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A B S T R A C T

This paper presents a comprehensive analysis of deep transfer learning methods, supervised methods, and
semi-supervised methods in the context of protein fitness prediction, with a focus on small datasets. The
analysis includes the exploration of the combination of different data sources to enhance the performance
of the models. While deep learning and deep transfer learning methods have shown remarkable performance
in situations with abundant data, this study aims to address the more realistic scenario faced by wet lab
researchers, where labeled data is often limited.

The novelty of this work lies in its examination of deep transfer learning in the context of small datasets and
its consideration of semi-supervised methods and multi-view strategies. While previous research has extensively
explored deep transfer learning in large dataset scenarios, little attention has been given to its efficacy in small
dataset settings or its comparison with semi-supervised approaches.

Our findings suggest that deep transfer learning, exemplified by ProteinBERT, shows promising performance
in this context compared to the rest of the methods across various evaluation metrics, not only in small dataset
contexts but also in large dataset scenarios. This highlights the robustness and versatility of deep transfer
learning in protein fitness prediction tasks, even with limited labeled data.

The results of this study shed light on the potential of deep transfer learning as a state-of-the-art
approach in the field of protein fitness prediction. By leveraging pre-trained models and fine-tuning them on
small datasets, researchers can achieve competitive performance surpassing traditional supervised and semi-
supervised methods. These findings provide valuable insights for wet lab researchers who face the challenge of
limited labeled data, enabling them to make informed decisions when selecting the most effective methodology
for their specific protein fitness prediction tasks.

Additionally, the study investigated the combination of two different sources of information (encodings)
through our enhanced semi-supervised methods, yielding noteworthy results improving their base model and
providing valuable insights for further research.

The presented analysis contributes to a better understanding of the capabilities and limitations of different
learning approaches in small dataset scenarios, ultimately aiding in the development of improved protein
fitness prediction methods.
. Introduction

Proteins, as the fundamental building blocks of life, hold immense
ignificance in various scientific disciplines, and protein engineering
as emerged as a powerful field aimed at harnessing the potential of
hese versatile molecules for a wide range of applications [1]. A protein
itness landscape represents the connection between protein sequences
nd their functional characteristics, associating a specific fitness value
o its corresponding sequence. It illustrates how changes in protein
equences impact their behavior and performance. Moreover, it can
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be a very useful tool in protein engineering, helping us understand
the intricate relationships between protein sequence, structure and
function, enabling us to decipher the underlying principles behind
protein behavior and facilitating the design of novel proteins with
tailored properties [2]. The utilization of protein fitness landscapes has
demonstrated its effectiveness in unraveling the mechanisms by which
directed evolution exerts strong selection pressures, driving proteins to
evolve rapidly towards desired characteristics [3].
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The efficiency of protein engineering is hampered by the vastness
of the protein sequence space [4,5], as well as the inherent limitations
in screening capabilities and analysis capacity. To navigate this huge
space of possibilities, the integration of machine learning and directed
evolution has emerged as a promising approach [6]. By using these
techniques, it becomes possible to predict the fitness associated with
specific protein sequences, thereby drastically reducing the need of
time-consuming manual screening required for this task.

Studying protein fitness landscapes poses significant challenges [7],
particularly in situations where data is scarce due to limitations in ex-
perimental resources or the availability of annotated data. The scarcity
of data restricts the comprehensive exploration of the vast protein
sequence space, making it difficult to gain a complete understanding of
the relationships between sequence variations and protein phenotypes.
Additionally, limited availability of annotated data hampers the devel-
opment and validation of accurate predictive models. These challenges
need the exploration of innovative approaches that can effectively ex-
tract the maximum amount of information from the available data and
address the scarcity issue, enabling more robust analysis and modeling
of protein fitness landscapes.

While several studies on supervised machine learning (where pre-
diction models are obtained from fully labeled datasets) applied to
protein fitness prediction have emerged [6,8–13], there remains a
gap in the literature regarding the application of these techniques
to small dataset situations and the exploration of specific methods,
such as semi-supervised learning (where the models are obtained us-
ing the aggregation of information from both labeled and unlabeled
data), that can address the challenges associated with limited data
availability. Small datasets pose unique difficulties due to the limited
number of labeled samples, making it challenging to train accurate
predictive models. Moreover, traditional supervised approaches may
struggle to generalize well in these scenarios, which has led to the
rise of alternative methodologies like semi-supervised learning. By
harnessing both labeled and unlabeled data, and with the capacity of
taking advantage of learning from multiple views or encodings [14]
(an encoding is a numerical representation of a protein sequence that
allows machine learning models to process and analyze the sequence
information effectively), semi-supervised learning has the potential to
improve model performance, overcome data scarcity, and enhance the
accuracy of protein fitness predictions in small dataset situations, as has
been demonstrated in various domains [15]. Addressing these gaps in
the literature is crucial for advancing the field and developing robust
methods that can effectively handle the challenges posed by scarce data
in protein fitness prediction.

One of the most promising areas of semi-supervised learning is deep
transfer learning, which harnesses the power of pre-trained models to
leverage knowledge from large datasets in related domains [16]. By
transferring learned representations and weights, deep transfer learning
enables the effective utilization of unlabeled labeled data in the target
domain, thereby improving the performance of predictive models. This
approach has shown great potential in various domains associated with
small datasets like emotion [17] and micro-expression [18] recognition,
detection of diabetic retinopathy [19] or machinery fault diagnosis [20]
and has the capacity to also address the challenges in protein landscape
analysis.

Specifically, in the field of protein engineering, which involves
the design and modification of proteins for specific applications or
functions, several methods have emerged that apply deep transfer
learning techniques to a wide range of protein-related tasks [12,21–
25]. This technique consists of applying deep learning models that,
although trained to solve a task, are used to solve a different task.
The idea is to be able to reuse the knowledge learned from feature
extraction in the first layers, which is assumed to be common to both
tasks, so it is only necessary to slightly adjust the weights of the
layers to solve the new task. These approaches make use of pre-trained
2

models, often based on transformer architectures or BERT-like models,
which have been trained on large-scale protein sequence or structure
datasets. By fine-tuning these pre-trained models on task-specific data,
such as protein fitness prediction, deep transfer learning enables the
efficient transfer of learned representations and knowledge to the target
protein engineering task. These methods have demonstrated improved
performance, enhanced generalization, and reduced reliance on large
labeled datasets, making them promising tools for protein engineering
applications in small data contexts.

In scenarios with limited data, it has been observed that simple
supervised methods often exhibit superior performance compared to
deep learning approaches [26]. This can be attributed to the inher-
ent complexity and high-dimensional nature of deep learning models,
which require large amounts of labeled data to generalize effectively.
However, the utilization of semi-supervised learning techniques of-
fers a promising alternative, surpassing the performance of traditional
supervised learning methods in situations with sparse data.

This paper aims to explore the performance of various learning
methodologies in protein fitness prediction, including supervised, semi-
supervised and deep transfer learning methods in the context of limited
data availability. Through a comparative analysis, we seek to identify
the optimal approach for researchers seeking to apply these tech-
niques in protein engineering. By examining their strengths, limitations,
and effectiveness in dealing with scarce data, we found that deep
transfer learning can outperform classical supervised models and semi-
supervised methods, even in situations where labeled data is very
limited. Despite the potential of multi-view learning to exploit the
mixture of multiple sources of information and unlabeled data, our
findings highlight the significant impact of transfer learning in en-
hancing the performance of deep learning models, enabling them to
surpass the capabilities of traditional supervised and semi-supervised
approaches in small dataset situations. The insights gained from this
study provide valuable guidance to researchers in selecting the most
effective methodology for protein engineering tasks with limited data,
furthering our understanding and advancement in the field.

1. Material and methods

1.1. Data

All the models used in this paper were trained and tested using the
green fluorescent protein (GFP) dataset from [27]. This dataset com-
prises 32 610 protein sequences, each associated with a corresponding
fitness value. In the context of this dataset, the fitness value indicates
the intensity of fluorescence exhibited by the protein. The fluorescence
intensity serves as a quantitative measure of the protein’s performance
or activity in terms of its ability to emit green light when excited by
an external light source. The protein sequences in this dataset exhibit
varying numbers of variants in comparison to the wild type sequence.
The distribution of sequences by number of variants can be found in
Table 1.

1.2. Models

1.2.1. Encoding
Protein encodings play a fundamental role in bioinformatics, en-

abling researchers to represent and analyze the rich information em-
bedded within protein sequences and structures. Additionally, in order
to process protein data using machine learning models, it is often
necessary to convert text sequences into numerical representations. One
of the most widely used strategies for this purpose is one-hot encod-
ing, which represents protein sequences using zeros and ones. In this
encoding scheme, each amino acid in a sequence is assigned a binary
vector where only one element is set to 1, indicating its presence at that
position. Although one-hot encoding is a well-established approach,

alternative methods are also employed in this study.
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Table 1
Number of sequences by amount of amino acid substitutions in the GFP dataset from
[27].

# variants # sequences

1 970
2 9 686
3 8 206
4 5 653
5 3 814
6 2 164
7 1 172
8 568
9 237

10 95
11 28
12 9
13 5
14 3

Total 32 610

In our experiments, we have utilized one-hot encoding as a standard
ethod due to its widespread usage and ease of implementation. How-

ver, it is worth noting that some of the methods employed in this paper
re capable of employing different encoding strategies. For instance,
eep transfer learning methods such as ProteinBERT, which we utilized
n our experimentation, possess their own encoders that capture the
nderlying patterns and relationships within protein sequences, repre-
enting them in a latent space. This encoding strategy allows the model
o make effective use of its unique encoding capabilities to extract
eaningful features.

Furthermore, certain semi-supervised methods have the ability to
rain using diverse data representations. They typically employ various
ubsets of features, providing different perspectives and complement-
ng each other in the training process. In our study, we have taken
dvantage of this approach to train a model using a combination of in-
ormation from two different encodings, thereby exploring the optimal
ixture of encodings that yield improved performance. The analysis of

his optimal encoding combination can be found in Section 2.

.2.2. Semi-supervised models
When working with small datasets, where labeled examples are

imited, getting additional information from unlabeled instances be-
omes crucial for improving model performance. Some semi-supervised
earning methods offer a valuable approach in such scenarios, for ex-
mple, by effectively utilizing unlabeled data through pseudo-labeling
echniques. Unlike traditional supervised learning that relies solely
n labeled data, semi-supervised learning takes advantage of the vast
mount of unlabeled data available, which is often more easily acces-
ible. This allows the model to learn from a larger pool of information
nd potentially discover hidden patterns and structures in the unlabeled
ata. A general description of the pseudo-labeling process in semi-
upervised learning models is represented in Fig. 1. By incorporating
oth labeled and unlabeled data, semi-supervised learning can enhance
he generalization ability of the model and improve its performance
n tasks with limited labeled examples. Given the nature of the prob-
em we are trying to solve, where unlabeled instances are readily
vailable while the process of labeling them is both expensive and
ime-consuming, we have found it highly promising to explore the
pplication of semi-supervised methods in this particular context.

However, it is important to acknowledge the challenges and limita-
ions associated with semi-supervised learning. One major challenge is
he reliability of the pseudo-labels assigned to the unlabeled data. Since
hese labels are generated by the model itself, there is the potential for
isclassification and noise, which can impact the quality of the training
rocess. Another limitation is the assumption that the distribution of
abeled and unlabeled data is similar, which may not always hold
3

rue in practice. If the distribution mismatch is significant, the model’s
performance may be compromised. In this context, our experimental
design involved randomly selecting and excluding a certain percentage
of instances from the training dataset, effectively creating a set of unla-
beled data. Subsequently, we utilized the remaining labeled instances to
generate pseudo-labels for the previously unlabeled data. This approach
ensured a balanced distribution between labeled and unlabeled data,
facilitating the exploration of semi-supervised learning methods.

Moreover, in the context of semi-supervised learning, it is crucial to
perform thorough hyperparameter tuning and employ suitable regular-
ization techniques to mitigate the risk of overfitting to the unlabeled
data. To ensure optimal model performance, we conducted a grid
search cross-validation process to select the most suitable hyperpa-
rameters for our experiments. This systematic approach allowed us to
fine-tune the models and maximize their generalization capabilities.

Despite the challenges involved, semi-supervised learning presents
valuable opportunities to get useful information from unlabeled data
and combine that information with the labeled data to improve the
model performance in scenarios with limited labeled examples. By
effectively utilizing both labeled and unlabeled data and addressing the
associated challenges, semi-supervised learning emerges as a powerful
tool to deal with small dataset problems in diverse domains, including
the field of protein engineering.

Although the number of articles that study classification in the field
of semi-supervised learning is abundant in the literature [15], there are
hardly any semi-supervised methods for regression [28]. Additionally,
it is worth noting that, during the time of conducting this study, the
availability of readily accessible implementations for semi-supervised
regression methods was extremely limited. In fact, the only available
method we found was the single-view version of the Co-Regression
model, available in LAMDA-SSL [29], which served as a foundation for
our improved multi-view version. Further details on our Co-Regression
model will be provided in the subsequent paragraphs.

In this context, the initial approach could involve transforming the
regression problem into a classification task. The primary goal is to
establish a reliable ranking of protein fitness, and thus, the fitness
values can be partitioned into categories above and below the median.
Subsequently, a classifier can be trained to predict whether a given
sequence belongs to the category above or below the median (or
any other specified percentile split). Instead of utilizing the actual
class label, the probability obtained from the classifier can serve as
a surrogate measure for ordering the samples based on their fitness.
This alternative has been discarded based on the results obtained in a
preliminary experiment, which revealed that the performance of classi-
fication methods was significantly inferior to that of native regression
methods.

Therefore, we have decided to focus exclusively on using the few
existing semi-supervised regression methods, namely TriTraining Re-
gressor and Multi-view Co-Regression. These methods have shown
potential for yielding favorable outcomes in addressing the challenges
posed by limited data availability.

Multi-view co-regression. Co-Training [30] is one of the most studied
paradigms of semi-supervised classification.

The idea is to simultaneously train two base classifiers on different
views of the data, views that are assumed to be conditionally indepen-
dent of each other. The predictions for which each of the classifiers
is most confident are used to extend the other classifier’s dataset with
new pseudo-labeled instances. With this new dataset, the classifiers are
retrained, to obtain additional pseudo-labeled instances and so on, until
a stopping criterion is reached.

CoReg [31] is an adaptation of the Co-Training paradigm for re-
gression. This adaptation tries to reduce the re-training times of the
base estimators by employing k-nearest neighbors regressors. While this
also eliminates the need to use independent views of the data by using
different distance metrics on the calculations made by each regressor,

for our current problem using two different encodings of the same
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Fig. 1. Pseudo-labeling process in semi-supervised learning. The set of labeled instances in the dataset is represented by L, and the unlabeled instances are represented by U.
equence as independent views could actually lead to an improvement
n the performance of the model. For this reason, we use an adaptation
f the implementation available in the LAMDA-SSL library [29] that
llows the use of independent views.

For the pseudo-labeled instance selection criterion, heuristically, the
rror of the regressor on the labeled example set should decrease the
ost if the most confidently labeled example is utilized. CoReg employs
computationally less costly approximation of the mean squared error

MSE) calculated using only the k-nearest neighboring labeled examples
f the pseudo-labeled instance. Let 𝛥𝑢 denote the result of subtracting

the latter MSE from the former MSE, only the pseudo-labeled instance
with the higher 𝛥𝑢 is added to the training set on each iteration.

In the case of Multi-view Co-Regression, the only parameters that re-
uired adjustment were the orders of the Minkowski distance, 𝐷 (𝑋, 𝑌 )
(
∑𝑛

𝑖=1 |𝑥𝑖 − 𝑦𝑖|
𝑝)

1
𝑝 , utilized by each base 𝑘-nearest neighbors regressor

nternally. We tested the values 𝑝 = 2, 𝑝 = 3, 𝑝 = 4, and 𝑝 = 5.
Ultimately, we achieved the best results by using an order of 𝑝 = 2
for one model and an order of 𝑝 = 5 for the other.

TriTraining regressor. The TriTraining algorithm [32] is an evolution of
the Co-Training paradigm that uses three base classifiers instead of two,
and also eliminates the need to introduce multiple views of the data.
Each base classifier is first trained with a subset of labeled instances.
Then, those classifiers are used to predict the label of some unlabeled
instances. In TriTraining, the set of labeled instances of each classifier
is extended with new pseudo-labeled instances when the label it assigns
to an unlabeled instance differs from the label the other two classifiers
agree on. In other words, if two classifiers agree on the label they assign
to an unlabeled instance and this label differs from the one assigned by
the third classifier, this instance is added to the dataset of the latter with
the label assigned by the first two. As before, the process is repeated
until some stop criteria is reached.

In this study, we evaluated various base models and ultimately
selected a Support Vector Regressor (SVR) and Ridge Regressor due to
their superior performance.

As we have not found any existing implementations of TriTraining
for regression, we have developed our own. In order to adapt this
algorithm to a regression task, a new threshold parameter needs to
be established. If two predicted values are closer than this thresh-
old, it is considered that they agree. We introduce the consequent
changes taking as a basis the implementation available in the sslearn
library [33].

The TriTraining method and its base models underwent a grid
search to explore different parameter combinations. For the Ridge base
model, the grid search considered a range of values for the alpha
parameter, using the values 0, 0.05, and 0.85. The tolerance parameter
was varied using the values 0.0001, 0.01, 0.1, 1, and 10. The selected
values for Ridge were 0.85 for the alpha and 1 for the tolerance.
Similarly, for the SVR model, the grid search examined two kernel
options: radial basis function kernel and linear kernel. The tolerance
parameter was again tested using the same set of values. The chosen
kernel for SVR was the radial basis function and the tolerance was set
4

to 1.
1.2.3. Supervised models
In light of the limited data availability, we sought to assess the per-

formance of the base regressors used in the semi-supervised models in
this study, considering their reduced number of parameters compared
to deep learning models. This examination is particularly important
in low-data contexts where overfitting can pose significant challenges.
This analysis will provide a deeper understanding of the impact of the
strategies employed by the semi-supervised methods and allow us to
assess their ultimate effectiveness. Since the base models (SVR, Ridge,
and 𝑘-nearest neighbors regressor) were already optimized through a
grid search in the previous section, those optimized values are the
ones used for these models. In our experiments, we employed these
supervised models both independently and as base models for the semi-
supervised learning approaches. By conducting this evaluation, we can
gain insights into the efficacy of the semi-supervised approaches and
verify their performance in our specific scenario, while being able to
compare them to their supervised base models.

1.2.4. Deep transfer learning
Within the field of protein engineering, numerous models have

been developed to address the protein fitness prediction challenge.
Specifically, deep learning models based on latent space representations
have been proven to accurately capture intrinsic properties of proteins
and their relationships between sequences [34]. These models range
from relatively small architectures based on long short-term memory
(LSTM) neural networks [12,21,35], to large-scale architectures based
on large language models (LLMs) originally developed in the natural
language processing (NLP) field [22,24].

We did a preliminary evaluation of several deep learning methods
for potential use in transfer learning, including options such as ProtT5-
XL [22], ProtBert-BFD [22], TAPE Transformer [23], ESM-1b [35].
Despite the typically high hardware demands associated with deep
learning methods, one of our goals was to use one that could be
executed with moderate hardware requirements, which is why we
ultimately discarded these methods. When we compare the size of
ProteinBERT [25], our chosen model, with ≈ 16M parameters with the
mentioned methods (TAPE Transformer: ≈ 38M parameters; ProtBert-
BFD: ≈ 430M parameters; ESM-1b: ≈ 650M parameters; ProtT5-XL:
≈ 3B parameters). ProteinBERT is much lighter, thus reducing ex-
ecution times and alleviating hardware requirements. Moreover, the
TCR-BERT [36] and EpiBERTope [37] methods were discarded because
their adaptation for this particular task seemed complex and would
have been time-consuming.

These approaches offer diverse perspectives on protein engineering,
but most of the methods require expensive graphics cards to train
the models. Interestingly, we only found one deep transfer learning
model [21] that takes into account small training set scenarios.

ProteinBERT [25], the deep learning method finally selected for our
study, is a general model based on the BERT (Bidirectional Encoder
Representations from Transformers) architecture [38], which is one of
the most commonly used architectures in natural language processing
(NLP) tasks. BERT and ProteinBERT are based on the transformer archi-
tecture, which utilizes self-attention mechanisms to capture contextual
dependencies in a sequence of words or tokens.
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The key idea behind ProteinBERT is to pre-train the model on
a large corpus of unlabeled protein sequences in a self-supervised
manner. During pre-training, ProteinBERT learns to predict masked
amino acids in a protein, where a certain percentage of amino acids
are randomly masked out, and the model needs to predict the missing
amino acids based on the context provided by the surrounding ones.
This masked language modeling objective allows ProteinBERT to learn
contextualized representations of proteins, capturing the relationships
of amino acids inside them.

ProteinBERT also employs another pre-training task called Gene
Ontology (GO) [39] annotation prediction. In this task, the model is
trained to predict a label based on diverse protein functions. This
objective helps ProteinBERT understand protein-level relationships and
dependencies.

The key innovation of BERT lies in its bidirectional nature. Unlike
previous models that process token sequences in a left-to-right or right-
to-left manner, BERT uses a bidirectional transformer architecture,
allowing ProteinBERT to consider the entire protein sequence during
both pre-training and fine-tuning. This enables ProteinBERT to capture
dependencies from both preceding and succeeding amino acids, leading
to a deeper understanding of their context and relationships.

We selected ProteinBERT as our specific model of choice due to sev-
eral compelling reasons. Firstly, ProteinBERT offers exceptional adapt-
ability to a wide range of protein-related problems, making it a versatile
tool for our research. Additionally, the fine-tuning process of Protein-
BERT is straightforward, allowing us to easily adapt the model to our
specific task. Moreover, ProteinBERT exhibits a relatively lightweight
structure compared to other models while maintaining comparable
performance, making it efficient in terms of computational resources.
Lastly, ProteinBERT aligns with the current state-of-the-art in the field
by applying the transformer-based architecture [40], which is widely
recognized and utilized in the protein engineering and NLP domains.

After pre-training, ProteinBERT can be fine-tuned on specific down-
stream protein-related tasks such as secondary structure prediction,
remote homology prediction or protein fitness prediction. During fine-
tuning, ProteinBERT is trained on task-specific labeled data, where
the model’s parameters are adjusted to optimize performance on the
target task. In this case, all the parameters have been selected after a
preliminary cross-validated grid search.

ProteinBERT was trained using a grid search approach to optimize
its hyperparameters. The following values were tested for each pa-
rameter: batch size values of 8, 32, and 64 (with 8 selected as the
best value), maximum epochs per stage of 50, 200, and 1000 (with
1000 selected), learning rate of 1e−03, 1e−04, and 1e−05 (with 1e−04
selected), learning rate with frozen pre-trained layers of 1e−03, 1e−04,
and 1e−05 (with 1e−05 selected), number of final epochs of 50, 200,
and 500 (with 200 selected), dropout rate of 0.5 and 0.75 (with 0.5
selected), factor for the learning rate schedule of 0.5, 0.25, and 0.1
(with 0.1 selected), patience for learning rate reduction of 5, 10, and
50 (with 50 selected), minimum learning rate of 1e−08 and 1e−09
(with 1e−09 selected), patience for early stopping of 10, 20, and 60
(with 60 selected), and beginning with frozen or unfrozen pre-trained
layers (with frozen selected). These hyperparameters were carefully
selected to optimize the training of ProteinBERT and ensure its effective
performance for protein-related tasks.

1.3. Model training methodology

The incorporation of additional information extracted from the
unlabeled instances of the dataset is especially relevant in the training
process of the models studied in this work. Fig. 2 shows the training
processes of semi-supervised models and those obtained by transfer
learning (in our study, from ProteinBERT). The upper part of the
diagram shows the process implemented in this study, which involves
progressively eliminating labeled instances. To simulate situations with
5

fewer instances, we have randomly selected some of the available
labeled instances, removed their label, and moved them to the unla-
beled set. This approach allows us to simulate situations with far fewer
labeled instances from our original dataset of approximately 30,000
instances.

Once the instances have been divided into labeled and unlabeled,
the process utilized by the semi-supervised models is shown in the
lower left and the process followed by ProteinBERT in the lower right. It
should be noted that the training process of the semi-supervised models
involves the pseudo-labeling process, which was already illustrated in
Fig. 1. On the other hand, the unlabeled instances used by ProteinBERT
are from the UniRef90 database, and these are used in the pre-training
process, after which the labeled instances are used for the fine-tuning
process.

1.4. Evaluation metrics

We have employed three metrics to evaluate the performance of the
models analyzes in this paper. First, we utilize the mean squared error
(MSE) as a baseline metric for assessing the performance of the models
in a regression problem. The MSE provides a quantitative measure of
the average squared difference between the predicted and actual fitness
values.

However, our primary focus, and the basis for our conclusions, is the
Spearman’s rank correlation coefficient [41], denoted as Spearman’s 𝜌.
This metric is widely used in the literature on protein engineering and
it has been used in a reference benchmark paper by Brandes et al. [23].
Spearman’s 𝜌 measures the relationship between the predicted and the
actual rankings of the protein fitness values. It accounts for the relative
order of the values rather than their specific numerical differences. By
using Spearman’s 𝜌, we can effectively assess the models’ performance
in capturing the relative ordering of the proteins according to their
fitness values, which is crucial in many bioinformatics applications.

Spearman’s rank correlation coefficient is defined by the following
equation:

𝜌 = 1 −
6 ⋅

∑

𝑑2𝑖
𝑛(𝑛2 − 1)

(1)

In this context, 𝑑𝑖 represents the difference in rank for each instance
𝑖 between the two rankings and 𝑛 represents the number of ranked
instances.

The values for Spearman’s 𝜌 can range from −1 to +1. A value of
+1 indicates a perfect positive monotonic relationship, where higher
ranks in one variable correspond to higher ranks in the other variable. A
value of −1 indicates a perfect negative monotonic relationship, where
igher ranks in one variable correspond to lower ranks in the other
ariable. A value of 0 indicates no monotonic relationship between the
ariables. Intermediate values between −1 and +1 represent varying de-

grees of monotonicity, with higher absolute values indicating stronger
correlations.

In the context of selecting mutations for comprehensive analysis in
the laboratory, it is of greater interest to ensure the accuracy of the
top positions in the obtained ranking, even if the lower positions may
not be as reliable. Hence, it is pertinent to consider a novel metric that
emphasizes the prioritization of the top-ranking positions. A weighted
version [42] of the Kendall’s rank correlation coefficient [43] has the
potential to achieve such results by adding a higher weight to the most
important positions in the ranking that gradually decreases for the less
relevant ranks. In this regard, we have employed this metric, referred
to as weighted 𝜏 hereafter. In its non-weighted version Kendall’s rank
correlation coefficient is defined by Eq. (2), where 𝐶 is the number of
concordant pairs and 𝐷 is the number of discordant pairs.

𝜏 = 𝐶 −𝐷
𝐶 +𝐷

(2)

In the weighted version, that we used in this paper, the assignment
of weights relies on a rank array, which allocates nonnegative ranks to
individual elements. These ranks, inversely proportional to the values
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Fig. 2. Training process for semi-supervised and transfer learning methods.
they represent, prioritize elements with lower values, with the high-
est rank assigned to the value of 0. Additionally, a weight function
is employed to derive weights from the assigned ranks. The weight
assigned to an exchange is then determined by aggregating the weights
associated with the ranks of the exchanged elements, either through
summation or multiplication. The resulting values of weighted 𝜏 can
vary from −1 to +1, as previously explained for Spearman’s 𝜌.

. Results

.1. Encodings multi-view analysis

One of the most relevant aspects to consider in the field of semi-
upervised learning is its ability to leverage information from different
ata representations or encodings. In this case, given the numerous
ptions available for encoding protein sequences, we can provide valu-
ble information to the models by utilizing two different encodings.
o study the effect of combining different encodings, a preliminary
xperiment was conducted using a reduced dataset, from which the
est combination of encodings for subsequent experiments could be
etermined. This dataset consists of a 10% subset of the previously
xplained general dataset, which is formed by 2600 train instances
of which 500 are labeled) and 660 test instances. The objective of
his dataset size is to simulate a situation with a realistically small
mount of labeled data. The Multi-view Co-Regression model was used
n this experiment since it is the only one, among the models studied
n this paper, that supports multiple views or encodings. To obtain a
ore stable estimation of the model performance, the training process
as repeated five times due to the randomness of the method for
ach pair of encodings using different random seeds. This approach
llows for a more reliable and consistent measure of the average model
erformance across multiple iterations.

Fig. 3 displays the results obtained by Multi-view Co-Regression
hen combining one encoding with another. The values on the diago-
al represent the results obtained using the same encoding twice (which
trictly speaking does not correspond to a correct application of the
ulti-view approximation, but the values obtained have been included

s a reference).
In this figure we can observe that binary-based encodings do not

ive the best performance. Although one-hot encoding is the most
ommonly used representation in the field, it is not the most suitable
ncoding for KNN. This is due to the high dimensionality and sparsity
6

of the one-hot encoded features, which can lead to challenges in accu-
rately measuring similarity and consequently have a negative impact
on KNN performance.

The utilization of other encodings based on continuous numerical
terms is enough to improve the results. Particularly, representations
based on physicochemical, evolutionary, or structural features of amino
acids provide a substantial enhancement. However, these values are
still far from those obtained by combining different encodings. The
figure clearly demonstrates that for each diagonal value, there is always
another value in the corresponding row or column that outperforms
it. This observation strongly indicates that the multi-view model can
extract valuable information from the utilization of two complemen-
tary encodings, and is by itself already an interesting result of the
experiments presented in this article. From this figure, we must also
highlight that the best performance was achieved by combining a
physicochemical property (Acthely factors) and an evolutionary prop-
erty (BLOSUM62), which is logical as the model can benefit from
information of different aspects of the amino acids.

2.2. Protein fitness landscape results

In the protein fitness prediction experiments, we analyzed the per-
formance of supervised, semi-supervised, and transfer learning methods
using the complete dataset defined in Section 1.1. Since the main
focus of this study is to evaluate performance in low-data contexts, we
conducted a series of experiments with different percentages of labeled
data which were run 5 times each to obtain more statistically meaning-
ful results. Firstly, we partitioned the dataset into training, validation,
and test sets with percentages of 65%, 15%, and 20% respectively.
For ProteinBERT, the validation set was used for model validation,
following the common practice in deep learning. For the other methods,
the validation set was combined with the training set to ensure equal
data availability during the training process. Secondly, we performed
experiments for each method where the number of labeled instances
was limited to specific percentages. These percentages were 100%,
75%, 50%, 25%, 10%, 5%, 1%, 0.5%, 0.25%, and 0.01%. Although
some of these labeling percentages may be too small to obtain reliable
models, we included a progression to sufficiently low percentages to
visualize the progress of each model with respect to dataset size. The
case of semi-supervised models is special as they were trained on both
the labeled dataset and the corresponding percentage of remaining

unlabeled instances.
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Fig. 3. Multi-view Co-regression results using a combination of two different views (encodings). In the labels we can see the different encoding names grouped by the kind of
property group they are part of according to the classification in [44].
In this dataset, all sequences, regardless of the number of substitu-
tions they contain, are part of the same dataset. This approach allows
us to study the models’ ability to predict the protein fitness landscape
from a varied yet reduced dataset. In Fig. 4, we observe that, for any
given labeling percentage, ProteinBERT consistently outperforms the
other models. It is remarkable that the performance of ProteinBERT
remains consistently superior to the other models, despite the reduction
in the training dataset. One might expect that simpler models, com-
pared to the complex architectures of deep learning, would give better
results, since having fewer parameters would make their generalization
capabilities less affected by the limited availability of labeled training
data. However, the ability to transfer knowledge from the pre-training
phase enables ProteinBERT to achieve significantly better results than
the other models, even with limited data.

Fig. 4 provides an interesting overview of the evolution of the per-
formances of the different methods as the number of labeled instances
is reduced. But it is also especially interesting to focus on what happens
at two of the extremes, in which the number of labeled instances are
5% and 75%.

Firstly, it is worth examining the case where there is 5% of labeled
instances, which corresponds to a scenario with approximately 1300
instances, a common situation in many real-world problems. In Table 2,
we observe that ProteinBERT achieves the highest performance, signif-
icantly outperforming other methods. This is evident across multiple
evaluation metrics, including the classic regression metric MSE and
the two ranking metrics. The supervised methods, SVR and Ridge,
obtain results that come closest to ProteinBERT’s performance. Addi-
tionally, the semi-supervised method TriTrainingRegressor exhibits a
slight improvement over Ridge, suggesting that semi-supervised meth-
ods can get some useful information from unlabeled instances. These
findings highlight the effectiveness of ProteinBERT in scenarios with
limited labeled data, showcasing its superior performance compared to
alternative approaches.

Secondly, we have chosen to examine the scenario with 75% labeled
instances because it represents a sufficiently large dataset (approxi-
7

mately 20 000 instances) and allows for the inclusion of an additional
25% of unlabeled instances, enabling us to analyze the performance
of semi-supervised methods. In Table 3, we observe that once again
ProteinBERT achieves the best results across all metrics, followed by
Ridge and SVR, as well as their semi-supervised counterparts utilizing
TriTrainingRegressor. The consistent superior performance of Protein-
BERT underscores its effectiveness across a wide range of dataset sizes,
including both small and big scenarios.

A notable conclusion that can be drawn from this experimentation is
that semi-supervised models do not achieve the expected performance.
In fact, the results obtained are in some cases slightly worse than the
supervised models they are wrapping. From this experimentation, we
can infer that the insights that semi-supervised methods can extract
from unlabeled data not only fail to provide useful information to the
models but also introduces noise that worsens the final results. There is
one notable exception, which is the case of Multi-view Co-regression.
In situations with limited data but sufficient for maintaining accept-
able performance (between 5% and 0.5%), Co-regression significantly
improves the results of its base classifier, specially when it is able of
getting advantage of two different encodings applying the multi-view
approach. However, the issue lies with its base classifier, KNeigh-
borsRegressor, which performs significantly worse than the others even
after the parameter tuning process, as explained in Section 2.1.

3. Discussion

Based on the results presented in the previous section, it can be
concluded that deep transfer learning methods have established a new
state-of-the-art in protein fitness prediction. The inherent language
understanding capabilities of these methods enable them to adapt
effectively to both high-data and low-data scenarios. Remarkably, deep
transfer learning surpasses the performance of methods specifically
designed for low-data situations. Neither the simplicity of classical
regression methods nor the ability of semi-supervised methods to ex-
tract information from unlabeled instances come close to matching the

performance of deep transfer learning methods.
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Fig. 4. Spearman’s 𝜌 results across a selection of labeled training sizes. Please note that semi-supervised methods are not included in the 100% step as they require a certain
quantity of unlabeled instances to operate effectively.
Table 2
Protein fitness prediction results training with ≈ 1300 labeled instances from the
training set. (MSE: Mean squared error; 𝜌: Spearman’s correlation coefficient; 𝜏:
weighted version of Kendall’s 𝜏).

Model Semi-supervised MSE 𝜌 𝜏

Ridge – 0.5146 0.7631 0.5935
SVR – 0.9233 0.7625 0.6399
KNeighborsRegressor – 1.4481 0.3478 0.3397
Ridge TriTrainingRegressor 0.5228 0.7640 0.6096
SVR TriTrainingRegressor 0.9202 0.7575 0.6224
KNeighborsRegressor SingleviewCoReg 1.4639 0.3793 0.3629
KNeighborsRegressor MultiviewCoReg 1.0512 0.4923 0.4115
ProteinBERT Transfer learning 0.2663 0.8094 0.7034

Note: The best values are highlighted in bold.

Table 3
Protein fitness prediction results training with 75% of the dataset ≈ 20 000 labeled
instances from the training set. (MSE: Mean squared error; 𝜌: Spearman’s correlation
coefficient; 𝜏: weighted version of Kendall’s 𝜏).

Model Semi-supervised MSE 𝜌 𝜏

Ridge – 0.3603 0.8575 0.6873
SVR – 0.3890 0.8601 0.7742
KNeighborsRegressor – 1.2902 0.5573 0.4929
Ridge TriTrainingRegressor 0.3665 0.8524 0.7027
SVR TriTrainingRegressor 0.3846 0.8622 0.7570
KNeighborsRegressor SingleviewCoReg 1.2517 0.5384 0.4570
KNeighborsRegressor MultiviewCoReg 0.8848 0.6965 0.5503
ProteinBERT Transfer learning 0.0701 0.8763 0.8022

Note: The best values are highlighted in bold.

Previously, implementing and training deep learning models could
ose challenges in terms of difficulty and computational requirements
or wet lab researchers. However, the simplicity of fine-tuning pre-
rained models like ProteinBERT means that even non-specialized re-
earchers in machine learning will be able to train a powerful model
ithout issue. Additionally, as demonstrated in this study, these models
o not require a large amount of data to outperform other methods
n common scenarios encountered by laboratory researchers. This ac-
essibility and efficiency make deep transfer learning models, such as
roteinBERT, a highly attractive option for researchers seeking accu-
ate predictions with limited data and minimal expertise in machine
8

earning.
The advantage of deep transfer learning methods over other options
studied in this work can be attributed to their ability to understand the
language of proteins through their self-training phase. This self-training
step is related to the techniques used by the semi-supervised models,
where the model is able to extract information from unlabeled data.
Even some authors would classify this deep transfer learning models
into the semi-supervised category [45]. Nevertheless, ProteinBERT has
a much more efficient capacity of extracting that information after
seeing the results of the semi-supervised methods. The incorporation
of the encoding phase within the model architecture also ensures that
less information is lost in the sequences and enables the discovery
of an optimal encoding for the problem at hand. This combination
of language comprehension and effective encoding could explain the
superior performance of deep transfer learning models in protein fitness
prediction.

Based on the findings, we can conclude that further research is
needed on semi-supervised methods, especially in the context of regres-
sion. While it appears that these methods have the potential to improve
upon supervised approaches, it is challenging for them to surpass the
performance of transfer learning, even in scenarios with limited labeled
data available. Nevertheless, the fusion of information from different
encodings in multi-view semi-supervised methods is worth investigat-
ing further, as they have shown to be highly effective in enhancing
the performance of the base model. Therefore, more exploration and
experimentation are required to fully understand the capabilities and
limitations of semi-supervised methods in protein-related tasks.

In conclusion, this study highlights the emergence of deep transfer
learning methods as a new state-of-the-art in protein fitness prediction.
Through their ability to comprehend the language of amino acids and
their efficient fine-tuning process, these models demonstrate superior
performance across a wide range of dataset sizes, surpassing both
traditional regression approaches and semi-supervised methods. The
integration of self-training and encoding within the model architecture
ensures optimal information retention and sequence representation for
the problem at hand. These findings showcase the potential of deep
transfer learning methods to revolutionize protein-related research,
providing accessible and effective tools for researchers, including those
with limited machine learning expertise. With further advancements
and research in this field, deep transfer learning holds promise for
accelerating discoveries and breakthroughs in protein analysis and

bioinformatics.
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In addition to the findings presented in this study, there are several
promising directions for future research. One area of investigation
is exploring alternative deep learning models that incorporate inputs
combining multiple encodings. This is motivated by the observed im-
provements achieved by multi-view methods that make use of diverse
encodings. Additionally, investigating the performance of shallow net-
works using concatenated encodings as input is another interesting
research question. Examining whether such networks outperform those
working solely on individual encodings would provide valuable in-
sights. These future research endeavors have the potential to advance
our understanding of protein fitness prediction and contribute to the
development of more effective modeling approaches.
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