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A B S T R A C T   

As new technologies emerge is necessary to assess if they can actually contribute to sustainable improvement of 
industrial processes. Life Cycle Assessment (LCA) is a valuable tool to determine environmental impacts and 
compare systems. However, this comparison raises challenges when they have different maturity. This paper 
performs ex-ante LCA of an additive manufacturing (AM) technology, based on a step-wise approach built with 
parametrized modelling, allowing fair comparison with its conventional counterpart, for the study case of a 
gearbox component. Results show that AM technology generates higher impacts than conventional 
manufacturing (CM) casting process, using baseline values. These impacts can be reduced by 94% with best 
operating performances from literature, with emissions from 4520 to 264 kg CO2 eq./kg piece, and non- 
significant difference with CM (demonstrated by Monte Carlo sampling). A 58% weight reduction is necessary 
for the AM process to improves its environmental sustainability. This research provides eco-design recommen-
dations supporting decision making for further development of new technology.   

1. Introduction 

The industrial sector represents a significant environmental pressure, 
with 22% of the total greenhouse gas emissions at European level (Eu-
ropean Environment Agency [1] and 29% of the total energy con-
sumption at worldwide level [2]. It is therefore necessary to improve the 
sustainability of industrial processes [3] and adopt new technologies to 
do so. The deployment of additive manufacturing (AM) can play an 
important role towards this transition [4,5,6]. 

The term “additive manufacturing” (AM) refers to the technique of 
creating components by mixing materials based on 3D model data, often 
layer by layer, in opposition to formative manufacturing and subtractive 
manufacturing, as defined by ASTM and ISO standards [7]. It can reduce 
resource, energy and waste, reconfigure supply chains and produce 
more efficient designs [8,9]. Combining such advanced technology with 
new performant materials such as Metal Matrix Composites (MMCs) can 
further reduce emissions [10]. MMCs, composed of metal and additional 
component(s) such as ceramics with high strength, wear resistance, 

fatigue or other specific properties [11], can represent a promising 
lightweight and sustainable alternative for the automotive industry 
[12]. 

To demonstrate the sustainability of these developing technologies, 
it is necessary to compare their environmental impact with conventional 
technologies, via the comprehensive Life Cycle Assessment (LCA) 
methodology [13]. Up to now, only a few studies performed such 
evaluation. Paris et al., [13] compared the environmental impacts of a 
Ti6AlV turbine made by a subtractive conventional manufacturing (CM) 
process with an AM technique called Electronic Beam Melting (EBM) 
with a not completely optimized geometry, based on primary process 
data. The results showed lower impacts for the AM technology, in 
particular in the case of complex shapes (high material removal). 
Ingarao et al., [14] created different geometry scenarios for aluminium 
alloys, using bibliography data, and showed that the AM technology is 
suitable in terms of sustainability when the weight is reduced by 50% 
and even more if the use phase is included in the scope. The benefits of 
AM process were also shown in [15] for Ti6Al4V components, using a 
partially parametrized model and data from literature, with a better 
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energy efficiency thanks to the lower amount of input material used. A 
study by van Sice & Faludi, [16] used information to simulate various 
CM and AM techniques from a database and from literature review, 
respectively, to compare the manufacturing of steel, aluminium and ti-
tanium parts. The authors concluded that AM processes generated 
higher impacts when focusing only on the manufacturing process, while 
the further effects on mass reduction and design need to be considered to 
improve their sustainability. Landi et al., [17] analysed and compared 
the environmental impacts of an AM technology with a subtractive CM, 
using primary data obtained from direct measurements in the produc-
tion process of spur gears made of steel alloy, obtaining advantages for 
the AM process, but pointing out that it is still an experimental tech-
nology with a lower maturity level than its counterpart. A comparative 
gate-to-gate LCA was carried out on a software-simulated AM process 
and a CM industrial method, by Swetha et al., [18], obtaining that an 
optimization on the component's topology it is necessary to obtain a 
more environmentally friendly process. Kokare et al. [19,20] compared 
2 AM techniques (Wire arc additive manufacturing, WAAM, and Selec-
tive Laser Melting, SLM) with a conventional subtractive technique, for 
the production of a steel marine propeller, showing WAAM as the best 
favourable option. 

Most of these studies relied on both the collection of primary data 
and process simulation. Due to the low maturity of AM technologies, it is 
important to consider upscaling changes to get a fair comparison with 
mature CM technologies [21,22,23]. For this purpose, several frame-
works with different scopes and definitions have emerge in recent times, 
as shown in the following references: (i) Wender et al. [23] introduced 
the idea of anticipatory LCA as a “forward-looking, non-predictive tool 
that increases model uncertainty through inclusion of prospective 
modelling tools and multiple social perspectives”; (ii) Arvidsson et al. 
[24] stated that “an LCA is prospective when the technology studied is in 
an early phase of development but the technology is modelled at a 
future, more-developed phase”; (iii) an ex-ante LCA “explores the future 
by assessing a range of possible scenarios that define the space in which 
the emerging technology may operate at future performance on full 
operational scale” as explained by Cucurachi et al. [25]. Despite the 
minor differences between the sources cited, as the anticipatory LCA 
included a socioeconomic perspective, and the prospective LCA can be 
performed on an already established technology, the term ex-ante has 
been adopted as the preferred one for this study. The use of this 
expression makes clearer than the assessment can be performed prior 
market introduction [26]. 

Nomenclature 

BED Break-even distance 
ECasting Energy used in casting unit process 
ECleaning1 Energy used in first cleaning unit process 
ECleaning2 Energy used in second cleaning unit process 
EComputer Energy used by the computer process 
EDED Energy used during the printing process 
EDeburring Energy used in deburring unit process 
EFinishing Energy used in finishing unit process 
EFume Energy used in the fume extraction unit process 
EMachining Energy used in machining unit process 
EMixing Energy used in the powder mixing unit process 
EPolishing Energy used in the polishing unit process 
ESieved Energy used in the sieving unit process 
ESupport plate Energy used in the support plate manufacturing process 
EThermal Energy used in thermal treatment unit process 
EVacuum Energy used in the vacuum cleaner unit process 
malloy,in Mass of alloy introduced 
malloy waste Mass of wasted alloy 
mBrass wire Mass of brass wire used in the support plate manufacturing 
mfinal,AM Final mass of the product 
mfinal,CM Final mass of the product 
mmetal waste Mass of wasted metal 
msand,Cleaning1 Sand introduced in the first cleaning unit process 
msand,Cleaning2 Sand introduced in the second cleaning unit process 
msand,in Total mass of sand introduced 
msand waste Mass of wasted sand 
mSupport plate Mass of the support plate 
moil,Casting Oil introduced in the casting unit process 
moil,Finishing Oil introduced in the finishing unit process 
moil,in Total mass of oil introduced 
moil,Thermal Oil introduced in the thermal treatment unit process 
moil waste Mass of wasted oil 
moil,Machining Oil introduced in the machining unit process 
mpowder,in Raw metallic powder introduced 
mpowder,not used Mass of powder not deposited 
mpowder,sieved Mass of sieved powder 
mpowder,total Total metallic powder fed into the system 

mpowder,vacuum Mass of vacuumed powder 
mpowder waste Mass of wasted powder 
mwastewater Mass of wasted water 
mwater,Casting Water introduced in the casting unit process 
mwater,Finishing Water introduced in the finishing unit process 
mwater,in Total mass of water introduced 
mwater,Machining Water introduced in the machining unit process 
PComputer Power of computer 
PDED1 Power of part one of the DED machine (laser) 
PDED2 Power of part two of the DED machine (robot arm) 
PFume Power of fume extraction system 
PPolishing Power of polishing machine 
PSieved Power of sieving device 
PSupplort plate Power of support plate manufacturing machine 
PVacuum Power of vacuum cleaner machine 
QBlowing Argon blowing flow 
QDED Argon printing time 
rflow Metal powder flow rate 
rRecirculation Argon recirculation rate 
SDg95 Standard deviation under a 95% interval confidence 
S.I. Sensitivity index 
tBlowing Blowing argon flow time 
tDED Printing time 
tPolishing Polishing time 
tSieved Sieving time 
tSupport plate Support plate manufacturing time 
tVacuum Vacuum cleaner time 
VAr,in Volume of argon introduced 
VAr,total Total volume of argon used in the printing chamber 
Weight Decrease Break-even weight point 
ηCasting Efficiency of the casting unit process 
ηDeburring Efficiency of the deburring unit process 
ηDeposition Deposition efficiency 
ηFinishing Efficiency of the finishing unit process 
ηMachining Efficiency of the machining unit process 
ηPolishing Polishing efficiency 
μg Geometric mean 
σg Geometric standard deviation  
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In order to apply an ex-ante LCA and facilitate the creation of 
exploratory scenarios, parametric modelling built by mathematical 
correlations to generate the material and energy balances and focused 
on the most influencing parameters, can be introduced. A parametric 
framework was applied by Yao & Huang [27] for the identification of 
research development priorities but this study only focuses on energy 
and cost assessment, without a comparative purpose. In literature, some 
parametrized LCA studies were used to evaluate and support the eco- 
design of emerging technologies in other sectors (e.g. [28,29]) based 
on process modelling, scenarios building with different parameters 
values and sensitivity analysis to identify the key parameters. 

Furthermore, as deduced from the comprehensive review of AM 
process carried out by [20] certain AM technologies have not received 
much attention to date, because of their lower maturity level, and some 
process variable parameters have not yet been thoroughly investigated. 
For these reasons, future research must develop predictive environ-
mental models. 

The present paper builds an ex-ante LCA approach, based on para-
metric modelling, to evaluate, in this case, the environmental impacts of 
an AM emerging technology compared to a CM mature process, for the 
case study of a titanium gearbox component produced by a novel 
Directed Energy Deposition (DED) technique. The parametric method-
ological approach and further analyses (sensitivity, break-even point 
and uncertainty) are first described, since they could be used in other 
context studies, while the results for the specific case study are further 
analysed and discussed. The main objective of the present study is to 
develop a methodology that can be used as a predictive tool for the 
future impacts of emerging technologies, allowing fair comparison with 
more mature ones, and giving early-stage design recommendations. This 
is demonstrated by comparing a conventional casting technology with a 
DED AM technology, which use titanium matrix composite powder, that 
have not been found to date in literature. The results and methodology 
proposed in this study can help AM manufacturers to choose the most 
sustainable technology and to ensure that the parameters of new tech-
nologies are developed under an eco-design approach. 

2. Methodology 

To support the design of an AM technique with environmental 
criteria, a stepwise approach based on the standardized LCA method-
ology (ISO 14040/44, 2006) is followed. 

As first step, a parametrized inventory model is built for the AM 
technique, expressing relationships between dependant parameters, 
using technology prototype data as baseline values for the independent 
variables. Then, scale-up scenarios are defined. To do so, the most 
influential parameters are identified via sensitivity analysis. Based on a 
literature review and expert knowledge, the best available values for the 
sensitive independent parameters that could be affected by the upscale 
of the technology are determined (e.g. best efficiency rates obtained by 
similar technologies). The literature values are used to model the best 
scenario of the AM technique. After that, the results analysis takes part, 
including several different techniques. Besides the contribution and 
sensitivity analyses identifying the key processes and parameters, the 
calculation of break-even point values is performed to determine the 
target value of a parameter that allows the AM technique to generate less 
environmental impacts than the conventional alternative. These out-
comes can therefore support the eco-design of the technology by 
prioritizing efforts and defining design objectives. Finally, a compara-
tive uncertainty analysis (based on Monte Carlo sampling) of the sce-
narios is applied to understand the robustness of the potential 
environmental benefits and trade-offs of the AM technique. 

The modelling is done in SimaPro® 9.3 software, using parameters, 
scenarios and uncertainty analysis functions. 

2.1. Study case 

Two different technologies are assessed in this study, both capable to 
produce the same gearbox component. The first one is a conventional 
technology, already implemented in the market. It uses aluminium that 
goes first through casting, followed by different steps of refining such as 
deburring, sand cleaning and heat treatment, each of them with a 
different performance over the material quantity, using auxiliary ma-
terials as water, sand and oil. The second technology assessed is an AM 
technique called Directed Energy Deposition, where the powder mate-
rial fed is fused by a laser, placed on a robotic arm, which deposits the 
material over a metallic plate to make the desired form, while is 
controlled by a computer with the 3D design. This operation takes place 
under a vacuum chamber filled with argon to avoid any oxygen reaction 
with the metal that can cause problems during the manufacturing pro-
cess. The printing process is carried out on a titanium metal plate, which 
varies in shape and size depending on the part to be manufactured in 
each process. The powder material used is a Titanium Matrix Composite 
made from alpha-beta titanium alloy (Ti6Al4V) and titanium carbide 
(TiC) nanoparticles, produced in a High Energy Ball Milling process. 
This alloy provides high-quality properties: strength to weight ratio, 
corrosion resistance, biocompatibility, and low thermal expansion [30], 
and the TiC ceramic particles apport functionalities as its high melting 
point, elastic modulus, high hardness, low density, high flexure strength, 
good thermal conductivity, high resistance to corrosion and oxidation, 
and high thermal shock resistance [31]. A complete LCA study of the 
production route for this powder has been studied by Santiago-Herrera 
et al. [32]. 

2.2. Goal and scope of the LCA study 

The main aim of this study is to evaluate and compare the environ-
mental performance of two different technologies, capable to produce a 
gearbox component for automobiles: (i) a conventional manufacturing 
technology based on casting, and; (ii) an additive manufacturing one 
using the DED technique. 

Figs. 1 and 2 represents the system boundaries for CM and AM pro-
cesses, respectively. The systems boundaries are focused on the pro-
duction phase of the gearbox component, including all the specific 
processes constituting the foreground data, and background data 
retrieved from databases. It also incorporates the use phase, in order to 
analyse potential benefits of the AM component depending on its po-
tential weight savings. The use phase is modelled only for the calculation 
of the break-even point distance depending on the component mass 
reduction and associated fuel savings. End-of-Life is not included due to 
the lack of data at this stage of the project. Infrastructures components 
are also excluded from this study. 

The function of the assessed systems is the production of one com-
plete piece. Due to the uncertainties on final weight and properties of the 
manufactured piece at such development stage, the comparison is pri-
marily done on a mass unit basis, which is a tangible unit which facili-
tates mass balance. The functional unit is there for the manufacturing of 
1 kg of piece. The further sensitivity analysis will analyse the possible 
weight differences between AM and CM and the effects on impact 
results. 

The geographical representativeness of the study is set under the 
European framework. 

2.3. Life cycle inventory 

Production data, obtained during the 2021–2022 period from two 
European industrial partners from the automotive sector, are used as a 
basis for the foreground inventory data. Background processes are 
modelled with ecoinvent v3.8 database and “APOS” system model (at 
the point of substitution), to adopt an attributional approach while 
extending the system boundaries to allocate co-products burdens [33]. 
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The different chosen datasets are shown on Supplementary Material, 
Table S1&S2. 

The following sub-sections detail the development of the para-
metrised model for the determination of foreground data, the definition 
of parameters values and their uncertainty, and the construction of 
different scenarios. 

2.3.1. Development of the parametrised model 
The aim of the parametrised model is to determine the foreground 

inventory flows based on the energy and mass balance, and their com-
mon relationships. A list of variables is included in Table 1 for a better 
understanding and following-up of the model. The independent pa-
rameters are fixed with numerical values, while dependent parameters 
are calculated according to the independent ones (see Table 2). 

For the CM case, fixed parameters are set for the specific energy 
consumption data per kg of product since their characterization is based 
on mature technology data, although the values are still subject to un-
certainties. Regarding the input of alloy as raw material, the losses 
during casting, deburring, machining and finishing are considered. The 
efficiencies of these processes (in %) are used to calculate the necessary 

amount of input alloy for the functional unit, i.e., 1 kg of final product. 
Regarding water, oil and sand flows, the input flows are set with primary 
data and no losses are assumed during the processes. 

Regarding the AM technology, the specific energy consumption is 
more uncertain. For each step, the latter (e.g. ESupport plate) is derived from 
the machine power (e.g. PSupplort plate) and the processing time (e.g. 
tSupport plate). The processing times are mostly independent, while the 
printing step depends on the mass of input power (mpowder,total). The 
printing time tDED, in straight relation with the Directed Energy Depo-
sition process, is calculated from the ratio between mpowder,total and the 
flow rate rFlow, and influences the energy consumption of other pro-
cesses. For instance, it affects the mixing step, since the powders are 
mixed and introduced during the entire printing process. It also affects 
polishing, the vacuuming and sieving of the undeposited powders, as it 
is stressed by a mathematical expression indicated by manufacturers. 
Argon is used for the blowing and the printing steps. The total volume of 
argon used in the chamber VAr,total is the product of the argon flow and 
the processing time for these two steps (QBlowing (1200 L/h) and tBlowing, 
QDED (900 L/h) and tDED, respectively). The argon recirculation rate 

Fig. 1. Flow model and system boundaries of the conventional manufacturing technology.  

Fig. 2. Flow model and system boundaries of the additive manufacturing technology.  
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rRecirculation is applied to calculate the necessary input of argon VAr,in. The 
necessary input of raw powder (mpowder,in) depends on the polishing and 
deposition efficiencies, based on the final product weight, mfinal,AM. To 
obtain the total mass, mpowder,total, it is necessary to add a maximum of 5% 
coming from the recovering process (mpowder,recovered), to not downgrade 
the quality of the printed piece. This corresponds to the quantity of 
powder not deposited but aspirated by the vacuum cleaner process 
(mpowder,vacuum) which is sieved later, at a 92.5% efficiency, obtaining 
mpowder,sieved that can be used to feed the system again. All these calcu-
lations are presented in Table 2. 

2.3.2. Definition of parameters values 
This sub-section explores the determination of independent param-

eters, both for baseline scenarios and for scaled-up scenarios in the AM 
case. 

Baseline values were obtained with the help of two different indus-
trial manufacturers, representing data collected during the 2021–2022 
period. These baseline values, for both technologies are included in 
Tables 3&4. 

For additive manufacturing, the parameters include the fixed mass 
data (for support plate and brass wire), flow rates of the powder, 
recirculation and efficiency rates, the power of the different used ma-
chines and the time for specific processes (blowing and on support 
plate). The time of deposition process (tDED) is derived from the total 
mass of powder (mpowder,total) and the powder feeding rate (rflow): tDED =

mpowder,total/ rflow. 
As mentioned in the Introduction section, the technologies of this 

study cannot be totally comparable under the LCA framework as they 
are not at the same level of maturity. However, some aspects of the AM 
technology are expected to be improved in the future with the optimi-
zation of the process performance. For this purpose, a set of the previ-
ously build-up parameters were selected, as they were the most likely to 
be improved in a forthcoming developed scenario and can vary more 
substantially the final outcome results, as can be seen in the sensitivity 
analysis results section:  

– “rFlow”: is the flow rate, which express the quantity of powder fed into 
the system that can be possible processed, within a set of time, 
measured in kg/h.  

– “ηDeposition”: measuring the powder utilization efficiency by the laser 
melting process (in %).  

– “rRecirculation”: the argon recirculation rate inside the vacuum chamber 
where the 3D printing process takes part (in %).  

– “ηPolishing”: as the successfully reduced surface roughness to obtain a 
final component (%). 

A comprehensive literature review on the state-of-the-art for the 
assessed AM technique (Directed Energy Deposition), using the same or 
similar alloy (Titanium grade 5), was performed to understand the range 
for these parameters, support the creation of prospective scenarios and 
prioritize efforts for future improvements. 

The retrieved information (Table 5) shows possible scenarios where 
rFlow could be up to 3.6 kg/h, ηDeposition to 90%, ηPolishing rises up to a 95%, 
and a highest point of 98% for the rRecirculation is achieved. Therefore, a 
final scenario with these values was set for the AM technology as the 
most promising scenario in a higher mature level with an optimistic 
development process. 

Table 1 
List of variables.  

Variable Description Unit 

Conventional manufacturing 
ECasting Energy used in casting unit process kWh 
ECleaning1 Energy used in first cleaning unit process kWh 
EDeburring Energy used in deburring unit process kWh 
EThermal Energy used in thermal treatment unit process kWh 
EMachining Energy used in machining unit process kWh 
EFinishing Energy used in finishing unit process kWh 
ECleaning2 Energy used in second cleaning unit process kWh 
malloy,in Mass of alloy introduced kg 
msand,in Total mass of sand introduced kg 
moil,in Total mass of oil introduced kg 
mwater,in Total mass of water introduced kg 
malloy waste Mass of wasted alloy kg 
msand waste Mass of wasted sand kg 
moil waste Mass of wasted oil kg 
mwastewater Mass of wasted water kg 
mwater,Casting Water introduced in the casting unit process kg 
moil,Casting Oil introduced in the casting unit process kg 
ηCasting Efficiency of the casting unit process % 
msand,Cleaning1 Sand introduced in the first cleaning unit process kg 
ηDeburring Efficiency of the deburring unit process % 
moil,Thermal Oil introduced in the thermal treatment unit process kg 
mwater,Machining Water introduced in the machining unit process kg 
moil,Machining Oil introduced in the machining unit process kg 
ηMachining Efficiency of the machining unit process % 
mwater,Finishing Water introduced in the finishing unit process kg 
moil,Finishing Oil introduced in the finishing unit process kg 
ηFinishing Efficiency of the finishing unit process % 
msand,Cleaning2 Sand introduced in the second cleaning unit process kg 
mfinal,CM Final mass of the product kg  

Additive manufacturing 
EMixing Energy used in the powder mixing unit process kWh 
EDED Energy used during the printing process kWh 
EPolishing Energy used in the polishing unit process kWh 
EVacuum Energy used in the vacuum cleaner unit process kWh 
ESieved Energy used in the sieving unit process kWh 
EComputer Energy used by the computer process kWh 
EFume Energy used in the fume extraction unit process kWh 
ESupport plate Energy used in the support plate manufacturing process kWh 
tDED Printing time kW 
rflow Metal powder flow rate % 
PDED1 Power of part one of the DED machine (laser) kW 
PDED2 Power of part two of the DED machine (robot arm) kW 
PPolishing Power of polishing machine kW 
tPolishing Polishing time h 
PVacuum Power of vacuum cleaner machine kW 
tVacuum Vacuum cleaner time h 
PSieved Power of sieving device kW 
tSieved Sieving time h 
PComputer Power of computer kW 
PFume Power of fume extraction system kW 
PSupplort plate Power of support plate manufacturing machine kW 
tSupport plate Support plate manufacturing time h 
mpowder,total Total metallic powder fed into the system kg 
mpowder,in Raw metallic powder introduced kg 
mpowder,not used Mass of powder not deposited kg 
mpowder,vacuum Mass of vacuumed powder kg 
mpowder,sieved Mass of sieved powder kg 
mSupport plate Mass of the support plate kg 
mBrass wire Mass of brass wire used in the support plate manufacturing kg 
VAr,total Total volume of argon used in the printing chamber L 
VAr,in Volume of argon introduced L 
mfinal,AM Final mass of the product kg 
ηPolishing Polishing efficiency % 
ηDeposition Deposition efficiency % 
QBlowing Argon blowing flow L/h 
tBlowing Blowing argon flow time h 
QDED Argon printing time L/h 
rRecirculation Argon recirculation rate % 
mpowder waste Mass of wasted powder kg  

Table 1 (continued ) 

Variable Description Unit 

mmetal waste Mass of wasted metal kg 
ηPolishing Polishing efficiency %  
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Table 2 
List of model parameters and their determination.  

Flow type Parameter Fixed Definition 

Conventional manufacturing 

Energy consumption 

ECasting 

ECleaning1 
EDeburring 
EThermal 
EMachining 
EFinishing 
ECleaning2 

X 
X 
X 
X 
X 
X 
X  

Materials inputs 

malloy,in 
msand,in 
moil,in 
mwater,in  

X 
X 
X 

malloy,in =
( ( (

mfinal,CM/ηFinishing
)/

ηDeburring
)/

ηMachining
)/

ηCasting 

Waste amount 

malloy waste 
msand waste 
moil waste 
mwastewater  

malloy waste = malloy,in − mfinal,CM 
msand waste = msand,in 
moil waste = moil,in 
mwastewater = mwater,in  

Additive manufacturing 

Energy consumption 

EMixing 

EDED 

EPolishing 
EVacuum 

ESieved 
EComputer 

EFume 

ESupport plate  

EMixing = PMixing × tDED with tDED = mpowder,total/rflow 

EDED = (PDED1 + PDED2) × tDED 

EPolishing = PPolishing × tPolishing with tPolishing = (tDED/9.5) × 4 
EVacuum = PVacuum × tVacuum with tVacuum = (tDED/9.5)
ESieved = PSieved × tSieved with tSieved = (tDED/9.5)
EComputer = PComputer × tDED 

EFume = PFume × tDED 

ESupport plate = PSupplort plate × tSupport plate 

Materials inputs 

mpowder,total 
mpowder,in 
mpowder,not used 
mpowder,vacuum 
mpowder,sieved 
mSupport plate 
VAr,total 
VAr,in  

X 

mpowder,total =
(
mfinal,AM/ηPolishing

)/
ηDeposition 

mpowder,in = mpowder,total × 0.95 
mpowder,not used = mpowder,total × (1− ηDeposition) = mpowder,vacuum 

mpowder,sieved = mpowder,vacuum × 0.925 
VAr,total =

(
QBlowing × tBlowing + QDED × tDED

)

VAr,in = VAr,total −
(
rRecirculation × VAr,total

)

Waste amount mpowder waste 
mmetal waste  

mpowder wasted = mpowder,vacuum × 0.075 
mmetal waste =

(
mfinal,AM/ηPolishing

)
×

(
1 − ηPolishing

)

a Fixed parameter are marked with and “X”. 
b Sand, oil and water inputs are introduced in different quantities at each stage of the process, so they are named differently, as presented in Table 2. 
c Waste amounts are different in each stage of the process as in relation with each material input. 

Table 3 
Conventional Manufacturing technology data of parameters, values and uncertainty factors.  

Conventional manufacturing 

Parameters Unit Baseline 
values 

Basic 
uncertainty 

Pedigree Matrix 

Reliability Completeness Temporal 
correlation 

Geographical 
correlation 

Further technological 
correlation 

ECasting kWh 243 0.0006 1 4 1 1 1 
mwater,Casting kg 1.43 0.0006 1 4 1 1 1 
moil,Casting kg 0.071 0.0006 1 4 1 1 1 
ηCasting % 0.8 0.0006 1 4 1 1 1 
msand,Cleaning1 kg 0.071 0.0006 1 4 1 1 1 
ECleaning1 kWh 0.14 0.0006 1 4 1 1 1 
EDeburring kWh 0.071 0.0006 1 4 1 1 1 
ηDeburring % 0.975 0.0006 1 4 1 1 1 
EThermal kWh 0.71 0.0006 1 4 1 1 1 
moil,Thermal kg 0.071 0.0006 1 4 1 1 1 
EMachining kWh 0.5 0.0006 1 4 1 1 1 
mwater,Machining kg 0.71 0.0006 1 4 1 1 1 
moil,Machining kg 0.035 0.0006 1 4 1 1 1 
ηMachining % 0.84 0.0006 1 4 1 1 1 
EFinishing kWh 0.57 0.0006 1 4 1 1 1 
mwater,Finishing kg 1.43 0.0006 1 4 1 1 1 
moil,Finishing kg 0.035 0.0006 1 4 1 1 1 
ηFinishing % 0.85 0.0006 1 4 1 1 1 
ECleaning2 kWh 0.14 0.0006 1 4 1 1 1 
msand,Cleaning2 kg 0.071 0.0006 1 4 1 1 1  
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2.3.3. Uncertainty characterization 
The uncertainty of a system expresses the lack of confidence in the 

representativeness of the true value of a parameter [34]. Despite it is a 
necessary step to determine the reliability of the results and it is rec-
ommended by ISO standards, it is still not widespread among LCA 
studies [35]. 

Due to the lack of statistical data, the ecoinvent database guideline 
from Weidema et al. [36] was used to generate the uncertainty distri-
bution of parameters. Here, two different kinds of uncertainty are pre-
sented: basic uncertainty, which reflect the intrinsic variability, and the 
additional uncertainty, due to the use of imperfect data. 

The lognormal is the common distribution in the ecoinvent database, 
because it allows multiplicative effects and is a skewed distribution 
without negative values. The geometric mean (μg) and the geometric 
standard deviation (σg) define the distribution, with the latter deter-
mining the uncertainty [34]. 

The aforementioned guideline provides the values of both uncer-
tainty types, expressed as the square of the geometric standard devia-
tion. For the basic uncertainty, ecoinvent defines default values 
depending on the type of flow, which are here the same for all param-
eters (process mass and energy flows). The pedigree matrix was used for 
the additional uncertainty, where an uncertainty value is assigned for 
five different quality indicators (“reliability”, “completeness”, “temporal 
correlation”, “geographic correlation”, and “further technological cor-
relation”) with a score between 1 and 5. The selection is based on the 
reliability of the data sources, being slightly higher for the assessed 
variable parameters. These applied uncertainty factors are included in 
Tables 3 and 4, for both technologies assessed. 

These different values can be add up expressing the dispersion 
around the mean, based on the standard deviation under a 95% interval 
confidence (SDg95), which is the square of the geometric standard de-
viation, and an accurate indicator of the distribution's spread [34], as 
can be seen in Eq.1: 

SDg95 ≅ σ2
g = exp

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[ln(U1) ]

2+[ln(U2) ]
2+[ln(U3) ]

2+[ln(U4) ]
2+[ln(U5) ]

2+[ln(Ub) ]
2

√

(1)  

where U1 = uncertainty factor of reliability, U2 = uncertainty factor of 
completeness, U3 = uncertainty factor of temporal correlation, U4 =

uncertainty factor of geographic correlation, U5 = uncertainty factor of 
further technological correlation, and Ub = basic uncertainty factor. 

In addition, the uncertainty included in the datasets of the 

background processes is also considered. 

2.4. Life cycle impact assessment 

The evaluation of environmental impacts is done in SimaPro® 9.3 
with the EF 3.0 method. The latter is based on the Environmental 
Footprint (EF) initiative, launched by the European Commission to 
create a harmonised EU methodology to communicate environmental 
performance of products or organisations [55]. This method consists of 
16 midpoint impact categories, extracted from [56]: Climate change (kg 
CO2 eq.), Ozone depletion (kg CFC11 eq.), Ionising radiation (kBq U- 
235 eq.), Photochemical ozone formation (kg NMVOC eq.), Particulate 
matter (disease incidence), Human toxicity, non-cancer (CTUh), Human 
toxicity, cancer (CTUh), Acidification mol (H+ eq.), Eutrophication, 
freshwater (kg P eq.), Eutrophication, marine (kg N eq.), Eutrophication, 
terrestrial (mol N eq.), Ecotoxicity, freshwater (CTUe), Land use (Pt), 
Water use (m3 deprived), Resource use, fossils (MJ) Resource use, 
minerals and metals (kg Sb eq.). 

In order to obtain a single score of the environmental impacts to 
facilitate the comparison of technologies, two steps are necessary: 
normalization, to convert the impacts in a common unit scale, express-
ing the total impact occurring in a reference region for a certain impact 
category within a reference year, based on [57]; and weighting, to 
consider the relevance and reliability of indicators, based on [58]. 

2.4.1. Calculation of sensitivity index 
One-at-a-time variations were performed for the independent pa-

rameters, on their uncertainty range. The sensitivity index (S.I.) is 
calculated for each parameter, as the ratio between the percentage of 
change in the output's impact category (ΔIC) over the percentage change 
of the variable increased value (ΔVI), as shown in Eq.2: 

S.I. =
ΔIC
ΔVI

(2) 

The higher the S.I., the more sensitive are the results to the 
parameter. 

2.4.2. Break-even point 
Since the AM technology is supposed to produce lighter pieces, the 

mass reduction factor required to obtain environmental benefits 
compared to the conventional technology, is calculated. This factor, 

Table 4 
Additive Manufacturing technology data of parameters, values and uncertainty factors.  

Additive manufacturing 

Parameters Unit Baseline 
values 

Basic 
uncertainty 

Pedigree Matrix 

Reliability Completeness Temporal 
correlation 

Geographical 
correlation 

Further technological 
correlation 

tSupport plate h 4.50 0.0006 2 4 1 1 2 
PSupportPlate kW 17.7 0.0006 2 4 1 1 2 
PMixing kW 0.22 0.0006 1 4 1 1 1 
PDED1 kW 0.58 0.0006 1 4 1 1 1 
PDED2 kW 0.68 0.0006 1 4 1 1 1 
PComputer kW 0.16 0.0006 1 4 1 1 1 
PVacuum kW 1.2 0.0006 1 4 1 1 1 
PSieved kW 0.2 0.0006 1 4 1 1 1 
PPolishing kW 0.2 0.0006 2 4 1 1 2 
PFume kW 0.02 0.0006 1 4 1 1 1 
mSupplort plate kg 1.8 0.0006 2 4 1 1 2 
mBrass wire kg 4 0.0006 2 4 1 1 2 
rFlow* kg/ 

h 
0.525 0.0006 4 4 2 3 3 

ηDeposition* % 0.43 0.0006 4 4 2 3 3 
ηPolishing* % 0.65 0.0006 4 4 2 3 3 
tBlowing h 1.5 0.0006 1 4 1 1 1 
rRecirculation* % 0.724 0.0006 4 4 2 3 3 

Note: Parameters with * are the ones affected by the upscale approach, with changes in their baseline values. 
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expressed as a percentage, corresponds to the relative difference be-
tween the impact of CM technology (ICM) and the one of AM technology 
(IAM) (see Eq. 3). This break-even point is calculated at single score level 
using the best-case AM scenario. 

Weight Decrease ≥
ICM − IAM

IAM
(3) 

In order to propagate the input uncertainty, explained in section 
2.2.2.3, into output uncertainty, the Monte Carlo sampling method was 
applied. This method makes a large number of calculations which 

provides a probabilistic range to understand the uncertainty of the im-
pacts results [59]. A sampling with 10,000 simulations was applied in 
this study. Monte Carlo simulation, from SimaPro, includes the 95% 
interval confidence by default, which is also the one typically chosen for 
a variety of different field investigations (Röhrig et al., 2009). A dis-
cernibility analysis was performed to consider the common uncertain 
parameters and determine the number of simulations when one tech-
nology has a higher impact that its counterpart. 

2.4.3. Use phase modelling 
As final step, it was decided to assess the operational step of the final 

component, to find the Break Even Distance (BED) when the new 
technology could start to be feasible. For this, the calculation presented 
in Salonitis et al. [60] was modified by changing energy burdens with 
single score impact, as shown in Eq. 4: 

BED =
ΔIp

(δFs × IFC × Δm)
× 104 (4)  

where ΔIp: Impact difference between both technologies for a given 
weight (e.g. in mPts/kg); 

δFs: Fuel savings per weight reduction (constant factor of 0.2 L/ 
km⋅kg); 

IFC: Impact of fuel consumption (e.g. in mPts/L fuel); 
Δm: Product weight difference between both technologies (in kg). 

Table 5 
Overview of the literature review for the parametric variables prospective data.  

Reference Technology & 
Material 

Maturity 
level 

Variable 
parameters 

Values 

[37] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Lab-scale rFlow 0.81 kg/h 

[38] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Full scale rFlow 
1.8 and 3.6 
kg/h 

[39] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Lab-scale rFlow 0.72 kg/h 

[40] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Prototype rFlow 
0.36–0.96 
kg/h 

[41] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Industrial 
scale rFlow 2.52 kg/h 

[42] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Lab-scale ηDeposition 
60% - 
84.3% 

[43] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Full scale ηDeposition 65% - 90% 

[44] 
Directed Energy 
Deposition and Ti-6Al- 
4 V 

Lab-scale ηDeposition 70% - 90% 

[45] 
Laser polishing on 
Electron Beam Melted 
Ti6Al4V component 

Lab-scale ηPolishing 75% 

[46] 

Laser polishing on 
Selective Laser 
Melting Ti6Al4V 
component 

Lab-scale ηPolishing 85% 

[47] 

Laser polishing on 
Selective Laser 
Melting Ti6Al4V 
component 

Lab-scale ηPolishing 76%. 

[48] 

Laser polishing on 
Additive 
Manufacturing 
Ti6Al4V component 

Lab-scale ηPolishing 80% 

[49] 
Laser polishing on 
Electron Beam Melted 
Ti6Al4V component 

Lab-scale ηPolishing 
75.1% - 
91.6% 

[50] 

Laser polishing on 
Selective Laser 
Melting Ti6Al4V 
component 

Lab-scale ηPolishing 95% 

[51] 
Laser polishing on 
Electron Beam Melted 
Ti6Al4V component 

Lab-scale ηPolishing 80 

[52] Gas recycling loop Prototype rRecirculation 85% 

[53] 
Recycling system for 
Gas Atomization 
process 

Full scale rRecirculation 97.8% 

[54] 

Gas Recycling in 
Inductively Coupled 
Plasma Optical 
Emission 
Spectrometry 

Prototype rRecirculation 90%  

Table 6 
Single score factors for AM (additive manufacturing) best scenario and reduction 
percentage as compare with baseline values.  

Impact category Unit Baseline 
values 

Best 
scenario 

Impact 
reduction 

Total mPt 533 31.2 ¡94% 
Climate change mPt 117 6.87 − 94% 
Ozone depletion mPt 0.36 0.03 − 91% 
Ionising radiation mPt 29.6 0.93 − 96% 
Photochemical ozone 

formation mPt 12.6 1.01 − 92% 

Particulate matter mPt 14.8 2.21 − 85% 
Human toxicity, non- 

cancer 
mPt 3.74 0.35 − 90% 

Human toxicity, cancer mPt 2.39 0.45 − 81% 
Acidification mPt 27.8 1.82 − 93% 
Eutrophication, 

freshwater mPt 77.4 3.47 − 95% 

Eutrophication, marine mPt 6.66 0.41 − 93% 
Eutrophication, 

terrestrial 
mPt 8.04 0.54 − 93% 

Ecotoxicity, freshwater mPt 30.5 2.77 − 90% 
Land use mPt 1.69 0.11 − 93% 
Water use mPt 60.5 1.56 − 97% 
Resource use, fossils mPt 121 5.35 − 95% 
Resource use, minerals 

and metals mPt 17.8 3.33 − 81%  

Table 7 
Relation between km covered by the AM (additive manufacturing) piece and 
the weight reduction to equal CM (conventional manufacturing) impact.  

Thousands of kilometres covered Weight reduction 

7717 0% 
4417 25% 
1117 50% 
787 52.5% 
457 55% 
325 56% 
259 56.5% 
193 57% 
127 57.5% 
61 58% 
0 58.46%  
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Finally, to find a reasonable distance where the new technology 
could be less environmental impactful, different AM component weights 
will be tested. 

3. Results 

The outcomes of the study reflect the comparative analysis between 
both technologies, using the step-wise methodology presented. The 
impacts are shown in the weighting single-score, in mPts, to facilitate its 
interpretation, but more specific data with unnormalized impact factors 
can be found in the Supplementary Material, Tables S3, S4&S5. 

3.1. Baseline comparative and contribution analysis of each technology 

Firstly, the processes were assessed in their baseline values, to 
compare both at current state, as presented in Fig. 3. The single score of 
CM is almost 13 mPts, mainly due to energy use (79% of contribution), 
while more than 530 mPts are obtained for the AM technology (93% of 
impacts are due to Argon use). Besides energy, the environmental profile 
of CM process is also influenced by the raw material input of aluminium 
alloy (19% in single score, with the highest contribution on Particulate 
matter and Human toxicity cancer, with more than 50% contribution). 
Regarding AM process, the other process flows have mostly a contri-
bution lower than 10% regardless of the impact category, except for the 
titanium materials on particulate matter (16%) and human toxicity, 
cancer. The most impacted categories for the single score are Climate 
change and Use of fossil resources, for both technologies. These data are 
detailed on Supplementary Material, Tables S6&S7. 

3.2. Sensitivity, scenario and break-even point analysis 

The sensitivity analysis (one-at-a-time variations) was performed for 
the AM scenario using the data range from literature. The analysis of the 

four key parameters (rFlow, ηDeposition, rRecirculation, ηPolishing) highlighted a 
negative relationship, i.e. the higher the parameter, the lower the im-
pacts (see Figs. S1-S4 in Supplementary Material). Each parameter has a 
different scale of variations, from +35% compared to the baseline value 
for rRecirculation to +585% for rFlow. The highest impact variation was 
observed for rRecirculation (− 86% with highest value), leading to a sensi-
tivity index of − 2.45, while it is between − 0.52 for ηPolishing, − 0.36 for 
ηDeposition and − 0.11 in the case of rFlow parameter. The same trends are 
observed for all environmental indicators. This outcome means that the 
recirculation of argon is the most affecting impacting variable of the 
process and should be optimized in priority to improve the environ-
mental performances of the AM process. 

A final best-case scenario is built with the best available data from 
the state-of-the-art review, obtaining a 94% scoring reduction compared 
to the baseline value on the single score, with a variation of 81% to 97% 
reduction depending on the indicator, as it is shown in Table 6. 

The detailed single score comparison of the best-case AM scenario 
with CM is shown in Fig. 4. Argon use remains with a significant 
contribution but to a lesser extent (30.5% of single score impact), fol-
lowed by the production of the titanium support plate (28%) and the 
titanium powder (21%), as shown in Fig. 4. These three flows remain the 
main sources of all impact types, with some variations depending on the 
indicator. For example, argon has the highest impact on ionising radi-
ation and water use (60% and 74%, respectively), the support plate on 
carcinogenic impacts, particulate matter, ozone depletion (50%, 49% 
and 42%, respectively) and the titanium powder on particulate matter 
and human toxicity, cancer (35%). The only indicator for which these 
flows have a minor effect is the use of mineral and metallic resources, for 
which brass contributes to 57% of the production impacts (mainly due to 
tellurium extraction for the production of copper cathode used for brass 
manufacturing). The consumption of electricity never dominates the 
impact, but has a non-negligible contribution, between 5% and 24% 
depending on the indicator. Once the best values for the four key 

Fig. 3. Single score factors for CM (conventional manufacturing) and AM (additive manufacturing) at baseline values.  
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Fig. 4. Single score factors for CM (conventional manufacturing) and AM (additive manufacturing) at best scenario values.  

Fig. 5. Discernibility analysis between different scenarios for CM (conventional manufacturing) and AM (additive manufacturing) comparative.  
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parameters could be reached, the further improvement of all process 
flows is thus important. These conclusions are valid for 1 kg of gearbox 
piece; however, the AM process normally leads to weight reduction. 
Using Eq.3 and the total impact in mPts, the weight reduction needed in 
the AM components to be at least equal to its counterpart's impact is 58% 
for the best-case scenario. More detailed data can be found in Supple-
mentary Material, Table S8. 

3.3. Uncertainty results 

Fig. 5 shows the discernibility analysis results at single score level for 
the comparison of CM with AM process, using baseline values, best 
scenario, with or without weight reduction of 58%. Using the best sce-
narios, the probability of AM to be less impactful than CM is almost 36% 
and 43% when weight reduction is considered. These values place them 
in “about as likely as not” term of the likelihood scale, as used by the 
IPPC in their Assessment Reports [61], meaning that the probabilistic 
occurrence is about even. This outcome means that even with the 
investigated best operating conditions and a 58% weight reduction, the 
AM technology cannot bring significant environmental benefits, when 
considering only the production phase. More information about the 
distribution of uncertainty results from the discernibility analysis is 
included in Supplementary Material, Tables S9, S10&S11. 

3.4. Use phase results 

Table 7 is built showing the covered kilometres necessary to equal 
the CM impact in relation with the weight reduction, as explained in the 
calculation for Eq. 4. The calculation is based on the best-case AM sce-
nario and at single score level. The results suggest that if the gearbox 
piece is installed in a car, at least 56% weight reduction is required. 
Indeed, this is the minimum weight to obtain a quite reasonable range of 
kilometres, aligned with the standard vehicle lifetime (commonly be-
tween 150,000 and 320,000 km) [62]. This value is slightly lower than 
the 58% reduction calculated when considering the production phase 
only. The fuel savings benefits during the gearbox component use are 
marginal. This is a logical finding, considering the small contribution of 
the gearbox to the total vehicle weight. 

4. Discussion 

The findings of this LCA are aligned with those in other studies. For 
instance, the requirement of mass reduction and design inclusion to 
reduce impacts from AM compared to a CM technique was also 
addressed by [16]. Also, the results from [14] shown that AM is only 
more sustainable when considering a 50% weight reduction and 
including the use phase benefits. 

The stepwise approach presented in this document can be replicated 
for similar and different applications within industry field, following the 
procedure presented in the Methodology section. For this purpose, 
would be necessary to consider some limitations of the study that could 
have slightly influenced the results mentioned throughout the paper. 
Highest extent of produced impacts come from the chosen variables 
under study, specially from the argon used, as it is shown in the sensi-
tivity analysis. Regarding this issue, no works disclosing quantity and 
impacts from argon used in DED technology for similar materials were 
found to date, but some other publications in AM field can help for 
comparison matters. For instance, while comparing the manufacture of a 
steel gear (less than 10 g) between traditional manufacturing and a 
directed energy deposition method, Liu et al. [63] obtained more 
negative emissions from the latter. They demonstrate a lesser con-
sumption and subsequent environmental impacts from argon than in the 
present study since the printed item is small and made of steel, therefore 
the inert printing atmosphere is not as critical as in the titanium case. In 
a work by [64] performed an LCA on WAMM technique, showing that 
48% of impacts comes from the argon gas continuously used in the 

process. Most of the works that deal with argon utilization are focused 
on powder metallurgy and gas atomization process to produce diverse 
material. [65] shown that argon lead the impacts in the gas atomization 
process, as is continuously consumed, and has the highest sensitivity 
among inputs, recommending measures for its reduction. Also [66] 
probe that argon is the main environmental impact in the gas atomiza-
tion process. However, other inputs with relative importance in the 
outcome were not profoundly assessed. For instance, energy consump-
tion (representing 12% of the single score for the best AM scenario 
modelled) may change and evolve different in the future, and these 
variations were only included as uncertainty factor but not with scaled- 
up values. Regarding this, the results obtained in this study align with 
those in other works, as in the review performed by [67], where authors 
found that machining and conventional techniques have a significant 
higher energy consumption during manufacturing phase than AM 
technologies. Furthermore, some studies have shown that cryogenic 
machining of titanium alloys is more sustainable and cost-effective than 
regular techniques [68], which could be applied in the support plate 
cutting phase of the present case study, reducing the final outcomes. In 
regards of the system eco-design, further research could include the 6R 
approach (reduce, reuse, recycle, recovery, redesign and remanufacture) 
for the circular evaluation of the system under study, using similar ap-
proaches as the ones developed by [69] and [70]. This work only focuses 
on the key parameters for AM because have more importance in the final 
outcome, according to the contribution and sensitivity analysis, and 
considering that their values variation is greater, as shown in the liter-
ature review. Along with this, the selection of certain datasets can have 
an influence in the final outcomes. The database used is the latest 
available version of ecoinvent during the first half of 2022, and as the 
process is established in Europe, most of the datasets used are related to 
the European territory, but for some of them a global average was 
chosen. In addition, some materials were not found in the database, such 
as the titanium alloy and the titanium carbide, and are specifically 
modelled based in other available datasets and literature, as detailed in 
Supplementary Material, Tables S1&S2. It is also worth mentioning that 
the datasets used have included an average transport impact, as logistics 
were not disclosed by the manufacturers involved. Thus, the proposed 
variables and background system should be subject to review and up-
date, by enhancing the quality of data. 

5. Conclusion 

This paper followed a stepwise methodology to compare the envi-
ronmental impacts of emerging technologies with conventional tech-
nologies, and to support their eco-design. It was applied to compare an 
AM technology (Directed Energy Deposition) with a CM casting process, 
for the production of a gearbox. The outcomes of the study show that the 
AM technology can only be competitive with the optimization and 
upscaling of the process design, reducing 94% of climate change impacts 
with emissions from 4520 to 264 kg CO2 eq./kg piece, and with a sig-
nificant weight reduction of the produced component, leading to addi-
tional fuel reduction savings during the use phase. In this point, it would 
be important to further investigate that a reduced weight component can 
still meet quality and warranty standards. 

In addition, considering the AM technology still emits double than 
the CM process (31 mPts versus 13 mPts), and even including a possible 
weight reduction, the uncertainty depicted within the study shows, in 
the discernibility analysis, just a 43% probability of the AM to be more 
sustainable than its counterpart. 

The main influencing parameter was found to be the argon recircu-
lation rate. This parameter, as well as the flow rate, deposition and 
polishing efficiency could be significantly improved based on informa-
tion from similar technologies. These results can support process de-
velopers and manufacturers on the eco-design of the technology and the 
improvement of the process. 

Most studies performed in the AM field do not consider the potential 
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upscaling effects, as it has been developed in this work. The use of an ex- 
ante evaluation based on realistic future scenarios can better support 
decisions and the technology development trajectory. 

The early-stage assessment of emerging technologies is decisive to be 
able to consider environmental criteria for design choices, while the 
latter cannot be changed once a higher maturity is achieved. Such ex- 
ante LCA studies can rely on several approaches, such as hotspot, 
sensitivity or scenario analysis to prioritize the development strategies 
and make greener choices, while dealing with the large uncertainties of 
the modelling for such low technological readiness level. This study 
could show the applicability of these methods for the specific case of 
Directed Energy Deposition. 

Further research might explore the need for a standardized 
approach, which allow more reliable comparability between different 
studies, and the integration with other calculation methods and tech-
niques, such as big data analysis, machine learning and process simu-
lation tools to further consolidate the LCA modelling. 
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