nents of the uncertainty due to the resolution of the compensator 
(0.01fringes) and due to the repeatability of measurements (fringe 
order measurements were repeated ten times at each load step). 
Residual birefringence was corrected. As a sample, Table 3 provides 
the uncertainty budget for one of the fringe order measurements. All 
data were assumed to be uncorrelated. 

The GLS-LM method involves applying an iterative process to a large 
system of equations that is, moreover, near singular. Its implementation 
in MATLAB [22] makes it easy to apply, simply by introducing the 
necessary data: number, name, and starting values of the output quan
tities; number, name, estimates, and covariance matrix of the input 
quantities; and number and equations of the constraints. When the 
program was executed, the GLS-LM method quickly converged, and the 
estimates, x̂ and y, and their associated standard uncertainties were 
obtained. They are shown in Table 4 under the row headings ̂xj, yi, u(x̂j), 
and u(yi). 

The stress-optic coefficient estimate was C = 82.55⋅10− 12m2 /N with 
an associated standard uncertainty of u(C) = 0.67⋅10− 12m2 /N. This 
measurement5 was in fairly close agreement with the data provided in 
the photoelastic material data sheet [23] (its strain optical coefficient, K, 
elastic modulus, E, and Poisson’s ratio, ν): 

C =
1 + ν

E
K =

1 + 0.38
2500⋅106N/m2⋅0.150 = 82.8⋅10− 12m2 /N (17) 

The GLS-LM method provides not only an estimate of the quantity to 
be measured and its corresponding standard uncertainty, but also a 
fitted estimate and the standard uncertainty of the value of each input 
quantity. From those estimates and standard uncertainties, both the chi- 
square function (7) and the normalized deviations between the input 

estimates and their adjusted values can be evaluated, and the consis
tency of data can be tested. The chi-square function yielded an observed 
value of χ2(x̂; x) = 14.87. The probability that this value is derived from 
a χ2 distribution with n − 1 = 19 degrees of freedom is p =

Prob{χ2(19)> 14.87} = 73.11%, greater than α = 5%, so the data were 
consistent with the constraints. This consistency was confirmed by the 
normalized deviations, given in Table 1 under the row headings, dj, 
given that they all satisfied the criterion |dj| < 2 (there were no outliers). 

5. Discussion 

The results obtained with the GLS-LM method may be compared with 
those obtained through the procedures used in previous works. The first 
procedure is simply to repeat measurements and to calculate their mean 
and standard deviation; these values are taken, respectively, as the es
timate of the measurement and its corresponding standard uncertainty. 
It has previously been commented that this procedure to evaluate the 
uncertainty of an indirect measurement is not valid, as there are more 
components of uncertainty apart from any variability with repetition. If 
we repeat the conventional method of measuring the stress-optic coef
ficient ten times, the results of Table 5 are obtained. 

As can be seen, while the estimated value obtained with this pro
cedure is consistent with the value provided by the GLS-LM method6, the 
standard uncertainty is clearly underestimated. In the method used in 
previous works only the contribution to uncertainty due to part of the 
variability of the measurements is considered. As we can see, this 
portion of uncertainty (0.11 B) represents only 16% of the total uncer
tainty (0.67 B). Therefore, this method of evaluating the measurement 
uncertainty is incorrect because it is incomplete. Much of the variability 
has been lost because it has not been analyzed separately when 
measuring each input quantity. On the other hand, the uncertainty 
components related with the resolution and calibration of the devices 
and procedures used to measure the variables involved in the process 
(width of the specimen, wavelength of light, applied load and photoe
lastic fringe order) have not been considered. This is only possible to do 
with the GLS-LM method. 

The second procedure is, basically, the same as the previous one; but 
it has the advantage that it is not necessary to correct the possible re
sidual birefringence existing in the photoelastic material in each fringe 
order measurement. It automatically corrects the residual birefringence 
through the direct measurement of the N/P ratio. The estimated and the 
standard uncertainty for the slope parameter in the linear least squares 
fit load vs. fringe order Fig. 2) are first calculated with Eqs. (3) and ((4) 
and the estimate of the stress-optic coefficient and its corresponding 
standard uncertainty are then calculated with Eqs. (5) and (6). 

The values obtained were C = 82.43⋅10− 12m2 /N and u(C) =

0.11⋅10− 12m2 /N, which are the same as those obtained with the pre
vious method of repeating the measurement process. Again, the un
certainties of measurement are underestimated. In both this method and 

Table 1 
Uncertainty budget in the measurement of the width b of the specimen.  

Source of 
Uncertainty 

Probability distribution Estimate 
(mm) 

Standard uncertainty Sensitivity coefficient Contribution 
(mm) 

Repeated observations t-student 39.93 0.3182 1 0.3182 
Resolution rectangular 0.00 0.02/

̅̅̅̅̅̅
12

√ 1 0.0058 
Calibration Gaussian 0.00 0.0263 1 0.0263   

39.93   0.32  

5 Sometimes the stress-optic coefficient is expressed in Brewsters (B), a 
measure of the susceptibility of the material to photoelasticity: B =

10− 12m2 /N. 

6 The difference between both estimates is because the least squares fit is 
weighted by the covariance matrix in the GLS-LM method, while there is no 
weighting in the conventional method. They are nevertheless coherent values, 
since the difference between them is several times less than the standard 
uncertainty. 
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Table 2 
Uncertainty budget in the measurement of the load P.  

Source of 
uncertainty 

Probability distribution Estimate 
(N) 

Standard uncertainty Sensitivity coefficient Contribution 
(N) 

Variability t-student 0–2000 0.9595 1 0.9595 
Resolution rectangular 0 0.2/

̅̅̅̅̅̅
12

√ 1 0.0577 
Calibration gaussian 0 0.0948 1 0.0948   

0–2000   0.97  

Table 3 
Uncertainty budget in the measurement of N14.  

Source of 
uncertainty 

Probability distribution Estimate 
(fringes) 

Standard uncertainty Sensitivity coefficient Contribution 
(fringes) 

Repeated observations t-student 4.930 0.0141 1 0.0082 
Resolution rectangular 0.00 0.01/

̅̅̅̅̅̅
12

√ 1 0.0029 
Calibration Gaussian 0.00 0.0043 1 0.0118   

4.930   0.015  

Table 4 
Estimates and standard uncertainties before and after the GLS-LM fitting.  

Quantity b (mm) λ (mm) P1 (N) N1 (fr.) P2 (N) N2 (fr.) 

xj 39.93 589.3•10− 6 100.12 0.360 200.53 0.710 
u(xj) 0.32 0.202•10− 6 0.97 0.013 0.97 0.012 
x̂j 39.93 589.3•10− 6 100.27 0.352 200.65 0.705 
u(x̂j) 0.32 0.202•10− 6 0.94 0.003 0.93 0.003 
dj 0.00 0.00 –0.63 0.63 –0.47 0.47 
Quantity P3 (N) N3 (fr.) P4 (N) N4 (fr.) P5 (N) N5 (fr.) 
xj 299.78 1.070 400.23 1.420 499.97 1.770 
u(xj) 0.97 0.014 0.97 0.013 0.97 0.013 
x̂j 300.06 1.054 400.50 1.406 500.23 1.757 
u(x̂j) 0.94 0.003 0.94 0.003 0.094 0.004 
dj –1.21 1.20 –1.09 1.09 –1.07 1.07 
Quantity P6 (N) N6 (fr.) P7 (N) N7 (fr.) P8 (N) N8 (fr.) 
xj 600.19 2.120 700.23 2.460 799.69 2.800 
u(xj) 0.97 0.013 0.97 0.014 0.97 0.014 
x̂j 600.42 2.108 700.25 2.459 799.56 2.808 
u(x̂j) 0.94 0.004 0.94 0.004 0.94 0.004 
dj –0.93 0.93 –0.08 0.08 0.57 –0.57 
Quantity P9 (N) N9 (fr.) P10 (N) N10 (fr.) P11 (N) N11 (fr.) 
xj 900.09 3.150 1000.21 3.510 1100.05 3.850 
u(xj) 0.97 0.013 0.97 0.015 0.97 0.014 
x̂j 899.89 3.160 1000.18 3.512 1099.84 3.862 
u(x̂j) 0.94 0.004 0.95 0.004 0.94 0.004 
dj 0.81 –0.81 0.15 –0.15 0.92 –0.91 
Quantity P12 (N) N12 (fr.) P13 (N) N13 (fr.) P14 (N) N14 (fr.) 
xj 1199.96 4.220 1299.92 4.580 1400.10 4.930 
u(xj) 0.97 0.013 0.97 0.014 0.97 0.015 
x̂j 1200.08 4.214 1300.16 4.566 1400.29 4.917 
u(x̂j) 0.94 0.005 0.94 0.005 0.95 0.005 
dj –0.48 0.48 –1.10 1.09 –0.91 0.91 
Quantity P15 (N) N15 (fr.) P16 (N) N16 (fr.) P17 (N) N17 (fr.) 
xj 1500.06 5.250 1600.20 5.630 1699.89 5.990 
u(xj) 0.97 0.014 0.97 0.015 0.97 0.015 
x̂j 1499.78 5.267 1600.35 5.620 1700.18 5.970 
u(x̂j) 0.94 0.005 0.95 0.005 0.95 0.006 
dj 1.27 –1.27 –0.74 0.73 –1.42 1.42 
Quantity P18 (N) N18 (fr.) P19 (N) N19 (fr.) P20 (N) N20 (fr.) 
xj 1800.11 6.310 1899.91 6.660 2000.12 7.010 
u(xj) 0.97 0.014 0.97 0.015 0.97 0.015 
x̂j 1799.93 6.321 1899.75 6.671 1999.93 7.023 
u(x̂j) 0.95 0.006 0.95 0.006 0.95 0.006 
dj 0.83 –0.83 0.81 –0.80 0.94 –0.94 
Quantity C      
(units) (m2/N)      
yi 82.55•10− 12      

u(yj) 0.67•10− 12       
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the previous one there are contributions to uncertainty that are being 
wrongly ignored. 

The idea of repeating measurements or replicating them under 
different load conditions is a good idea, since it is the way to detect 
uncertainty due to variability/repeatability. However, both calculating 
the standard deviation of the observations and performing a conven
tional least squares adjustment are procedures that do not allow 
considering the multiple contributions to the uncertainty of each of the 
magnitudes involved. For this, it is necessary to use the GLS-LM method. 

6. Conclusions 

Metrological activities are essential to guarantee the quality of sci
entific and industrial activities. The main metrological condition to be 
fulfilled by measurements is that they must be expressed with their 
corresponding uncertainty, which must be evaluated in accordance with 
the international standards included in the ISO standard GUM. In the 
present work, it has been shown that current procedures for the evalu
ation of the uncertainty in the measurement of the optical-stress coef
ficient of photoelastic materials are incomplete. Those procedures are 
not consistent with the GUM, because the only component of the un
certainty under consideration is the uncertainty detected in the form of 
global repeatability. The GLS-LM method is the appropriate procedure 
with which the other contributions to uncertainty may be considered, 
such as the uncertainty in the measurement of the width of the specimen 
or the uncertainties of resolution and calibration of the measuring 
devices. 

The GLS-LM method is the most general variant of the least squares 
method. In it, the function to be minimized is the weighted sum of 
squares of the differences between all observed data involved in the 
measurement process and their fitted values. Since the fit involves all the 
variables and the weighting is based on the inverse of their covariance 

matrix, the measurement uncertainties of all the variables can be 
considered and, as a result of the process, their uncertainties after the 
fitting can be obtained. Complementary to the estimate of the optical- 
stress coefficient and its corresponding standard uncertainty, the GLS- 
LM method can also, through the chi-square function, to test whether 
data are consistent with the theoretical model, and through the 
normalized deviations, to detect outliers. 

The use of the GLS-LM method to measure the stress-optic coefficient 
of photoelastic materials guarantees a correct evaluation of its uncer
tainty, in accordance with international standards, and ensures the 
validity, comparability and reproducibility of the measurements. 
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Table 5 
Mean and standard deviation of ten measurements of the stress-optic coefficient.  

C (10− 12 m2/N) 82.55 82.31 82.58 82.28 82.51 82.51 82.52 82.39 82.30 82.33 

C (10− 12 m2/N) 82.43          
u(C) (10− 12 m2/N) 0.11           

Fig. 2. Best-fit straight line for the evaluation of the slope N/P.  

M.S.-B. Fernández                                                                                                                                                                                                                              



Journal of Non-Crystalline Solids 607 (2023) 122249

7

References 

[1] D. Brewster, On the communication of the structure of doubly-refracting crystals to 
glass, muriate of soda, fluor spar and other substances, by mechanical compression 
and dilatation, Philos. Trans. R. Soc. Lond. 106 (1816) 156–178. 

[2] E.G. Coker, L.N.G. Filon, A Treatise On Photoelasticity, Cambridge University 
Press, New York, 1931. 

[3] K. Vedam, Elastic and photoelastic properties of some optical glasses, Proc. Indian 
Acad. Sci. (Math. Sci.) 31 (1950) 450–458, https://doi.org/10.1007/BF03050122. 

[4] R.M. Waxier, A. Napolitano, Relative stress — optical coefficients of some national 
bureau of standards optical glasses, J. Res. Natl. Bur. Stand. (1934) 59 (2) (1957) 
121–125. 

[5] R.M. Waxier, D. Horowitz, A. Feldman, Optical and physical parameters of 
Plexiglas 55 and Lexan, Appl. Opt. 18 (1) (1979) 101–104, https://doi.org/ 
10.1364/AO.18.000101. 

[6] G.R. Mariner, K. Vedam, Stress-optic coefficient of ZnSe at 10.6μm, Appl. Opt. 20 
(17) (1981) 2878–2879, https://doi.org/10.1364/AO.20.002878. 

[7] P.A. Williams, A.H. Rose, K.S. Lee, D.C. Conrad, G.W. Day, P.D. Hale, Optical, 
thermo-optic, electro-optic, and photoelastic properties of bismuth germanate 
(Bi4Ge3O12), Appl. Opt. 35 (19) (1996) 3562–3569, https://doi.org/10.1364/ 
AO.35.003562. 

[8] ASTM – American Society for Testing and Materials, ASTM C770-98 Standard Test 
Method for Measurement of Glass Stress – Optical Coefficient, ASTM, West 
Conshohocken, Pennsylvania (USA), 1998, https://doi.org/10.1520/C0770-98. 
Active version: ASTM C770-16 (2020). 

[9] M. Guignard, L. Albrecht, J.W. Zwanziger, Zero-stress optic glass without lead, 
Chem. Mater. 19 (2) (2007) 268–290, https://doi.org/10.1021/cm062208a. 

[10] M. Guignard, J.W. Zwanziger, Zero stress-optic barium tellurite glass, J. Non Cryst. 
Solids 353 (2007) 1662–1664, https://doi.org/10.1016/j.jnoncrysol.2007.01.038. 

[11] M.K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, 
L. Khan, D.J. Webb, Measurements of stress-optic coefficient in polymer optical 
fibers, Opt. Lett. 35 (12) (2010) 2013–2015, https://doi.org/10.1364/ 
OL.35.002013. 

[12] J.G. Thorbahn, J.W. Zwanziger, Compositional dependence of the stress-optic 
response in zinc tellurite glasses, J. Non Cryst. Solids 381 (2013) 48–53, https:// 
doi.org/10.1016/j.jnoncrysol.2013.09.016. 

[13] P. Schemmel, G. Diederich, A.J. Moore, Direct stress optic coefficients for YTZP 
ceramic and PTFE at GHz frequencies, Opt. Express 24 (8) (2016) 8110–8119, 
https://doi.org/10.1364/OE.24.008110. 

[14] P. Schemmel, G. Diederich, A.J. Moore, Measurement of direct strain optic 
coefficient of YSZ thermal barrier coatings at GHz frequencies, Opt. Express 25 (17) 
(2017) 19968–19980, https://doi.org/10.1364/OE.25.019968. 

[15] E.C. Power, A.L. Paterson, U. Werner-Zwanziger, L.D. Ellis, J.W. Zwanziger, Zero 
stress-optic bismuth oxide-based glass, J. Non Cryst. Solids 479 (2018) 82–89, 
https://doi.org/10.1016/j.jnoncrysol.2017.10.023. 

[16] Z. Wang, Z. Wu, Y. Han, K. Kang, L. Li, Y. Li, W. Hou, S. Wang, C. Li, Metal stress- 
optic effect and its application in stress measurement, Thin Solid Films 695 (2020), 
137755, https://doi.org/10.1016/j.tsf.2019.137755. 

[17] International Organization for Standardization, ISO/IEC 17025:2005 General 
requirements for the competence of testing and calibration laboratories, second 
ed., ISO, Geneva, 2005. 

[18] International Organization for Standardization, ISO 98-3:2008 Evaluation of 
measurement data – guide to the expression of uncertainty in measurement, first 
ed. ISO, Geneva, 2008. 

[19] J.R. Taylor, An Introduction to Error Analysis – The Study of Uncertainties in 
Physical Measurements, 2nd edition, University Science Books, Sausalito, 
California (USA), 1997. ISBN: 978-0935702750. 

[20] L. Nielsen, Least-squares estimation using Lagrange multipliers, Metrologia 35 (2) 
(1998) 115–118, https://doi.org/10.1088/0026-1394/35/2/6. Erratum (2000) 
Metrologia, 37(2): 183. 

[21] L. Nielsen, Evaluation of measurements by the method of least squares, in: 
J. Levesley, I.J. Anderson, J.C. Mason (Eds.), Algorithms For Approximation IV. 
The Proceedings of the Fourth International Symposium on Algorithms for 
Approximation, University of Huddersfield, 2002, pp. 170–186. ISBN: 978- 
1862180406. 

[22] M. Solaguren-Beascoa Fernández, MATLAB implementation of the general least 
squares method with evaluation of measurement uncertainty, Measurement 114 
(2018) 218–225, https://doi.org/10.1016/j.measurement.2017.09.039. 

[23] Vishay Measurements Group Inc, Photostress coating materials and adhesives, htt 
ps://docs.micro-measurements.com/?id=2539, 2015 (accessed 27 February 
2023). 

[24] TWA26 VAMAS. Draft VAMAS TWA26 pre-standard calibration and assessment of 
optical strain measurements systems, Part I: reference material for optical methods 
of strain measurement, University of Sheffield, Sheffield, 2007. 

[25] TWA26 VAMAS. Draft VAMAS TWA26 pre-standard calibration and assessment of 
optical strain measurements systems, Part II: standardised test materials for optical 
methods of strain measurement systems, University of Sheffield, Sheffield, 2007. 

M.S.-B. Fernández                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0001
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0001
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0001
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0002
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0002
https://doi.org/10.1007/BF03050122
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0004
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0004
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0004
https://doi.org/10.1364/AO.18.000101
https://doi.org/10.1364/AO.18.000101
https://doi.org/10.1364/AO.20.002878
https://doi.org/10.1364/AO.35.003562
https://doi.org/10.1364/AO.35.003562
https://doi.org/10.1520/C0770-98
https://doi.org/10.1021/cm062208a
https://doi.org/10.1016/j.jnoncrysol.2007.01.038
https://doi.org/10.1364/OL.35.002013
https://doi.org/10.1364/OL.35.002013
https://doi.org/10.1016/j.jnoncrysol.2013.09.016
https://doi.org/10.1016/j.jnoncrysol.2013.09.016
https://doi.org/10.1364/OE.24.008110
https://doi.org/10.1364/OE.25.019968
https://doi.org/10.1016/j.jnoncrysol.2017.10.023
https://doi.org/10.1016/j.tsf.2019.137755
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0019
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0019
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0019
https://doi.org/10.1088/0026-1394/35/2/6
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0021
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0021
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0021
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0021
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0021
https://doi.org/10.1016/j.measurement.2017.09.039
https://docs.micro-measurements.com/?id=2539
https://docs.micro-measurements.com/?id=2539
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0024
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0024
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0024
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0025
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0025
http://refhub.elsevier.com/S0022-3093(23)00117-5/sbref0025

	Evaluation of uncertainty in the measurement of the stress-optic coefficient
	1 Introduction
	2 Conventional method
	3 The GLS-LM method for uncertainty evaluation
	4 Application case
	5 Discussion
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


