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A B S T R A C T   

Dough fermentation is a fundamental step in bread manufacturing, commonly supervised by bakery experts. This 
work aims to develop an efficient technology based on near infrared spectroscopy (NIR) and partial least squares- 
discriminant analysis (PLS-DA) to determine the fermentation state of bread loaves in the bakery industry. 
Knowing the fermentation state of the loaves during the manufacturing will allow to act in the production line, 
avoiding introducing an inadequate loaf in the oven and reducing costs. For that, a new methodology is proposed 
that consists in reproducing the knowledge of a Master Baker through a NIR spectrometer. Regarding the 
sequentiality of the objects and the real applicability of the method, three different cases were proposed using 
PLS-DA, getting that, in the best case, the sensitivity of the prediction set for the unfermented doughs was 88% 
and for the fermented and over-fermented was 86%; whereas the specificities were all greater than 86%.   

1. Introduction 

Bread consumption in Spain is elevated. The Spanish government 
estimates that in 2020, bread consumption was an average of 33 kilos 
per inhabitant, which meant an increase of 5.5% compared to the pre
vious year (Ministerio de Agricultura Pesca y Alimentación, 2020). 
These data demonstrate the necessity of high quality in this product and 
exhaustive control in its manufacturing since it is a crucial economic 
factor affecting the Spanish diet. 

Loaves of fresh bread are highly consumed products. One of the key 
steps in their manufacture is the fermentation process of the dough since 
it is one of the stages that most influences the quality of the final product 
(Cauvain, 2015; Kulp, K., & Lorenz, 2003). As a critical control point of 
bread fermentation process, a bakery expert is always demanded to 
judge the ideality of doughs before baking by traditional methods. 
Although artificial intelligence and computational methods are being 
investigated in fermentation processes, human knowledge and experi
ence continue to be much more used: bibliographic research was made 
in Scopus using as keywords search “monitoring” and “fermentation or 
leavening”, and 5107 results were found. If the keyword “spectroscopy” 
is also used (monitoring, fermentation or leavening, and spectroscopy), 

the results decrease to 584. And if the word “NIR” (near infrared) is 
included in the research (monitoring, fermentation or leavening, spec
troscopy, and NIR) the publications are 158. The application of NIR 
spectroscopy as an effective technology has been proven to be useful in 
food process monitoring and quality assessment, (Jiang et al., 2018; 
Muncan et al., 2021; Jin et al., 2023), or also, to provide chemical 
insight of the different phenomena occurring in bread during storage 
(Amigo et al., 2019, 2021). Besides, if the word “bread” is used as well 
(monitoring, fermentation or leavening, spectroscopy, NIR, and bread), 
just two papers are found (Chang et al., 2021; Ulrici et al., 2008). Chang 
et al. (2021) monitored the fermentation of Chinese steamed bread by 
using Partial Least Squares (PLS) to eliminate the unrepresentative 
variables from preprocessed NIR spectra, but Partial Least 
Squares-Discriminant Analysis (PLS-DA) methodology was not applied. 
Moreover, the authors proposed the success rate classification to eval
uate the models, whereas sensitivity and specificity will be used in our 
work. That is, not only the success rate capacity of the models will be 
evaluated, but also their ability to reject samples that do not belong to 
the true class. In the second paper, Ulrici et al. (2008) get information on 
the modifications that occur during the process in terms of kinetics and 
chemical properties that change along with the fermentation. If we 
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move ahead with the searching adding the term PLS-DA (monitoring, 
fermentation or leavening, spectroscopy, NIR, bread, and PLS-DA), 
non-results are found, but using NIR spectroscopy combined with 
PLS-DA is widely common in the food industry to classify distinct types 
of one product or to detect fraud (Cozzolino, 2014; Guelpa et al., 2017; 
Liu et al., 2008; Morsy and Sun, 2013; Williams et al., 2009). 

As demonstrated by the previous search, there is no evidence that 
this combination (NIR and PLS-DA) has ever been used to monitor 
fermentation processes in bread, although it has been used in the case of 
the cheese maturation process (Kang et al., 2020). 

On the one hand, NIR spectroscopy provides the information 
necessary to interpret the characteristics of the sample being measured. 
NIR spectroscopy can provide rich and suitable information to describe 
the changes during food processing (Durek et al., 2014; Marques et al., 
2016; Tian et al., 2021; Ulrici et al., 2008), as, for instance, dough bread 
fermentation since in that process, the carbohydrates, the moisture, the 
protein structure, and the gas production of the dough change in a sig
nificant way (Kulp, K., & Lorenz, 2003). Furthermore, NIR also has the 
advantages of non-destructive and real-time measurements, with no 
sample preparation and in most cases, low-cost devices. For all that, in 
this work, NIR spectroscopy was considered a viable choice for moni
toring the bread fermentation process. On the other hand, PLS-DA will 
allow classifying between NIR spectra that correspond to unfermented 
doughs, spectra of correct-fermented doughs and over-fermented ones, 
evaluating, in each case, the sensitivity and specificity of the models. 

In that sense, the main purpose of the present study was to establish a 
convenient and monitored method to determine the dough fermentation 
state by using an at-line NIR spectrometer and a software platform (to 
obtain the data) combined with PLS-DA to reproduce the experience of a 
Master Baker. 

To analyze the feasibility of classifying the state of a dough as un
fermented, fermented, or over-fermented by NIR signals, three cases 
have been considered: case 1, a classifier is made to separate the three 
classes using a PLS-DA model; case 2, as the classes have a temporal 
sequence, first a PLS-DA model is performed to discriminate the unfer
mented doughs from the other two states and then, a second PLS-DA is 
performed to discriminate between fermented and over-fermented 
doughs; finally, in case 3, the same sequential procedure is followed 
as in case 2 but with a distribution of the data in the training set and in 
the validation set more in accordance with the possible industrial 
application of the procedure. 

This final methodology evidences the effectiveness of monitoring the 
fermentation process using as the model objects the individual spectra 
selected from all the bread loaves of each class, since later, the decision 
will be made using just one spectrum of each loaf. This investigation was 
made as a proof of concept to implement, shortly, a NIR spectrometer in 
the production line (fermentation chamber) of a bakery industry. The 
conception is to estimate the state of doughs during fermentation by 
taking just one single spectrum of every dough. In that way, it will be 
possible to detect any deficiency in the doughs before baking and, 
consequently, modify the conditions of the fermentation chamber 
(temperature and humidity) accordingly. For instance, if there is a 
continuing situation of unfermented loaves, the fermentation chamber 
temperature could be increased to speed the fermentation process and 
avoid those loaves to enter into the oven until they are ready. Or in the 
case of the existence of some over-fermented loaves, reject them and 
decrease the humidity and temperature levels to avoid more over- 
fermented samples. 

2. Materials and methods 

2.1. NIR spectroscopy. Spectrophotometer configuration and 
measurements 

The experiments were carried out in an industry of the bakery sector 
in Spain. IPASA-Sanbrandan (Ipasa-Sanbrandán) was born in A Coruña 

(Spain) in 1970 as the union of the most active industrial bakers of the 
city, that decided to unify their small companies into a new one of larger 
dimensions and with higher technological development. This work is a 
result of that continued development. Nowadays, the company manu
factures and distributes the product all over the country, being one of the 
most prominent in the sector. 

The measurements were carried out at-line on four different days to 
explore better the possible variations in manufacturing the loaves of 
bread. Each day, the spectra of the evolution of the three loaves were 
taken during the three stages of the fermentation process, having mea
sures of unfermented doughs (Fig. 1a), of fermented doughs (Fig. 1b) 
and over-fermented doughs (Fig. 1c). These figures make clear the dif
ferences in the state of the doughs during the fermentation process, at 
least in terms of their volume. 

The experimental procedure was made with the AONIR integrated 
solution for real-time NIR measurements (AOTECH S.L. (AOTECH)), 
including a NIR sensor , a measurement platform, and the precise soft
ware to integrate the hardware with the model outcome for real-time 
monitoring and controlling of the fermentation. The spectra were 
recorded throughout the entire fermentation process of the bread dough 
loaves in a fermentation chamber with temperature and humidity con
trol (the temperature oscillated between 30.00 ◦C and 34.84 ◦C, while 
the humidity was 75%). Once the optimum fermentation time was 
achieved, spectra were still being taken to obtain data on the spectral 
behaviour of the over-fermented loaves of bread. Measurements were 
taken in triplicate and approximately every 3 min. That is, every 3 min, 3 
spectra were recorded for each of the samples measured. As aforemen
tioned, while the spectral measurements were being made, a Master 
Baker was aware of the evolution of the fermentation in the loaves of 
bread to ensure the reference status of the fermentation (unfermented, 
fermented and over-fermented). 

The spectrometer was configured manually so that NIR reflectance 
was measured in a wavelength range from 900 to 1670 nm (125 
wavelengths, accounting for a spectral resolution of 6 nm), with a 
spectrum reading interval of 1 s, and 50 readings per spectrum with an 
integration time of 10.8 ms. 

As mentioned in the previous section, this work was divided into 
three cases. Since the measurements were made on four different days, 
approximately two-thirds of the samples from each day were used to 
build the models of cases 1 and 2 (8 loaves), and the remaining third part 
of the samples (4 loaves) was used as a prediction external set for vali
dation. However, in the third case, the calibration and validation were 
made using individual spectra of each one of the loaves instead of using 
all the recorded spectra of the samples. That is, the same spectra regis
tered and used in the two previous cases have been organised in a 
different way (around 70% of the data were used to build the calibration 
set, and a 30% for the prediction), having in both sets spectra of the 
three stages of the fermentation process (preventing calibration and 
prediction sets from sharing replicates). As a result, in case 1, the model 
was built using a data matrix in calibration of dimensions 677 × 125 
(where for each of the 677 analysed samples, the measured reflectance 
at 125 different wavelengths was recorded) and was validated with a 
data matrix of dimensions 343 × 125. The training set is formed by the 
data of two complete doughs for each day and the validation by the 
other dough, as shown in Fig. 2a. This figure shows in solid color the 
samples of each class used in calibration and in the same dashed color 
those used in prediction. The color indicates the fermentation state of 
the dough, i.e. the class to which the spectra belongs to, red, green, and 
blue corresponding to unfermented, fermented, and over-fermented 
doughs, respectively. The squares represent the replicates carried out 
at each measurement time. 

In case 2, a sequential decision was made, so two different models 
were built using two different matrices. In the first one, the data matrix 
has the same dimensions as in case 1, but grouped into two classes: 
unfermented versus fermented and over-fermented for the first PLS-DA 
model. In the second one, the model was built using a data matrix of 
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dimensions 356 × 125 for calibration and dimensions 186 × 125 for 
prediction to discriminate the fermented loaves from the over- 
fermented. The same assignment of spectra in calibration and predic
tion shown in Fig. 2a is maintained. 

In case 3, the sequential decision was also applied (as in case 2), 
therefore, two PLS-DA models were built. The main difference is the 
distribution of the spectra between the calibration and the prediction 
sets, but keeping in mind the real industrial application of the procedure. 
However, individual spectra from the three different fermentation states 
of the doughs were used. That is, the objects of the model are selected 
spectra of all the doughs that form the class. The distribution between 
calibration and prediction sets has been made as shown in Fig. 2b. In 
each class, one out of three consecutive groups of the replicated spectra 
(dashed square in Fig. 2b) was selected to build the prediction set, 
including always carefully the replicates (represented by each square in 
Fig. 2b) in the same set, either in calibration, or in prediction. In this 
way, it is guaranteed that both, in calibration and in prediction, the 
spectra are being recorded uniformly over time, collecting the instru
mental variations by means of replicated spectra, temporal variation in 
the fermentation process, and the variations between different loaves. 

The model for the first decision was built using a data matrix of 678 
× 125 for calibration set, and 342 × 125 for the prediction one. For the 
second decision of case 3, the dimensions of the calibration data matrix 
were 359 × 125 and 186 × 125 for prediction. 

The first three columns of Table 1 summarise the dimensions and the 
data arrangement of the three cases. 

2.2. PLS-DA and how to evaluate the models 

Depending on the field of application of the hypothesis test, the 
terminology has a considerable discrepancy. Therefore, the elements 
that will be handled in it are summarised below to ease the reading of 
this paper. 

A classification rule to assign objects to one class can be expressed as 
a hypothesis test (Ortiz et al., 2006; Valencia et al., 2022). In the present 

Fig. 1. Set up for the measurements and samples a) Unfermented doughs, b) Fermented doughs and c) Over-fermented doughs.  

Fig. 2. Scheme of the assignment of the recorded spectra in the calibration and 
validation sets a) for cases 1 and 2, and b) for case 3. On each day, the doughs 
have been coded as d1, d2 and d3. The squares symbolize the replicate spectra 
that are always considered together in the assignment either to the calibration 
set or to the prediction set. The calibration set is built with the spectra of the 
solid squares, while the daseh ones form the prediction set. 

Table 1 
Data matrix dimensions, number of latent variables, and permutation test results 
of the models.  

Case Model Data matrix 
dimensions 

LV Test 1* Test 2** Test 
3*** 

1 A 677 × 125 7 <0.001 <0.001 0.005 
2 B 677 × 125 6 <0.001 <0.001 0.005 

C 356 × 125 10 <0.001 <0.001 0.005 
3 D 678 × 125 4 <0.001 <0.001 0.005 

E 359 × 125 6 <0.001 <0.001 0.005 

*Pairwise Wilcoxon signed rank test. 
*Pairwise signed rank test. 
*Randomisation t-test. 
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investigation, there are three classes of objects: C1, unfermented loaf; C2, 
fermented loaf and C3, over-fermented loaf. It is aimed to build a rule 
that allows classifying a bread loaf into one of the three classes, Cj, based 
on the spectra registered with them. Ij spectra registered with loaves of 
class Cj, j = 1, 2, 3 are available. These spectra arrange one matrix XI×N, 
being I ––I1+I2+I3 the total number of spectra and N the number of 
wavelengths of each spectrum. The matrix YI×3 = (yij) is used to identify 
each class. That matrix is defined by 

yij =

{
0, if the spectrum i − th is not from a loaf of Cj

1, if the spectrum i − th is from a loaf of Cj
i= 1,…, I, j= 1, 2, 3

(1) 

This codification of classes is known as “one versus all” because each 
column of Y identifies one of the classes with a “one” versus the other 
two, identified with a “zero”. 

For the purpose of building the decision rule, or what is the same, the 
hypothesis test 

→→ H0 : the loaf does not belong to the class Cj
H1 : the loaf belongs to the class Cj

(2) 

It is necessary to assign a probability distribution to the spectra of the 
Cj class, and to its complement C(Cj) =

⋃
i∕=jCi. 

With the {X,Y} data a statistical index gj(x) is built. This gj(x) allows 
building a distribution of probability F1j for each Cj class and other F0j 
for its complement C(Cj), j = 1, 2, 3. From them, the critical value of the 
test, CVj, is calculated. So, if for a given spectrum x0 the condition 
gj(x0) > CVj is fulfilled, then H0 will be rejected, and the loaf will be 
assigned to Cj. The critical values are determined regarding the proba
bilities α y β that are defined as follows:  

• α is the probability of assigning a loaf to Cj when it does not belong to 
Cj (Type I error). Formally α = p{reject H0|H0 is true} = 1 −

F0j(CVj).  
• β is the probability of not assigning a loaf to the class Cj when it 

belongs to Cj (Type II error). Formally β = p{accept H0|H0 is false} =

F1j(CVj).  
• The sensitivity of the Cj class is defined as the probability of correctly 

assigning the objects of the Cj class. Using the hypothesis test nota
tion, this probability is equal to p{reject H0|H0 is false} =

1 − β = 1 − F1j(CVj).  
• The specificity of the Cj class is defined as the probability of correctly 

rejecting the objects that do not belong to the Cj class. According to 
the previous definition of α, this probability is equal to 
p{accept H0|H0 is true} = 1 − α = F0j(CVj). 

Both probabilities evaluate the quality of the decision rule, which 
will be as better as the sensitivities and specificities are closer to 1. 
However, once the {X,Y} data set and the distributions of probability 
F0j and F1j for each Cj class are fixed, the probabilities α and β depend on 
the critical value CVj and when changing it, one increases and the other 
decreases. Occasionally, particularly if there is no cost associated with 
each error, α = β is considered. 

The relation between the collected spectra in X and the correspon
dent responses in Y, according to Eq. (1) is made by means of a PLS 
regression. This PLS regression builds sequentially K pars of lineal 
combinations of the variables of X and Y. PLS exploits the covariation 
between predictor variables and response variables and tries to find a 
new set of latent variables (LVs) in X-block and Y-block that maximally 
relate to them. In other words, the covariance between the extracted LVs 
should be maximised as 

maxw1w2 wT
1 XTYw2 (3)  

where T stand for transpose and wi, i = 1,2 are the weight vectors of the 
first latent variable in X-block and Y-block, respectively. After that, X 

and Y are deflated by subtracting the contribution of the first LV and the 
procedure is iterated to build the K LV. The value of K is determined by 
cross-validation (CV). In this case, PLS is the lineal application g(x) =
(g1(x), g2(x), g3(x)) of X in Y, so each one of the component functions, gj, 
will take close values to one and zero for the spectra of the Cj and the 
C(Cj) classes, respectively. These values are the predicted ones for each 
column of Y, that is to say, ŷj(x) = gj(x) for any spectrum of the space 
defined by X. 

The next step is to fit the distributions of probability F0j and F1j to the 
ŷj(x) values for the spectra x ∈ C(Cj) and Cj respectively. These two 
distributions define the probabilities associated with the null and the 
alternative hypothesis from the test of Eq. (2). For each class, a normal 
distribution will be fitted for F0j and F1j and with them, the CVj value 
corresponding to α = β is obtained. Each spectrum is assigned to one of 
the three classes through the obtained three critical values. If they 
belong to the acceptance region of two (for example, gj(x0) < CVj, j = 1, 
2), it will be assigned to the one with the highest probability of 
belonging, that is, to the Cj such that F1j is greater. In this way, all 
spectra are assigned to a single class, and none remain unassigned. 

Once the assignment of all the objects has been made, a matrix of 
sensitivities and specificities S = (sij) is obtained. S is a square matrix of 
dimensions equal to the number of classes that are being classified. The 
fraction of objects of the current class i correctly assigned to it by PLS-DA 
is noted on the diagonal of the matrix, and it is the estimation of the 
sensitivity of each class. Each sij element off the diagonal is the esti
mation of the specificity of the i class in relation to the j class. A clas
sification model is as better as the closer all the values of the S matrix are 
to 1. 

It is usual to calculate the sensitivities and specificities in prediction, 
either through CV, or by applying the classifier to an external set {Xp,

Yp}, independent from the training set. The estimated values in pre
diction will usually be worse than in fitting. Nevertheless, if both esti
mations are similar, the classifier will be considered stable in prediction. 

2.3. Software 

The AONIR platform developed by AOTECH (AOTECH. Advanced 
Optical Technologies) was used to record the spectra, while PLS-Toolbox 
(ver. 8.8.1, Eigenvector Research Inc. 196 Hyacinth Road, Manson, WA 
98831) (Wise, B.M., Gallagher, N.B., Bro, R., Shaver, J.M., Winding, W., 
Koch, 2022) working under MATLAB version 9.9.0 (R2020b) update 8 
(The MathWorks Inc, 2022) was employed for fitting PLS-DA models. 

3. Results and discussion 

3.1. NIR spectra and preprocessing 

The main ingredients of the bread loaves are flour and water, among 
other components like yeast. Flour contains considerable amounts of 
carbohydrates (Cauvain, 2015; Hoseney, 1994), being starch the major 
constituent. During fermentation, yeasts take up nutrients in doughs, 
especially carbohydrates, for growth. Its metabolism leads to the for
mation of glucose and provides the necessary carbon dioxide to leaven 
the dough along with ethanol, which plays a role in conditioning flour 
proteins (Kulp, K., & Lorenz, 2003). So, since the composition of the 
samples was changing during the fermentation process, so should did 
the spectra. Considering all this, Fig. 3 can be explained as follows: 
Fig. 3a shows the NIR spectra of one of the samples during the whole 
fermentation process, differentiating between unfermented in red, fer
mented in green, and over-fermented in blue. As it can be seen, varia
tions in intensity are observed, but apparently, the shape of the spectrum 
is almost the same during the three phases of the process. The most 
remarkable band is the one between 1400 and 1480 nm in the raw 
spectra, possibly related to the first overtone of the symmetric and 
asymmetric vibration stretch of the water molecule, the second overtone 
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of the O–H bond of sugars, and the stretching vibration of the first 
overtone of the N–H bond (related with proteins). Nevertheless, there 
are two important bands at around 990 nm and 1200 nm. The first one, 
corresponding to the first overtone of the O–H bond of sugars and the 
second overtone of the C–H stretching of carbohydrates, and possibly 
overlapped with the second overtone of the N–H bond (1020 nm). The 
second one, is related to the first overtone of the symmetric stretch, the 
bending mode, and the asymmetric stretch of the water molecule). In 
general, the intermediate NIR (1050–1250 nm) is a complex region, 
primarily containing the second overtone of the C–H stretching vibra
tions. Some gentle bands at around 1350–1380 nm can also be observed, 
related to the stretching and deformation vibration modes of the C–H 
bonds corresponding to the –CH2 and the methyl group of the carbo
hydrates, and the first overtone of the O–H stretching of sugars 
(Workman and Weyer, 2007). 

On the other hand, Fig. 3b shows the same spectra but preprocessed. 
Combining different mathematical preprocessing methods is necessary 

when working with IR signals (Mas et al., 2020; Oca et al., 2012; Schoot 
et al., 2020). In this work, the results were obtained using the second 
derivative and SNV in order to baseline corrections and resolution 
enhancement. Specifically, the raw spectra were preprocessed by 
Savitzky-Golay with a window width of 25 points using a second-degree 
polynomial and a second derivative, and afterwards by standard normal 
variate (SNV), since after testing some other different combinations of 
preprocessing methods, particularly, the inverse (SNV + 2nd deriva
tive), it was found to be the best one. 

Finally, mean centering (MC) of the data matrix was applied before 
PLS-DA modelling, while the response was, at the same time, autoscaled. 

3.2. Classification models 

As indicated before, the responses of PLS-DA where codified using 
zeros and ones, in such way that a 1 indicates a sample belongs to a class, 
and a 0 indicates that it does not (Eq. (1)). So, in case 1 a PLS for a multi- 
response Y can be performed, knowing that the class of the unfermented 
doughs, C1, had the (1,0,0) code, the fermented ones, C2, (0, 1, 0), and 
the over-fermented, C3, the code (0, 0, 1). This was made to create a 
response with a variable for each class. 

But in the cases 2 and 3, the response variable Y has two columns, 
because only two classes are being compared. In the first decision, the 
loaves of C1 vs C2

⋃
C3 are classified and, according to Eq. (1), the un

fermented loaves are coded with (1,0) and the remaining ones with 
(0,1). In the second decision, the loaves of C2 vs C3, are classified cod
ifying the fermented loaves with (1,0) and the over-fermented with 
(0,1). 

The optimal number of LVs was chosen by Venetian blinds CV pro
cedure, considering the classification error in calibration (C) and CV. 
This CV method was used since as the samples were measured in real 
time during the whole fermentation process, it could be useful to esti
mate errors in the method from non-temporal sources. In addition, it is a 
simple and fast method to use. Also, as explained in section 2.2., the 
models were evaluated using the sensitivity and specificity for each 
class. 

3.2.1. Case 1. PLS-DA applied to three classes 
A PLS-DA model with three different classes was built: unfermented 

bread, correctly fermented and over-fermented doughs. As it can be seen 
in Table 1 (case 1), the absence of overfitting of the model (which 
needed 7 LVs) has been evaluated by doing three permutation tests (50 
iterations) using the residuals in CV, because they are more sensitive to 
detect overfitting. All the p-values reported in Table 1 are less than 
0.005. The model fitted for each response is distinguishable from one 
created randomly, at least at a confidence level of 0.995, which is much 
higher than usual 0.95. 

The sensitivity and specificity of the model were evaluated. Fig. 4a 
represents sensitivity and specificity in a graphical form, referred to as a 
Receiver Operating Characteristic (ROC) curve. The sensitivity versus 1- 
specificity is shown for each of the three class models as a function of the 
selected threshold. For the three classes, the ROC curves in fitting and 
CV are practically equal and no difference is perceived graphically. If the 
ROC curve reaches the upper left corner means that at some threshold, 
the specificity could be perfect without losing any sensitivity (100% 
classification success). The threshold selected by the PLS-DA algorithm 
is shown as a red circle on each estimated and CV ROC curves. The area 
under the ROC curve (AUC) is used as a measure of the validity of a 
classifier, which will be better the closer AUC is to one. The AUC value is 
0.99, 0.86 and 0.96 for the unfermented, fermented, and over-fermented 
loaves, respectively. These values can be considered sufficiently high. 
Nevertheless, they do not describe the discriminant power or capacity of 
the built PLS model. The critical values, CVj, j = 1, 2, 3, calculated as 
explained in section 2.2., are showed as a vertical line in Fig. 4b. These 
values are 0.46, 0.27 and 0.41 for the unfermented, fermented, and over- 
fermented loaves, respectively. With them, the sensitivity and 1- 

Fig. 3. a) NIR spectra of one of the loaves during the whole fermentation 
process b) Same spectra but preprocessed (Savitzky-Golay with a window width 
of 25 points using a second-degree polynomial and a second derivative, fol
lowed by SNV). In red, the spectra and preprocessed spectra of unfermented 
doughs, in green the fermented ones, and in blue, the over-fermented. 
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specificity values (also labelled with the red circle) on each estimated 
and cross-validated ROC curves in Fig. 4a are obtained. For instance, 
Fig. 4a for class 1 (unfermented bread loaves) has a 94% of classification 
success (94% of sensitivity) and almost 93% of specificity. That means 
that in training (and CV), the fitted PLS-DA model can not only classify 
mostly unfermented dough bread loaves as such, but also the ones that 
are not unfermented in a different class. The CV results are quite similar 
to the calibration ones, therefore, the models could be considered stable. 

Fig. 4b also shows the sensitivity (as 1 − F1j) and specificity (as F0j), 
being F0j y F1j the probability distributions of the ŷj(x) , j = 1, 2, 3 
values. The vertical dashed red line indicates the CVj selected by the 
PLS-DA algorithm. Each CVj is calculated by fitting a normal distribution 
to the frequencies of the ŷj(x) values. In the case of the fermented loaves 
this value differs from the point where the empirical distributions F02 
and F12 intersect. This discrepancy may contribute to the decrease of the 
specificity of C2 (fermented loaves) from 0.92, regarding C1, until 0.72, 
regarding C3. Remember (section 2.2.) that for each Cj class, the speci
ficity has been calculated by means of CVj j = 1, 2, 3, using its com
plement set C(Cj). 

The position of each calculated ŷj(x) value concerning the CVj value 
is showed in Fig. 5. In Fig. 5a it can be observed that most (91%) of the 
ŷ1(x) values (red diamonds) are greater than CVj = 0.46 (dashed red 
line). That means they belong to the critical region of the test and 

therefore, H0 is rejected, so, the corresponding loaves are classified 
correctly as unfermented. Moreover, a 7% of the fermented loaves 
(represented as green squares) also fulfil ̂y1(x) > 0.46 and consequently, 
they are classified mistakenly as unfermented. Regardless, none of the 
over-fermented loaves are classified as unfermented. 

Analysing Fig. 5c it can be seen that just a 75% of the over-fermented 
loaves are correctly assigned, 14% of the fermented loaves and less than 
1% of the unfermented are incorrectly assigned as over-fermented. That 
is, C3 has high specificities (0.86 and 0.99) although its sensitivity de
creases to 0.75. 

Concerning the class of fermented loaves (C2), a low sensitivity can 
be observed (Fig. 5b). Just 79% of the fermented loaves are precisely 
classified, while 18% of the over-fermented and 8% of the unfermented 
are also misclassified as fermented. All of them are in the critical region 
{x|ŷ2(x)> 0.27} of the correspondent hypothesis test. 

The sensitivity and specificity values of this first PLS-DA model are in 
Table 2. As seen, quite good model results are obtained for sensitivity 
and specificity in the unfermented doughs, although it could be better 
for the case of over-fermented ones and mainly for the ones with an 
optimal fermentation point. The main problem is that many over- 
fermented doughs are classified as well-fermented, and many of the 
fermented ones are classified by the model as unfermented and over- 
fermented. In that same table (Table 2), the results obtained using an 

Fig. 4. a) ROC curves and b) sensitivity and specificity variations for case 1 (model A). The vertical red dashed line represents the model threshold. The specificity for 
each class is represented in each graphic in blue, the solid line in calibration and the dashed one in CV. The sensitivity for each class is represented in each graphic in 
red, the solid line in calibration and the dashed one in CV. 

D. Castro-Reigía et al.                                                                                                                                                                                                                         



Journal of Food Engineering 361 (2024) 111738

7

external prediction set of loaves are shown. The problem is notably 
exacerbated, the PLS-DA model only classifies correctly 38% of the 
fermented loaves, and 42% of the fermented loaves are misclassified as 
over-fermented. It can be seen that the PLS-DA model is not stable since 
the sensitivity and specificity results are quite different from the cali
bration ones. 

Also, with this example, it is confirmed that a prediction external set 
for validation is adequate to assess the model (Esbensen and Geladi, 
2010) since, as we can see in Fig. 4a, the CV results are similar to the 
calibration ones, but when we make real predictions, the results are not 
that good. 

With these poor results in prediction, particularly related to the 
classes C2 y C3, is appropriate to consider that fermentation is a 
continuous process that evolves and sorts the classes (C1 < C2 < C3). In 
that sense, it is reasonable for a sequential decision to discriminate first 
C1 from C2

⋃
C3 and then, C2 from C3. 

3.2.2. Case 2. sequential decision 
In this second case a two-step decision will be tested. Two models 

were built, one for each decision, and once again, the absence of over
fitting of these models was evaluated (Table 1). 

Firstly, a first decision to separate the spectra of the unfermented 
samples from the rest was made by following the same methodology as 
in section 3.2.1. A PLS-DA model was fitted (model B of case 2, see row 2 
of Table 1), establishing this time only two classes, C1 and C2

⋃
C3. In this 

case, the PLS will predict a number for each sample that will be 1 if the 
sample is on the class, or on the contrary, will be 0 if that is not the case. 
The model will not predict exactly a 1 or a 0. Therefore, a limit will be 
established by the PLS-DA algorithm. Above that limit, the sample will 
be estimated as 1; below that limit, it will be predicted as 0. That is to 
say, it will be established, as explained section 2.2., a discriminant rule. 

With the fitted PLS model and the discriminant rule established, the 
obtained results for the first decision of this case in terms of sensitivity 
and specificity are in Table 3. The results are shown both in calibration 
and in prediction, and they are quite better than the previous ones, since 
they guarantee a sensitivity of 95% for unfermented loaves, but also, 
only 5% of loaves that do not belong to the unfermented category have 
been classified as unfermented. Furthermore, it is verified that in dif
ference with case 1, this model is stable in prediction, because after the 
validation set was predicted, the results remain similar. 

After the unfermented loaves of bread were differentiated with 
success from the rest of the loaves, a second decision was made through 
a new PLS-DA model (model C of case 2, see row 3 of Table 1). This 
decision consists of discriminating the fermented loaves from the over- 
fermented ones. To do that, the same PLS-DA procedure applied until 
now will be used again, obtaining a new discriminant rule that allows 
the results of the second part of Table 3. 

As it can be seen, the obtained results are worse than for the case of 

Fig. 5. Sample classification in calibration for Case 1 (model A).  

Table 2 
Sensitivity and specificity results for Case 1 (Model Ausing PLS-DA with three 
classes    

True class 

Unfermented Fermented Over- 
fermented 

Predicted 
class 

Calibration 
Unfermented 0.9117 0.9281 1.0000 
Fermented 0.9211 0.7843 0.7524 
Over- 
fermented 

0.9905 0.8562 0.7524  

Prediction 
Unfermented 0.8854 0.9643 1.0000 
Fermented 0.9236 0.3810 0.9608 
Over- 
fermented 

0.9618 0.4167 0.9608  
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unfermented doughs (C1) vs fermented and over-fermented (C2
⋃

C3) 
(model B). High sensitivity and specificity values are achieved in cali
bration, but not so good in prediction, which denotes that the model is 
not stable. The most remarkable thing is the low values for specificity in 
prediction for the over-fermented class. This fact raises the importance 
of considering the specificity of the models mentioned in the introduc
tion because a 100% classification success rate can be achieved (the 
perfect sensitivity), but at the same time, it is possible to have bad 
specificity values. That could mean that, although all the samples are 
being classified in their class, so are the samples that do not belong to 
that class and therefore, a bad classification is being made. 

Yet, if the overall results are observed, it is confirmed that the 
sequential decision is the most reasonable option and is the one that 
allows to achieve better results if compared with the three classes model. 
Also, if it is considered that in a near future, the measurements in the 
industry will be taken independently (in individual bread loaves in a 
punctual moment during the fermentation process), instead of moni
toring the whole fermentation process, a more adequate approach 
should be proposed according to the applicability of the procedure. 
Regarding that, as explained in the following section, a similar meth
odology with the exact same data was applied but changing the orga
nisation of the data. 

3.2.3. Case 3. sequential decision using individual spectra 
In this last case, alternatively, to build the model and the external 

prediction set with all the spectra of each one of the loaves, it was 
decided to select independent spectra of different loaves as explained in 
section 2.1. So, two new models were built, the first one (Model D) to 
separate the unfermented loaves from the others, and a second one 
(Model E), to differentiate between fermented and over-fermented 
loaves. By doing so, the results in Table 4, that are considerably better 
than the previous ones (mostly because they are stable in prediction), 
were obtained. 

One of the main objectives of this study was to make a proof of 
concept to check if a NIR sensor could monitor the fermentation process 
of bread loaves doughs in the production line of the bakery industry. 
With this study and with the results obtained in case 3, it has been 
proved the effectiveness of applying a sequential decision and a spectra 
selection regarding the sequentiality of the objects and the real 

application of the procedure, respectively. 
With the methodology applied in case 3, the sensitivity (considering 

the prediction results) for the class 1 (unfermented doughs) is 88%, for 
the class 2 (fermented) is 86%, and for C3 (over-fermented) is also 86%, 
while the specificities are all greater than 86%. With these results, it is 
possible to detect high percentages of defects in the loaves in such a way 
that the correctly fermented loaves enter the oven when they should. In 
the case of over-fermented loaves, they could be prevented from 
entering the oven, saving time and energy in baking. Furthermore, in 
case that the sensor detects several over-fermented loaves continuously, 
it would indicate that the conditions of the fermentation chamber are 
inadequate, but the temperature and humidity could be decreased to 
prevent this from occurring. The same would happen in the case of 
loaves that are not yet fermented, but in this case, the temperature and 
humidity would be increased, and it would be prevented that those 
loaves that the sensor classifies as not fermented could reach the correct 
fermentation state before entering the oven. In this way, the knowledge 
of an expert baker is reproduced to a high percentage (minimum of 86% 
both for sensitivity and specificity in prediction) and consequently, its 
work, and the production costs, are reduced. With this system, even the 
cost of yeast and flour could be reduced, since quantities could be 
readjusted depending on how the fermentation process progresses, 
adjusting the quantities or the conditions for the following loaves. 

4. Conclusions 

The work developed in this study has demonstrated the possibility of 
monitoring the industrial fermentation process of bread loaves through 
NIR spectroscopy combined with chemometrics. It has been proven that 
implementing this technology in-line is conceivable since it seems that it 
considerably reproduces the perception of one expert of the bakery in
dustry. However, the technology allows to take action in the fermenta
tion process by modifying the temperature or the humidity in the 
fermentation chamber, avoiding the entry of defective products in the 
oven. That, will allow the reduction of energetic consumption and 
timing or wasting yeasts and flour. Once these results were presented to 
the industry where the measurements were made, they accept to 
implement the sensor in their production line. 

Table 3 
Sensitivity and specificity for both decision of case 2 (Model B and Model C).  

Decision 1 (Model B)    

True class 

Unfermented Fermented + Over- 
fermented 

Predicted 
class 

Calibration 
Unfermented 0.9528 0.9304 
Fermented + Over- 
fermented 

0.9528 0.9304  

Prediction 
Unfermented 0.9363 0.9731 
Fermented + Over- 
fermented 

0.9363 0.9731  

Decision 2 (Model C)   
True class 
Fermented Over-fermented 

Predicted 
class 

Calibration 
Fermented 0.9185 0.8738 
Over-fermented 0.9185 0.8738  

Prediction 
Fermented 0.7857 0.7451 
Over-fermented 0.7857 0.7451  

Table 4 
Sensitivity and specificity for both decision of case 3 (Model D and Model E).  

Decision 1 (Model D)    

True class 

Unfermented Fermented + Over- 
fermented 

Predicted 
class 

Calibration 
Unfermented 0.9313 0.9162 
Fermented + Over- 
fermented 

0.9313 0.9162  

Prediction 
Unfermented 0.8788 0.9091 
Fermented + Over- 
fermented 

0.8788 0.9091  

Decision 2 (Model E)   
True class 
Fermented Over-fermented 

Predicted 
class 

Calibration 
Fermented 0.9167 0.8621 
Over-fermented 0.9167 0.8621  

Prediction 
Fermented 0.8642 0.8571 
Over-fermented 0.8642 0.8571  

D. Castro-Reigía et al.                                                                                                                                                                                                                         



Journal of Food Engineering 361 (2024) 111738

9

Funding 

This work has been funded by the Ministerio de Industria, Comercio 
y Turismo under Project PHOTONICS4BAKERY (AEI-010500-2021b- 
111) and Consejería de Educación of JCyL under Project BU052P20 
cofinanced with Regional European Funds. 

CRediT authorship contribution statement 

D. Castro-Reigía: Investigation, Conceptualization, Data curation, 
Writing – original draft, Reviewing and Editing. I. García: Investigation, 
Supervision, Funding acquisition. S. Sanllorente: Visualization, Su
pervision, Validation. L.A. Sarabia: Data curation, Conceptualization, 
Visualization, Supervision, Validation, Writing – original draft. J.M. 
Amigo: Conceptualization, Supervision, Reviewing and Editing. M.C. 
Ortiz: Data curation, Supervision, Reviewing and Editing, Funding 
acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

Acknowledgements 

The authors thank IPASA-Sanbrandan (INDUSTRIALES PANADEROS 
AGRUPADOS S.A.) for allowing the measurements in their facilities and 
the entities for financial support. 

References 

Amigo, J.M., del Olmo, A., Engelsen, M.M., Lundkvist, H., Engelsen, S.B., 2019. Staling of 
white wheat bread crumb and effect of maltogenic α-amylases. Part 2: monitoring 
the staling process by using near infrared spectroscopy and chemometrics. Food 
Chem. 297, 124946 https://doi.org/10.1016/j.foodchem.2019.06.013. 

Amigo, J.M., Olmo, A. del, Engelsen, M.M., Lundkvist, H., Engelsen, S.B., 2021. Staling of 
white wheat bread crumb and effect of maltogenic α-amylases. Part 3: spatial 
evolution of bread staling with time by near infrared hyperspectral imaging. Food 
Chem. 353 https://doi.org/10.1016/j.foodchem.2021.129478. 

AOTECH. Advanced Optical Technologies. (n.d.). Retrieved April 30, 2023, from htt 
ps://www.aotech.es/. 

Cauvain, S., 2015. Technology of breadmaking. In: Technology of Breadmaking. https:// 
doi.org/10.1007/978-3-319-14687-4. 

Chang, X., Huang, X., Xu, W., Tian, X., Wang, C., Wang, L., Yu, S., 2021. Monitoring of 
dough fermentation during Chinese steamed bread processing by near-infrared 
spectroscopy combined with spectra selection and supervised learning algorithm. 
J. Food Process. Eng. 44 (9) https://doi.org/10.1111/jfpe.13783. 

Cozzolino, D., 2014. An overview of the use of infrared spectroscopy and chemometrics 
in authenticity and traceability of cereals. Food Res. Int. 60, 262–265. https://doi. 
org/10.1016/j.foodres.2013.08.034. 
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