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a b s t r a c t

Under the federated learning paradigm, the agents learn in parallel and combine their knowledge to
build a global knowledge model. This new machine learning strategy increases privacy and reduces
communication costs, some benefits that can be very useful for industry applications deployed in
the edge. Automatic Guided Vehicles (AGVs) can take advantage of this approach since they can be
considered intelligent agents, operate in fleets, and are normally managed by a central system that can
run in the edge and handles the knowledge of each of them to obtain a global emerging behavioral
model. Furthermore, this idea can be combined with the concept of reinforcement learning (RL). This
way, the AGVs can interact with the system to learn according to the policy implemented by the
RL algorithm in order to follow specified routes, and send their findings to the main system. The
centralized system collects this information in a group policy to turn it over to the AGVs. In this
work, a novel Federated Discrete Reinforcement Learning (FDRL) approach is implemented to control
the trajectories of a fleet of AGVs. Each industrial AGV runs the modules that correspond to an RL
system: a state estimator, a rewards calculator, an action selector, and a policy update algorithm.
AGVs share their policy variation with the federated server, which combines them into a group policy
with a learning aggregation function. To validate the proposal, simulation results of the FDRL control
for five hybrid tricycle-differential AGVs and four different trajectories (ellipse, lemniscate, octagon,
and a closed 16-polyline) have been obtained and compared with a Proportional Integral Derivative
(PID) controller optimized with genetic algorithms. The intelligent control approach shows an average
improvement of 78% in mean absolute error, 75% in root mean square error, and 73% in terms of
standard deviation. It has been shown that this approach also accelerates the learning up to a 50 %
depending on the trajectory, with an average of 36% speed up while allowing precise tracking. The
suggested federated-learning based technique outperforms an optimized fuzzy logic controller (FLC)
for all of the measured trajectories as well. In addition, different learning aggregation functions have
been proposed and evaluated. The influence of the number of vehicles (from 2 to 10) on the path
following performance and on network transmission has been analyzed too.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As an alternative to driver vehicles and conveyors in the
ndustrial sector, automated guided vehicles (AGVs) facilitate au-
omatic intralogistics solutions. They provide high flexibility in
ogistic processes, increase productivity, and reduce risks, quality
rrors and work accidents [1]. Recent advances in 5G networks
ave pushed AGVs fleet management to the edge.
From the point of view of control engineering, these industrial

ehicles present two coupled control problems: speed control and
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trajectory control. Speed control is necessary to ensure compli-
ance with the time requirements of the logistics process, such as
throughput, cadence, tag time, etc. On the other hand, the control
of the trajectory followed by the vehicle is used to ensure that the
AGV travels along the desired routes without entering prohibited
zones and avoids collisions with obstacles or human operators.
These vehicles are equipped with a set of sensors, such as safety
lidars, to detect obstacles and stop before the collision [2]. But
unexpected stoppages can change the rate of production or even
shut down the production line. In addition, the precision in fol-
lowing the route is especially important when the AGV travels
through narrow aisles or very close to the infrastructure, or when
it must make precise stops at stations to recharge the battery,
pick up pallets, containers, carts, etc.
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Therefore, the control strategy is crucial for the proper func-
tioning of the AGV and the safety in the workspace where it
moves. Trajectory control is a complex task due to the non-
linearities of the AGV dynamics, its kinematic constraints and
the abrupt changes in the curvature of the trajectories. For these
reasons different techniques, conventional and taken from the
artificial intelligence field, have been applied. Fuzzy logic [3],
neural networks [4], and reinforcement learning [5] have proved
successful for the AGV tracking control.

Particularly, reinforcement learning (RL) allows the AGV au-
tonomously learn the suitable control law to follow complex
trajectories. This approach saves hours spent configuring and
tuning the control system, compared to classic controllers like
Proportional Integral Derivative (PID) controllers. With the RL the
agent learns the relationship between the state of the system and
the action to be executed through the interaction with the [6] en-
vironment. Learning agents perform actions and receive rewards.
In this way they tend to repeat actions with great and positive
rewards. This relationship between states and actions is usually
called a policy.

Recent studies have proposed the federated learning (FL)
paradigm as an advanced machine learning technique for dif-
ferent fields applications [7]–[8]. With this approach, multiple
learning agents learn in parallel and share their knowledge with
each other to create a global knowledge model. Different de-
ployments, centralized or decentralized, have been proposed,
although the main classification is Horizontal FL (HFL) and Ver-
tical FL (VFL). In horizontal FL the implementation is centralized
since the agents send the information to a federated server. In
the vertical FL scheme, agents locally train the model and then
share the model or error gradients with each other, i.e., with the
other [9] agents. In both cases, VFL and HFL, training data are not
exposed and data privacy is guaranteed.

The work presented here follows the horizontal federated
learning paradigm. In this case, the agents send their knowl-
edge to a federated server that receives the information and
combines it to create the global learning model. After knowl-
edge fusion, agents download the global model, or the feder-
ated server returns it, and agents continue learning locally. This
paradigm should not be confused with centralized training, where
the agents send untrained information, the central system re-
ceives all this information from the agents and uses it to train
the global model; then the model is downloaded to the agents.
That is, in centralized training the agents are only information
gateways and do not perform automatic learning. In contrast, in
federated learning the agents perform machine learning calcu-
lations, learn by themselves and share this knowledge with the
federated server to improve the overall model. In other words, in
federated learning machine learning runs on all agents, while in
a centralized approach machine learning algorithms only run on
the centralized system.

AGVs can use this new federated learning approach since
they usually work in fleets and there is a central system that
manages all the vehicles [1] and can act as a federated server.
The application of the FL in this framework consists, firstly, that
the AGVs learn an RL policy by interacting with the system and
send what they have learned back to the federated server. The
federated server aggregates all this knowledge to create a group
policy, which will speed up learning the best policy. For its im-
plementation, this work proposes a control architecture based on
federated reinforcement learning to address the trajectory control
of these industrial vehicles.

Privacy is one of the main benefits of federated learning.
Instead of sending the training data to the federated server,
agents learn the model locally and send the trained model or

weights to the federated server. This increases the privacy of the
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training data (which may contain private information) as this
information does not travel through different machines. With
industrial vehicles, privacy is important since the training data
can reveal relevant information about the internal behavior of
the AGV, its aging, malfunction, etc. This is especially important
when there are AGVs of different brands in a facility. In addition,
in this application the training data can reveal confidential infor-
mation about the production and logistics processes; this fact also
emphasizes the argument for using FRL. Furthermore, to provide
a higher level of security, blockchain can be included in [10]
communications. For instance, in this specific case the transfer
of the incremental policy could be certified by blockchain. This
would further improve the security and traceability of the entire
process.

In addition, the federated approach helps speed up the RL
learning process. In this way a better control is obtained more
quickly. A possible explanation for this acceleration of learning
is that with more agents more different actions can be explored
in less time. This exploration leads to finding actions that grant
higher rewards and improve controller performance.

In this work an RL-based control architecture is defined for
each AGV. It consists of a state estimator, a rewards calculator,
an action selector, a policy stored in a table, and a policy update
algorithm. The policy assigns an angular velocity reference for
each state of the system, based on the guidance error and its
derivative. The reward calculation takes into account whether the
AGV is moving towards or away from the desired trajectory. In
this way the AGV learns to follow the path. Periodically each
AGV sends the policy change to the federated server. Different
learning aggregation functions have been proposed, tested and
compared. This group policy supersedes the individual policy and
AGVs continue to learn from this point.

The proposal has been evaluated in simulation with five hybrid
AGVs that combine the kinematics of a tricycle and a differential
robot [11], a very common vehicle in the automobile industry,
with challenging trajectories: a lemniscate, an ellipse, a polyline
with abrupt changes of direction and an octagon. The operation
of the FL-based system has been evaluated against a PID whose
tuning parameters have been optimized with genetic algorithms.
In addition, during the simulations the transmission has been
analyzed to determine which learning aggregation function is the
most efficient from the perspective of the network, considering
from 2 to 10 vehicles. The Federated Discrete Reinforcement
Learning (FDRL) control provides better performance compared
to PID for all tested trajectories in terms of lower guidance error
and therefore follows the trajectory more accurately. Besides,
results have been also compared with a fuzzy logic controller
(FLC) whose membership functions have been optimized with
genetic algorithms to minimize the trajectory error.

The main contributions of this work can be summarized as
follows.

• A federated discrete reinforcement learning scheme is pro-
posed. This scheme is application-independent and can be
used to accelerate general discrete reinforcement learning
systems.

• A control scheme for industrial AGVs which exploits the
proposed FDRL is designed. To our best knowledge, this is
the first work where FDRL is used to regulate the angular
speed of AGVs for trajectory tracking.

• Different learning aggregation functions have been defined
that combine the incremental discrete RL policies learnt by
the agents. For all we know, the procedure to combine these
learnings is completely original.

• It has been shown that the transfer of incremental policies

can save bandwidth in the communication process.
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The rest of the paper is organized as follows. In Section 2,
related works are presented. The application of the federated
with reinforcement learning control approach to the autonomous
guided vehicle is explained in Section 3. Simulations results are
discussed in Section 4 for different scenarios. Analysis of the
sensibility to some configuration parameters is also presented.
Conclusions and future works end the paper.

2. Related works

Federated learning has the intrinsic properties of protecting
data privacy and decreasing the amount of data transmitted, so
allowing companies to train machine learning models without
transferring data from the devices where that data are created.
For industrial Internet of Things (IoT) applications, which demand
real-time data processing solutions, these functions are neces-
sary. However, FL has hardly been applied to data from the real
environment of AGVs, despite its evident potential in the smart
industry.

In a very recent paper by [12], the detection of anomalous
energy consumption that can point at an AGV component con-
tinuing deterioration or incorrect AGV use is done via federated
learning. A global prediction model is iteratively created based
on several local prediction models of specific AGVs, and the
local models are then re-trained using fresh data to estimate the
energy consumption of the AGV using IoT devices. They carry
out experiments with Formica-1, an AGV developed by AIUT Ltd.
The same authors had previously suggested using three virtual
devices in production processes in conjunction with certain AGVs
to improve forecast accuracy using FL [13]. The key contribution
of that paper is a new method for data interchange between
devices that enables AGVs or intelligent devices to learn from one
another and improve the precision of recurrent neural networks.
Unlike these papers, we use FL to improve the trajectory control
of the AGVs rather than for forecasting.

With a control-oriented approach, Wang et al. 2022, present a
hierarchical architecture with federated control, which includes a
federated control center, a network layer, and a control node [13].
A reliable localization model is developed using this foundation.
The correctness of the localization has been tested by simulation
experiments. In their article from 2022, Liu et al. address the
issue of several AGVs reaching edge servers (ES) and causing
offloading and processing delays as a result of competition for
resources [14]. The Multi-AGV Cyclical Offloading Optimization
(MCOO) technique is used by the authors to reduce scheduling
conflicts for cyclical workloads. For the purpose of optimizing
the offloading strategy, the reinforcement learning-based A3C
algorithm is used.

Without using a federated approach, RL-based path following
has been recently applied to autonomous vehicles, even if mainly
to marine or aerial ones. In [15] the authors propose a deep inter-
active reinforcement learning strategy for trajectory tracking of
autonomous underwater vehicles by combining deep reinforce-
ment learning and interactive RL. Both human and environmental
rewards feed the learning system. In [16], using deep reinforce-
ment learning with interactive RL, the authors develop a deep
interactive reinforcement learning system for route following of
autonomous underwater vehicles. The learning strategy draws
its knowledge from both environmental and human incentives
simultaneously. In [17], based on deep reinforcement learning
theory, the authors solve the quadrotor vehicle path following
problem. They propose three different ways to build the Deep
Deterministic Policy Gradient algorithm. In [18], three kernel
strategies are applied for a path-integral-based RL algorithm that
is developed for a mobile robot path-following strategy. Un-
like these works, we have enhanced the learning including the
federated paradigm in the RL scheme.
80
Fleet management of AGVs has been also benefited from
RL techniques. Among other researches, [19] proposes a self-
adaptive traffic model that combines behavior trees with RL. The
RL model is further improved based on these behavior trees that
are used to enumerate all potential states in AGV traffic control.
The architecture of the proposed cyber–physical system employs
multiagent system technology, and some parts like AGVs and
traffic controllers are characterized as agents that interact with
one another autonomously. In [20], it is suggested to use an
adaptive deep reinforcement learning based approach for real-
time AGV scheduling with mixed rule. The makespan and delay
ratio must be kept to a minimum. In [21] the multi-AGV flow-
shop scheduling issue is dealt with a reinforcement learning
approach. The goal of this work is to create an AGV timetable
that reduces the typical task delay and the overall makespan.
The issue of work scheduling in automated warehouses using
heterogeneous autonomous robotic systems is addressed in the
study by Ho et al. 2022 [22]. They present a deep reinforcement
learning (DRL) based task scheduling algorithm that uses the
proximal policy optimization approach to identify the best task
scheduling policy, in order to handle the stochastic nature of the
goods/tasks flow and a high number of robots in the system.
They use a proximal weighted federated learning-based method
to create the decentralized optimal proximal policy.

As shown, there have been several recent studies on federated
learning for a number of AGV-related subjects, including RL-
based path planning and RL-based fleet management. However,
as far as we know, there have not been any prior efforts on AGV
path-following control based on federated RL.

3. Intelligent federated control architecture

In federated learning, agents individually learn and regularly
send their learnings to a federated server. The federated server
aggregates these findings, builds a common knowledge database,
and then this global knowledge is downloaded to the agents. This
process is repeated periodically. To have a global picture of the
system we will describe first the learning modules embedded in
the AGVs, and then the federated server.

3.1. Individual RL control architecture of each AGV

Fig. 1 shows the control architecture embedded in each AGV.
The state estimator based on the guide error, errgui, and its deriva-
tive, ˙errgui, calculates the current state st ∈ S, where S is the set
of discrete states and subindex t means current time. The guide
error is the deviation (in this case, in cm) of the AGV from the
desired path, measured by the AGV position sensor. The action
selector selects the action at ∈ A that maximizes the expected
reward, where A is the set of discrete actions. To do it, this
module considers the previous rewards accumulated in the table
of expected rewards T : S × A → R. Then, the discrete action is
ranslated into a reference angular speed wref that feeds the input
of the AGV. It also receives a reference for the longitudinal speed,
vref . Both references are combined to calculate the desired speed
for each wheel [5].

In reinforcement learning with continuous policies it is quite
common to use neural networks to store the policy. In these
cases, where different neural network architectures can be used,
it is a good option to exploit deep learning techniques to handle
large data [23] models. However, in our case we are using discrete
policies. The policy is stored in a table, with as many rows as
states and as many columns as actions, and the use of neural
networks is usually not necessary. The size of the table only
depends on the number of states and the number of actions,
where both the states and the action sets have a constant size,
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Fig. 1. Individual RL control architecture of an AGV.

s well as the total number of cells. Furthermore, the size of the
able does not grow with the number of agents, so the proposal
s easily scalable and large fleets of AGVs can be handled.

The action at produces a change in the system and the AGV
oves away or closer to the desired trajectory. Thus, the guide
rror and its derivative changes every time t(i+1). These values are

used by the reward calculator to obtain the recompense r(t+1).
inally, this reward is used to update the cell associated to the
row, column)= (st , at ) of table T . This way, the actions which
eceive higher rewards will be selected with a larger probability.

The state estimator calculates the state st by (1)–(3).

rrD(ti) =

DIV
(
MIN

(
emax,MAX

(
errgui(ti), emin

))
− emin, ne

) (1)

derrD(ti) =

DIV
(
MIN

(
demax,MAX

(
˙errgui(ti), demin

))
− demin, nde

) (2)

st = errD(ti) · nde + derrD(ti) (3)

where DIV is the integer division operator, MIN and MAX are
the minimum and maximum operators, and [emin, emax, demin,

demax, ne, nde] can be manually adjusted to set the number of
states and their size. The size of the set S is |S| = ne · nde.

The action selector implements an ϵ-greedy exploration strat-
egy. This means that an action is randomly selected with proba-
bility ϵ, and the actions that maximize the expected rewards are
selected with probability (1− ϵ). This strategy searches a balance
between the exploitation of previous learnings and the explo-
ration of new alternatives. When ϵ = 0 the system only relies on
previous experiences, and actions with large rewards may be not
used due to lack of exploration. On the other hand, when ϵ = 1
the actions are purely random, and the systems does not learn
anything. Therefore, it is important to find a correct trade-off
between exploration and exploitation of previous knowledge. The
execution of the action selector and the corresponding angular
speed can be formalized by (4)–(5).

at =

{
argMAXa

[
Q π
(st ,at )

]
rand() ⩾ ϵ

nact · rand() rand() < ϵ
(4)

wREF (ti) = wrmin + at (wrmax − wrmin )/nact (5)

where ϵ is the chance of choosing a random action (value be-
tween 0 and 1), nact denotes the number of actions, and

[
wrmin ,

wrmax

]
are used to adjust the range of the possible discrete ac-

tions.
The reward calculator checks if the AGV is moving closer to or

moving away from the trajectory, in order to reward or punish
the previous action. Rewards and punishments rt are positive and
negative values, respectively. To do so, the guide error and its
derivative are evaluated. When the errgui is zero, the AGV is in the
center of the trajectory. In this case, if ˙err is also zero the action
gui
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Fig. 2. Learning aggregation in the federated server.

is rewarded as the AGV will stay within the trajectory; otherwise,
the action is punished as the AGV is moving away from it (6).

rt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ˙errgui(ti) errgui(ti) > 0

−
⏐⏐ ˙errgui(ti)

⏐⏐ errgui(ti) = 0 ∧ ˙errgui(ti) ̸= 0
demax errgui(ti) = 0 ∧ ˙errgui(ti) = 0
˙errgui(ti) errgui(ti) < 0

(6)

This reward rt is used to update the cell associated to the
revious state and action of table T. That is, when the system is
t state st−1 and action at−1 is carried out, it receives the reward
t . There are different alternatives to update table T [24]–[25]. In
his work we have used the accumulation and the mean of the
revious rewards (7)–(8). These techniques are also called SAR
Summatory of All Rewards) and MAR (Mean of All Rewards).
hey are only recommended if the rewards take positive and
egative values, as in other case they may not converge.

AR : T(st−1,st−1)(ti) = T(st−1,st−1)(ti−1) + rt (7)

In case of MAR updating strategy, the calculation is based on
wo tables: table R that accumulates the rewards and table N that
ounts the times a cell has been selected. This way, T is calculated
s the accumulated reward divided by the number of times each
ption has been selected (8).

AR :

{ R(st−1,at−1)(ti) = R(st−1,at−1)(ti−1) + rt
N(st−1,at−1)(ti) = N(st−1,at−1)(ti−1) + 1

T(st−1,at−1)(ti) = R(st−1,at−1)(ti)/N(st−1,at−1)(ti)
(8)

.2. Aggregation of learning

Periodically, each AGV i sends its table T i (or N i and Ri in
ase of MAR strategy) to the federated server. The server fuses
hese individual tables with a learning aggregation function, fla :
|S||A|nAGV → R|S||A|, to obtain a table which represents the global
olicy TG (or NG and RG in case of MAR policy). Once the fusion
s completed, the AGVs download the global table and substitute
ts own individual table by it. This way the AGVs can exploit the
nowledge learned by the others.
Instead of sending the whole table T i, it is possible to send

he variations of the table during the last learning period, △T i.
his allows to save bandwidth of the channel. Fig. 2 illustrates
he global architecture when incremental tables are used and the
olicy update strategy is SAR. When MAR strategy is used, instead
f sending △T i the tables △Ri and △N i are sent. The incremental
ables are stored in the federated server. Once all incremental
ables have been received, the table with the group policy is
enerated by the learning aggregation function.
Fig. 3 shows the communication process for two AGVs. Pe-

iodically, each tf period, the AGVs send the incremental table
o the federated server. When all incremental tables have been
eceived, the group policy TG is generated and then it is passed
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Fig. 3. Communication process between two AGVs and the federated server.

Fig. 4. Update of the individual policy in the learning agents.

imultaneously to every AGVs. It is worthy to remark that the
ncremental table △T i takes up less space than the standard table
i, thus it is possible to save bandwidth on the uplink channel.
An example of how this bandwidth can be reduced is as

ollows. Let us assume than each cell of the table is stored with 4
ytes, thus the size of table T i will be 4|S||A|. However, for incre-
ental tables only cells with changes must be passed on, that is,
ells with non-zero values. Since not all cells are transmitted, it is
ecessary to send the address of each cell to avoid cluttering the
able. Assuming the address of a cell requires 2 bytes, and that the
umber of cells with non-zero value is nz , the number of bytes to
e transmitted is 6nz . Therefore, whenever nz < (2/3)|S||A| it is
ossible to save bandwidth in the uplink channel. This condition
an be handled at the sender, within the AGV, and decide when
t is convenient to send the complete incremental table or only
he incremental table with the address information.

The federated discrete reinforcement learning scheme pro-
osed in this work is divided into two main blocks. The first,
alled the individual RL control architecture, runs inside each
gent. The second block contains the learning aggregation func-
ion that combines the individual incremental policies to obtain
he global one. Fig. 1 shows the individual RL control architec-
ure running inside each agent (AGV), without considering any
ederated mechanism. Fig. 4 shows how the learning aggregation
unction calculates the group policy from the individual policies.

On the left side of Fig. 4, it is possible to see how the federa-
ion mechanism integrates with the individual RL. The Individual
L block represents the scheme shown in Fig. 2. The federated
earning handler monitors the reception of the group policy and
eplaces the individual policy with the group one. The individual
olicy is compared with the group one to obtain the incremental
82
policy; this operation is mathematically formalized in (9). This
scheme is repeated for each agent.

The right side of Fig. 4 shows the aggregation of learning as in
Fig. 2. The dotted arrows connect the agents with the federated
server. Agents send the incremental policy △T i and receive the
group policy TG.

The process to obtain the incremental table for n-AGV can
be expressed by (9), where nAGV denotes the number of AGVs
involved.

△T n
(j,k)(ti) = T n

(j,k)(ti)−T n
(j,k)(ti− tf ) ∀(j, k, n) ∈ S×A× [N ≤ nAGV ]

(9)

Different strategies can be used to aggregate the learning. We
have proposed and tested one function that uses the individual
tables T i and different functions that combine the incremen-
tal tables △T i. As it will be shown in the results section, the
aggregation function that uses the incremental tables requires
less network requirements. The first proposal is to add up all
individual tables, a strategy that we have called tSAR (10).

tSAR : TG
(j,k)(ti) =

nAGV∑
n

T n
(j,k)(ti) ∀(j, k) ∈ S × A. (10)

The sum of the individual tables is the iSAR strategy. In this
case, the previous value of the group table must be added so as
not to lose the previously learned knowledge. It is also possible
to calculate the average of the rewards received by all the AGVs
with the imSAR strategy. Furthermore, instead of averaging the
rewards of the AGVs, it is possible to select the maximum ex-
pected reward among all the AGVs using the iMAX strategy. These
strategies are formalized as follows (11)–(13).

iSAR : TG
(j,k)(ti) = TG

(j,k)(ti−1) +

nAGV∑
n

△T n
(j,k)(ti) ∀(j, k) ∈ S × A (11)

mSAR : TG
(j,k)(ti) = TG

(j,k)(ti−1)+
1

nAGV

nAGV∑
n

△T n
(j,k)(ti) ∀(j, k) ∈ S ×A

(12)

MAX : TG
(j,k)(ti) = TG

(j,k)(ti−1)+ max
n≤nAGV

△T n
(j,k)(ti) ∀(j, k) ∈ S×A (13)

All these aggregation functions are related to the policy update
algorithm SAR, as they can be seen as an extension of SAR for
multiple learning agents. On the other hand, the natural extension
of MAR with multiple learning agents is iMAR (14). In this case,
the federated server receives the incremental tables, △NG and
△RG, and combines them to obtain the group tables NG and RG.
Once these tables are generated, the policy table TG is obtained
as the division of RG by NG. This way, the expected reward is the
average reward considering the times that each cell is selected.

iMAR :

⎧⎪⎨⎪⎩
NG

(j,k)(ti) = NG
(j,k)(ti−1) +

∑nAGV
n △NG

(j,k)(ti) ∀(j, k) ∈ S × A

RG
(j,k)(ti) = RG

(j,k)(ti−1) +
∑nAGV

n △RG
(j,k)(ti) ∀(j, k) ∈ S × A

TG
(j,k)(ti) = RG

(j,k)(ti)/N
G
(j,k)(ti) ∀(j, k) ∈ S × A

(14)

4. Simulation results and discussion

4.1. Simulation environment and performance metrics

In this section, the simulation results obtained with the fed-
erated proposal for different roads are presented and analyzed.
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or the experimental configuration described in [26], the Mat-
ab/Simulink software has been used to simulate the intelligent
ontroller and the AGVs. Each simulation lasts for 100 s; however,
or safety reasons, if the AGV deviates from the defined path
efore the simulation ends, the experiment stops. To reduce dis-
retization errors and speed up simulation execution, the sample
ime, Ts, is not constant but varies during the simulation. A control
eriod of 25 ms has been specified.
The most common trajectory controller used for these indus-

rial AGVs is the Proportional–Integral–Derivative (PID) regulator,
idely applied in many industrial applications. Thus, we have
ompared the here proposed intelligent control strategy with a
ID that is described by the following equation based on the guide
rror [5].

REF (ti) = Kp · errgui(ti) + Kd · ˙errgui(ti) + Ki

∫ ti

0
errgui(t)dt (15)

where [Kp, Kd, Ki] are the PID tuning gains. For each trajectory the
PID parameters have been optimized using genetic algorithms to
minimize the error.

The AGV has been simulated with Eqs. (16)–(27). These equa-
tions, the specific configuration parameters and the values used
in the simulations are explained in [26]–[27] with more detail.

Mer = Mr − FSWR · sign(θ̇R),Mel = Ml − FSWL · sign(θ̇L), (16)[
mT · Rh/2 mT · Rh/2

Ih·Rh
Lh

−
Ih·Rh
Lh

][
θ̈R

θ̈L

]
=

[ Mer+Mel
2Rh

− frT
(Mer+Mel)Lh

2Rh
− frR

]
, (17)

rT = 0.5 ·δair ·SAGV ·Caero ·v2
hsign(vh)+9.8 ·mT ·Croll · sign(vh), (18)

rR = Fvh · Φ̇h + Fsh · sign(Φ̇h), (19)

L = Rh · θ̇L, VR = Rh · θ̇R, (20)

⎡⎣ ẋh
ẏh
Φ̇h

⎤⎦ =

⎡⎢⎣
VL+VR

2 cos(Φh)
VL+VR

2 sin(Φh)
VR−VL

Lh

⎤⎥⎦ , (21)

⎡⎣ ẋb
ẏb
Φ̇b

⎤⎦ =

⎡⎢⎣vhcos(γ )cos(Φb)
vhcos(γ )sin(Φb)

vh
lb
sin(γ )

⎤⎥⎦ , (22)

h =

√
ẋ2h + ẏ2h =

vL + vR

2
, (23)

γ = Φh − Φb, γmin ⩽ γ ⩽ γmax, (24)

ẋbsin(Φb) − ẋbcos(Φb) = 0, (25)

ẋbsin(Φb + γ ) − ẋbcos(Φb + γ ) − Φ̇bLbcos(Φ − b) = 0, (26)

errgui = fsen(xh, yh, Φh, path) (27)

The Mean Absolute Error (MAE), Root Mean Square Error
(RMS), and STandard Deviation (STD) calculated by (28)–(30)
have been used as Key Performance Indicators (KPIs) [28].

MAE =
1

Tsim

∑
i

⏐⏐errgui(ti)⏐⏐ Ts(ti) (28)

RMSE =

√
1

Tsim

∑
errgui(ti)2 · Ts(ti) (29)
i

83
Table 1
Tuning parameters of the PID optimized by genetic algorithms.
Trajectory KP KD KI

Ellipse 12.4902 2.2661 1.4421
Octagon 7.0893 9.1489 0.9107
16-S Polyline 8.7382 7.0594 1.3822
Lemniscate 25.4700 2.2300 0.1201

STD =

√ 1
Tsim

∑
i

[
errgui(ti) −

1
Tsim

∑
i

errgui(ti)Ts(ti)

]2

· Ts(ti)

(30)

Four different trajectories have been proposed to validate
the controller: a small ellipse, a small lemniscate, an octagon,
and a closed polyline with 16 segments. Considering that the
octagon can be formalized as a polyline, the expressions of these
trajectories are the following [5],

Ellipse:

x(t) = aeli cos(t) (31)

y(t) = beli sin(t) (32)

Lemniscate:

x(t) =
√
2 · alem

cos(t)
1 + sin(t)2

(33)

y(t) =
√
2 · alem

cos(t) sin(t)
1 + sin(t)2

(34)

Polyline:

x(t) = t i = 1...M, Pxi−1 < t < Pxi (35)

y(t) =
Pyi − Pyi−1

Pxi − Pxi−1

(t − Pxi−1 ) + Pyi−1 i = 1...M, Pxi−1 < t < Pxi

(36)

where [Px, Py] ∈ R2M is the set of points of the polyline, aeli
nd beli are the semi-axes of the ellipse, and alem is the width
f the lemniscate. Due to the kinematic limitations of the AGV,
he route becomes more difficult when aeli, beli, or alem shrink.
ndeed, too low values can cause the AGV to leave the circuit.
inding the parameters that are appropriate to make trajectory
racking challenging but not impossible has required running
series of simulations. Finally, these values have been set to

aeli, beli, alem] = [2, 0.66, 0.75]. The ellipse and the lemniscate
an be seen in Figs. 5 and 8.
The octagon has the following points {(Px, Py)} = {(0, 0),

0.75,0), (1.5, 0.75), (1.5, 1.5), (0.75, 2.25), (−0.75, 2.25), (−1.5,
.5), (−1.5, 0.75),(−0.75, 0), (0, 0)}, and the polyline with 16
egments is defined by the set of points: {(Px, Py)} = {(0, 0), (1.25,
), (2.5, 1.25), (3.75, 1.25), (5, 0), (6.25, 0), (7.5, 1.25), (7.5, 1.875),
6.25, 2.5), (5, 2.5), (3.75, 3.75), (2.5, 3.75), (1.25, 2.5), (0, 2.5),
−1.25, 1.875), (−1.25, 1.25), (0, 0)}. The octagon and the polyline
re shown in Figs. 6–7.
As said, in order to make a fair comparison, the gains of the

ID regulator have been optimized with genetic algorithms. The
ptimum parameters obtained with this heuristic technique are
how in Table 1.

.2. Testing the performance of the federated learning controller

We have also analytically and graphically evaluate the per-
ormance of the FDRL controller and compared it with the PID
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Fig. 5. Elliptical trajectory (left) and the guide error (right).

Fig. 6. Octagonal trajectory (left) and the guide error (right).

egulator for the four previously defined trajectories: the ellipse,
emniscate, octagon, and 16-segment polyline. In each experi-
ent, 5 AGVs work in parallel following the same trajectory
ut on different circuits. They are supposed to be far enough
part that they cannot collide with each other. At the end of
ach episode (i.e., when the AGV goes out-of-circuit or the 100 s
imulation time expires), each AGV sends its policy table variation
o the federated server and the global policy table is generated.
hen, the global policy table is downloaded to the AGVs, and the
ext simulation episode starts. The reference for the longitudinal
GV speed is a sinusoidal signal with an average value of 0.35 m/s
nd an amplitude of 0.35 m/s. Only lengthy straight lines allow
hese AGVs to travel at their top speed of 1 m/s. As a result, the
inusoidal reference signal requirement for 0.7 m/s corresponds
o the recommended speed for these applications.

Twenty-five episodes are carried out for each trajectory.
igs. 5–8 show the episode guidance error (left) and the trajectory
ollowed by one of the initial AGV traction units (right) at the last
pisode. These graphs compare the PID trajectory (red line) with
he FDRL trajectory (blue line) and the reference (black line). The
uide error with the FDRL-based control is the blue line, whereas
he guide error with the PID controller is shown in red on the
ight side image.

In particular, Fig. 5 shows the tracking of the elliptical tra-
ectory. It is noticeable how the AGV with FDRL follows much
ore accurately the ellipse. Indeed, the blue and black lines seem
verlapped. The larger errors appear at the top and the bottom
f the ellipse, as can be seen in the error graph (Fig. 5, right).
n the case of the FDRL, the error is always smaller than 1 cm.
owever, when the PID is applied, larger error peaks appear that
orrespond to the edges of the ellipse.
For the octagon, the difference in the tracking with the two

ontrollers is not so large (Fig. 6). Both controllers follow quite
ell the trajectory, but the errors when the FDRL is applied are
till smaller. As expected, the errors tend to be larger at the edges
f the polygon, and they become smaller in the straight parts of
he trajectory. The largest peak error with the PID appears at the
eginning of the trajectory, with a value around 10 cm; after this
oment the peaks are smaller and more repetitive.
The 16-segment polyline tracking is similar to the octagon

ath tracking but with bigger errors as it is a more complex
84
Fig. 7. A 16-segment polyline trajectory (left) and the guide error (right).

Fig. 8. A lemniscate trajectory (left) and corresponding guide error (right).

rajectory (Fig. 7). Indeed, the peaks are larger, and the mean error
s also bigger. In the case of the FDRL, the error is still smaller
han 1 cm in the straight parts of the trajectory, with peaks of
ew centimeters in the edges of the segments of the polyline.
owever, with the PID the error values oscillate between values
f several cm. Furthermore, when the FDRL is applied there are
ewer and smaller peaks than with the PID.

Fig. 8 shows the tracking of the lemniscate. With both con-
rollers the trajectory described by the AGV has that specific
hape, but the size is different. In the case of the FDRL control,
he lemniscate is slightly smaller than that of the reference, and
hen the PID is applied it is larger. Observing the error, the
erformance of the FDRL control is much better: although it is
bit noisy, the amplitude is much smaller, less than 1 cm. In
oth cases, the largest errors usually appear in the upper and
ower part of the lemniscate, but in the case of the PID their
alues are much higher, up to 7 cm. The biggest error appears
t the beginning of the trajectory because the direction of the
GV is aligned with the x-axis and it needs a large correction in
rientation to align with the trajectory.
Along with the graphical data, quantitative values of both

ontrollers performance have also been obtained. Table 2 shows
he RMSE, MAE, and STD of the guidance error for each trajectory
nd for the two controllers, the PID and the FDRL. The values
orrespond to the metric average values when 5 AGVs operate
oncurrently. The average value for each column is listed in the
ast row. Results highlighted in bold are the best ones.

Table 2 allows us to confirm the graphical results: every KPI
s better when the FDRL-based controller is used. The greatest
mprovement is obtained for the lemniscate trajectory, with 87%
n MAE, 85% in RMSE and 88% in STD improvement with the
ntelligent control. The average improvement is very high, 78%
n MAE, 75% in RMSE and 73% in STD. With the PID, the largest
rrors appear for the lemniscate path and the smallest ones for
he octagon trajectory. In the case of the FDRL, the largest errors
ppear with the 16-segment polyline as this trajectory is more
brupt.
Furthermore, the FDRL has also been compared to a fuzzy logic

ontroller whose membership functions have been optimized
ith genetic algorithms. In this case the FDRL also gave better
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Table 2
Comparison of KPIs for different trajectories with both controllers.
Trajectory MAE RMSE STD

PID FDRL PID FDRL PID FDRL

Ellipse 2.91 0.47 2.11 0.37 2.91 0.49
Octagon 2.21 0.71 1.61 0.48 2.20 0.80
16-S Polyline 2.84 1.14 2.17 0.65 2.85 1.29
Lemniscate 3.13 0.46 2.31 0.29 3.13 0.35

Average 2.77 0.70 2.05 0.45 2.77 0.73

results. As an example, for the lemniscate the RMSE is 1.49 cm,
and with the FDRL it is 80% smaller. For the octagon, the reduction
is 64%, and the average reduction considering all trajectories is
65%.

These findings allow us to confirm that for these trajectories,
he FDRL controller performs significantly better than the PID and
he fuzzy logic controller.

.3. Federated learning vs monolithic learning

In order to evaluate the improvement obtained by the feder-
ted learning approach, the evolution of the RMSE is analyzed for
ach trajectory. Like in the previous section, 5 AGVs are working
n parallel and these agents send the variation of its individual
olicy table to the federated server at the end of every iteration.
or each trajectory, the results are compared with the ones ob-
ained when RL is used without the federated approach, and with
he RMSE given by the PID regulator. The learning aggregation
unction used is iSAR (11).

Fig. 9 shows this comparison for the ellipse, Fig. 10 for the
ctagon, Fig. 11 for the 16-segment polyline and finally, Fig. 12
or the lemniscate trajectories. Blue lines represent the evolution
f the RMSE when the federated approach is not applied. The
ashed black lines indicate the trajectories obtained when the
ID is used. The rest of the lines represent values related to the
ederated learning strategy. As the federated approach is applied
ith 5 AGVs, for each iteration there are 5 different values of the
MSE, one per AGV. Instead of representing the evolution of these
values, we show the average value (red line), the minimum

yellow line), and the maximum (purple line).
For all tested trajectories, federated and monolithic RL give
better performance than the PID regulator once the intelli-

ent controller has learned, around episode 6. During the first
pisodes, the RMSE for the RL approaches is larger than for the
ID, but this value decreases with the training as the controller
earns the control law. Another interesting result is that with the
ederated approach, the RMSE decreases faster as the AGVs are
ble to exploit the knowledge obtained by the others.
As expected, at the first episode both, federated and mono-

ithic RL give similar results as the learnings have not been
ombined yet. The effects of the learning aggregation function
re only visible from episode 2 onwards. For all the trajectories
he largest reduction of RMSE takes place between episodes 1–3;
s the system goes on learning, this reduction gets smaller and
maller. Thus, when the number of episodes grows both learning
pproaches seem to converge to the same value. A possible ex-
lanation is that once all possible actions have been explored, all
GVs tend to select the same actions, those that have received
reatest rewards. It is noteworthy to remark that the federated
pproach improves the learning in the sense that it speeds it up
arkedly, 50% in the best case (ellipse) and an average of 36% for
ll trajectories.
85
Fig. 9. Evolution of the RMSE for elliptical trajectory.

Fig. 10. Evolution of the RMSE for octagonal trajectory.

Fig. 11. Evolution of the RMSE for 16-segment polyline trajectory.
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Fig. 12. Evolution of the RMSE for lemniscate trajectory.

Fig. 13. Evolution of RMSE for elliptical trajectory and different learning
ggregation functions.

.4. Influence of the learning aggregation function

The influence of the defined learning aggregation function
as been also analyzed. To this end, several experiments with
ifferent learning aggregation functions have been carried out. In
ll cases the trajectory used is the ellipse and the number of AGVs
s 5. Fig. 13 shows the results of this analysis, where the legend
ndicates the aggregation function; ‘‘no FRL’’ means that learning
ggregation is not applied. As in the previous section, for each
pisode we represent the average value of all AGVs.
As expected, the error value for the first episode is the same

or all the aggregation functions. Then, with the MAR function
he RMSE decreases slower than with the other functions, but
t converges to a lowest value, 0.26 cm, when with the others
he error is around 0.44–0.52 cm. The other functions decrease
t similar speed, although it is possible to see that iMAX is the
econd slowest. For the MAR function, the largest decrement
ppears to be between episodes 3 and 4; however, for the other
unctions the largest decrement is located between 1 and 3.

The transmission is also different depending on the learning
ggregation function that is used. That is, the number of bytes
 a

86
Fig. 14. Total KB received by the federated server for the different aggregation
functions.

Fig. 15. Maximum KB sent by an AGV for the different aggregation functions.

ent by the AGVs and received by the federated server varies de-
ending on this function. Fig. 14, compares the total KB received
y the federated server at each iteration with the different aggre-
ation functions. Each AGV sends a different number of bytes, so
n order to estimate the required capacity of the uplink network
hannel we need to consider the maximum number of bytes
ent by a device. Fig. 15, shows the comparison of the maximum
umber of KB sent by an AGV, considering all AGVs, depending on
he aggregation function. The legend of the figure correspond to
he aggregation function. It is noteworthy to remark that the KB
f iMAR and SAR have been divided by 10 to be able to graphically
ompare them with the rest in the same figure.
Some conclusions can be drawn from these results. Using

he SAR function, each AGV sends the full policy table, that is,
00 × 41 cells. Each cell is stored with 4 bytes, so each AGV sends
4 KB as shown in Fig. 15, with a green straight line, and the
ederated server receives 320 KB, Fig. 14. This can be considered
s the maximum limit. The iMAR aggregation function tends
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o explore all possible actions and produces many more policy
able changes, so the number of bytes with the iMAR function
ends to approximate the number of bytes of SAR. However, it
hould be noted that the actual iMAR transmission is double
o what is shown in Figs. 14–15, since it is necessary to send
wo tables (N and R) instead of one. Therefore, this aggregation
unction is the most demanding regarding network requirements.
n the contrary, the iSAR function and its variations, imSAR and
MAX, reduce the exploration and therefore, they demand less
etwork capacity. Specifically, iSAR is the function which needs
owest uplink capacity, and iMAX is the function that requires less
apacity in the federated server.
The time required to send the information to the federated

erver depends on the available bandwidth of the uplink chan-
el. For instance, Low Range (LoRa) stablishes a bandwidth of
00 kbps, which means 245 ms to send 9 KB (the maximum in
ig. 15 without considering SAR or iMAR). With Narrow Band
OT (NB-IOT) release 13 this time goes up to 294 ms, as it has a
50 kbps bandwidth, and with LTE-Cat −1 this time decreases to
5 ms [29]. The time needed to download the global policy table
epends on the available bandwidth of the downlink channel.
s the global policy table size is 64 KB, 1.74 s are needed with
oRa, 2.09 s with NB-IOT release 13, and only 52 ms with LTE-Cat
1 [29]. Depending on the time requirements of the application,
e must consider one communication technology or another. In
ny case, the implementation is feasible.

.5. Influence of the number of agents

In this section we have studied the influence of the num-
er of learning agents. Several experiments have been carried
ut changing the number of AGVs, from 2 to 10. The learning
ggregation function is set to iSAR and the selected trajectory
s the ellipse. Fig. 16 compares the evolution of the RMSE for
ifferent number of AGVs. The number of AGVs is represented by
different color, as indicated in the legend, and ‘‘no FRL’’ means
hat learning aggregation is not considered.

It is possible to observe (Fig. 16) how increasing the number
GVs accelerates the learning as the reduction of the RMSE is
aster. A reasonable explanation is that more AGVs explore more
ctions in the same period of time and thus, the actions with
est rewards are found quicker. However, all lines converge at the
ame value, independently of the number of AGVs. That may be
ecause once the best policy has been found, adding more AGVs
oes not give additional better policies.
It is also interesting to analyze the influence of the number of

GVs on the network transmission. Figs. 17–19 show the KB sent
y the AGVs and received by the federated server as a function of
he number of learning agents. Fig. 17 shows the total number
f KB received by the federated server with na = 2 to na =

0 AGVs. As expected, this number grows with the number of
GVs, but this growing is not linear. To better understand it,
t is convenient to divide this quantity by the number of AGVs
Fig. 18). It is noticeable how the average number of KBs sent by
he AGVs decreases with the number of AGVs. There are a couple
f reasons that may explain this behavior. On the one hand, the
xploration is shared among the AGVs and correspondingly, so
oes the number of cells with variations in the individual policy
able that must be sent to the federated server. On the other hand,
ncreasing the number of AGVs accelerates the learning; when the
earning converges less explorations in new cells are carried out,
hat results in fewer cells with variations in the policy table to
e transmitted.
Fig. 19, shows the capacity required by the uplink channel. It is

ossible to observe how it increases during the first iterations up
o a maximum, and then it decreases to reach a stationary value.
87
Fig. 16. Evolution of RMSE for elliptical trajectory and different number of AGVs.

Fig. 17. Total KB received by the federated server.

Fig. 18. Average KB sent by an AGV.
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Fig. 19. Max KB sent by an AGV.

or a small number of AGVs (2–3), this peak appears at iteration
, but for more AGVs the peak moves to iteration 2. This may
e explained by the acceleration in the learning. However, it is
nteresting to see how the amplitude of this peak changes very
ittle with the number of AGVs. Therefore, although the uplink
apacity at iteration 10 is reduced we cannot extend the number
f AGVs to reduce the uplink capacity as the amplitude of the
eak remains practically unaltered.

. Conclusions and future works

Industrial AGVs pose at least two interesting problems for
he field of control engineering: speed control and trajectory
ontrol. When an AGV must circulate in confined spaces or very
lose to walls, machines, etc., or when it must make stops at
tations to charge its battery, or pick up pallets, containers, carts,
tc., precise trajectory control is crucial. This, together with the
eed to obtain good performance even in complex non-linear
rajectories with abrupt changes, has directed the exploration of
ontrol solutions towards intelligent control techniques such as
einforcement learning.

In this work, a new federated discrete reinforcement learning
pproach for AGV trajectory control has been proposed. These
ndustrial vehicles act as learning agents: they interact with the
nvironment to learn the proper control law to follow the desired
ath. Embedded in each AGV, a set of modules oversees the indi-
idual reinforcement learning process. A state estimator identifies
he state of the system based on the guidance error; a reward
alculator assigns a reward to the previous action performed;
n action selector implements a greedy strategy ϵ to select the

best action; the policy is stored in a table since we are work-
ing with discrete reinforcement learning; and finally, a policy
update algorithm adjusts the table to modify the policy based
on the rewards received. Each AGV detects its individual policy
changes and sends them to the federated server. The federated
server collects all the learning from the AGVs and runs a learning
aggregation function to get a group policy, which is downloaded
to the AGVs for further learning.

To our knowledge, this is the first work using federated dis-
crete reinforcement learning to directly control the angular ve-
locity of industrial automated guided vehicles. In addition, the
novel proposed federated reinforcement learning scheme (Fig. 4)
88
can be used to speed up reinforcement learning in any appli-
cation. To achieve this, different learning aggregation functions
((9)–(14) equations) have been designed to combine the individ-
ual learning policies ((7)–(8) equations). In addition, the control
performance and the efficiency of the network communication
process have been studied. The presented control strategy works
significantly better than the conventional PID, and than an intelli-
gent controller based on fuzzy logic, both optimized with genetic
algorithms. Averaging all the trajectories, according to the results
obtained by the simulation, the intelligent strategy improves the
MAE by 78%, the RMSE by 75% and STD by 73%.

Regarding the speed of learning, the results for the different
trajectories that have been tested demonstrate how the federated
approach accelerates learning with respect to individual rein-
forcement learning. Specifically, an acceleration of learning of 50%
in the best of cases and an average of 36% has been observed. An
interesting result is that increasing the number of agents does
speed up learning, but the value of RMSE to which the system
converges does not depend on it. In addition, it has also been
validated how the transmission of incremental tables, instead
of total tables, to share the policy, allows significant savings
in bandwidth. This result is especially interesting for selecting
wireless network technology.

Different future works remain open, such as the definition
of other aggregation functions and other reward strategies, and
the application of this control approach to other engineering
systems that act in groups, such as wind turbines in wind farms.
It would also be desirable to test the approach with a fleet of AGV
prototypes.
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