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Abstract

In order to maintain adequate levels of cleanliness and sanitation in public facilities, pre-

vent the buildup of viruses and other harmful pathogens, and ensure health and safety,

health and labor authorities have repeatedly warned of the need to adhere to proper dis-

infection protocols in the workplace. This is particularly important in public places where

food is handled, where there are more vulnerable people, including hospitals and health

care centers, or where there is a large concentration of people. One promising approach

is the combination of ultraviolet-C (UV-C) light and mobile robots to automate disinfec-

tion processes. Being this technology effective for disinfection, an excessive dose of UV

can damage the materials, limiting its applicability. Therefore, a major challenge for auto-

matic disinfection is to find a route that covers the entire surface, ensures cleanliness,

and provides the correct radiation dose while preventing environmental materials from

being damaged. To achieve this, in this paper a novel intelligent control approach is pro-

posed. A bio-inspired Glasius neural network with a motion planner, an UV estimation

module, a speed regulator, and pure pursuit controller are combined into one intelligent

system. The motion planner proposes a sequence of movements to go through the space

in the most efficient way possible, avoiding obstacles of the environment. The speed

controller adjusts the dose of UV-C radiation and the pure pursuit regulator ensures the

following of the path. This approach has been tested in various simulation scenarios of

increasing complexity and in four different areas of dosing requirements. In simulation, a

44% reduction of the maximum dose is achieved, 17% less distance travelled by the

robot and, what is more important, 229% more locations with the appropriate dose.

K E YWORD S

autonomous robot, complete coverage path planning, Glasius bio-inspired neural network,
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1 | INTRODUCTION

In recent times, disinfection has become increasingly popular for eliminating harmful pathogens from various surfaces, including hospitals, health

centers, schools, and other public places. But this disinfection task can be time consuming and even dangerous, thus its automation would be a

very positive technological advance (Burgos-Artizzu et al., 2007).
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Disinfection by ultraviolet radiation has been widely used in the medical and pharmaceutical sector. Ultraviolet-C (UV-C) light may be very

effective because, depending on the UV-C dose, some types of micro-organisms are deactivated as a result of nucleic acid breakdown

(Kowalski et al., 2020).The use of this technique in combination with mobile robotics expands the capabilities of UV-C radiation. In these days,

when pathogens are on the spot, the combination of robotics developments, such as the generation of routes for surface coverage, with disin-

fection tools that have been extensively validated in microbiology studies, represents a breakthrough in the day-to-day safety of the general

population.

There are several companies that have developed autonomous robots for disinfection with UV-C light. Nevertheless, it must be ensured that

the environment receives a sufficient dose of disinfection without exceeding certain limits in order to prevent material damages. To this aim, in

this work we propose an algorithm, applicable to any disinfection autonomous robot, which combines complete coverage techniques with intelli-

gent robot speed controllers that adjust the dose. Specifically, an intelligent control architecture that combines neural networks, a motion planner,

a pure pursuit controller and a speed controller has been proposed.

Among different path planning methods (San Juan et al., 2018), those using bioinspired algorithms have recently attracted extensive attention

(Li et al., 2019). The bio-inspired Glasius neural network (biGBNN) algorithm can be applied to the complete coverage path planning (CCPP) of

any autonomous robot. But the biGBNN may lead to unsatisfactory performance in complex environments, so different modifications have been

proposed (Chen & Zhu, 2019; Yao & Zhao, 2021). Indeed, in this work we propose the use of a motion planner that modifies the behaviour

obtained by the neural activity of the GBNN to cover the space in the most efficient way possible. This approach is aligned with previous works

that show that the combination of conventional and intelligent control techniques provide successful results in mobile robot applications (Sierra-

Garcia & Santos, 2022).

The main contributions of the automatic surface disinfection strategy here proposed can be summarized as follows.

• Design of a movement planner that considers the obstacles in the environment and the motion strategy.

• Improvement of the GBNN algorithm to interact with the movement planner, reducing unnecessary robot movements.

• Incorporation of an auxiliary map to the architecture to consider the previous disinfected cells as obstacles.

• Implementation of a speed controller to adjust the dose of UV light while the robot is moving.

• Test the approach in different simulation scenarios of growing complexity.

The algorithm proposed in this article follows either boustrophedon or spiral pattern, which seek full coverage and optimal UV-C radiation. It

is considered intelligent because from scarce information it is able to find a route that covers the entire space to be disinfected. Its efficiency has

been tested on various scenarios of increasing complexity with very satisfactory results. Even more, areas that require different dose have been

considered. The use of this algorithm in hospitals, for instance, will allow to disinfect more rooms with the same robot in a single day, helping to

reduce the likelihood of nosocomial infections. It is important to remark that safety issues are at utmost importance when dealing with UV-C radi-

ation. Thus, the solution here proposed is focused on the navigation algorithm followed by an autonomous robot in scenarios without humans

beings or animals. This way, any possible harm is avoided.

In addition, when developing a robot algorithm for UV-C disinfection, it is important to prioritize the safety of the population by incorporating

safety features, providing proper training to operators, and adhering to established safety guidelines and regulations, including the use of personal

protective equipment. By doing so, the use of UV-C disinfection technology can be effective while also ensuring the safety of the population in

its operational environment. In this case, the robot would incorporate safety features such as sensors to detect the presence of people in the area

and automatically shutdowns as it is meant to work in spaces without people.

The paper structure is as follows. Related works are summarized and discussed in Section 2. Section 3 describes the kinematic model of the

differential robot and the ultraviolet distribution model. The control architecture for disinfection is detailed in Section 4. The movement planner

and its interaction with the enhanced GBNN algorithm are explained in Section 5. Section 6 discusses the simulation results for different scenar-

ios. The paper ends with the conclusions and future works.

2 | RELATED WORKS

Bio-inspired intelligence has aroused great interest, especially in the last decades. There are many applications, and robotics in general stands out

among them. In particular, it has been proved to be very useful in the field of mobile robotics with different objectives. In (Li et al., n.d.) a compre-

hensive survey of bio-inspired intelligence, with a focus on neurodynamics approaches, is presented. It also describes various robotic applications,

particularly path planning and control of autonomous robotic systems.

Complete coverage path planning with Glasius bio-inspired neural network has been investigated for different autonomous vehicles. To men-

tion some papers, Sun et al. (2018) propose a multi-AUVs (Autonomous Underwater Vehicles) full coverage discrete and centralized programming
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based on GBNN algorithm (Sun et al., 2018). The new strategy is based on grid map and neural networks. Simulation results confirm that with the

proposed algorithm multi-AUVs can plan reasonable and collision-free coverage path and reach full coverage.

Cooperative path planning for unmanned surface vehicles (USVs) is presented in (Yao et al., 2022). The Glasius bioinspired neural network is

used to calculate the neural activity for the discretized working space of USV. The ocean current is considered in the definition of neuron connec-

tion weight and thus the standard path of single USV for obstacle avoidance is obtained. The Hungarian algorithm is then applied for the task

assignment among multi-USVs.

The work by (Xing et al., 2023) proposes a deep reinforcement learning method to achieve complete coverage path planning for an

unmanned surface vehicle (USV). The deep Q network (DQN) is used to train the complete coverage path planning strategy of the agent. Con-

sidering the task of complete coverage path planning, this paper replaces random actions with a set of actions towards the nearest

uncovered grid.

Samarakoon et al. propose a novel online CCPP method for a hinged reconfigurable robot (Samarakoon et al., 2022). It is designed with two

sub-methods, global and local coverage path planning that have been implemented adapting a Glasius Bio-inspired Neural Network that performs

online path planning considering a fixed shape for the robot. The parameters are configured by genetic algorithms to assure collision-free cover-

age and access of obstacle regions. Experimental results validate the proposed online CCPP method in heterogeneous environments, including

dynamic workspace. The same authors propose in (Muthugala et al., 2022) a novel energy-efficient CCPP method based on GBNN for a ship hull

inspection robot. The energy model considers the energy usage of a ship hull maintenance robot due to changes in direction, distance, and vertical

position. It has been proved effective for dynamic workplaces since it performs online path planning.

The paper by (Yi et al., 2023) proposes a CCPP for omni-directional robots of varying width. The coverage algorithm is a modified GBNN with

n-reconfiguration states. It generates the global path autonomously, which determines the self-reconfigurable robot width as per the n-th

reconfiguration states so as to increase area coverage in open areas and reduce robot footprint in tight spaces.

To address the many constraints for a multi-robot system to perform a region coverage search task in an unknown environment, (Chen

et al., 2022) propose a novel multi-robot distributed collaborative region coverage search algorithm based on GBNN. The model converts the

environmental information detected by the robot into dynamic neural activity landscape of GBNN. Besides, they work with several dynamic sea-

rch sub-teams that collaborate to optimize the solution and obtain the next movement path of each robot. Somehow similar, in (Tan et al., 2023)

The global environment information is introduced by Q-learning reinforcement learning method in a complete coverage path planning biologically

inspired neural network algorithm. Besides, the Q-learning method is used for path planning at the positions where the accessible way points are

changed, which optimizes the path planning strategy near these obstacles.

Closer to our work, (Han et al., 2023) presents a new CCPP strategy with biologically inspired neural network for cleaning robots. The planned

path of cleaning robot takes into account the dynamic neural activities and the distribution of obstacles in the environmental map. In addition, an

improved dynamic deadlock escape algorithm is presented to select the optimal escape target point. The simulation results show that the pro-

posed CCPP algorithm is able to generate an orderly path in both known and unknown environment. Similarly, (Rodrigo et al., 2023) introduces a

preventive deadlock processing algorithm and an escape route generator algorithm in the design of a complete coverage path planning algorithm

based on a GBNN. It is applied to disinfection using mobile robotics with UV-C light.

Unlike these works, our algorithms uses obstacle templates to complement the path strategies provided by the EGBNN, and a velocity control

to adjust the radiation dosage. This approach reduces unnecessary robot movements, which is translated into a less travelled distance and less

rotations to disinfect the same area, and what is more important, less cells with an excess of radiation dosage.

3 | SYSTEM MODELLING

The development of a reliable simulation model plays an important role in in the mobile robot navigation and control (Sánchez et al., 2022). The

proposed system combines autonomous mobile robotics for the exploration of environments with the use of UV-C light for disinfection.

3.1 | Kinematic model of a differential robot

A differential robot is represented in Figure 1, where the position pI x,y,θf g is expressed in Cartesian coordinates of the inertial frame XI ,YIf g. It is
a common a practice to assume that there is not lateral slippage, thus the speed y-component in the robot frame is 0. The position of the center

of the real axle x,yð Þ, and the orientation of the robot, θ, are the state variables of the system. The longitudinal speed, V, is defined as the average

speed of the two wheels. The angular velocity, W, is the speed difference of each wheel divided by the distance between them.

Then, the kinematic model is defined by the combined action of longitudinal and angular velocities (1), where VL and VR are the left and right

wheel linear velocity, respectively.
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3.2 | Ultraviolet distribution model

The factors that most impact on disinfection are humidity and distance from the source of radiation. The germicidal dose is the product of time (t)

and intensity (I). The law of the inverse square applies to germicidal ultraviolet light. Therefore, the intensity of the light decreases as the distance

(d) from the lamp increases.

I/1=d2 ð2Þ

When a microorganism is exposed to UV-C radiation, cell nuclei are modified due to photolytic processes. As a result, cell division and repro-

duction are prevented. The relationship between dose and deactivation of a target microorganism can be expressed as (Arguelles, n.d.):

N tð Þ
N0
¼ e�kIt ¼ e�kD ð3Þ

where N is the number of microorganisms; k is a constant value dependent on the type of microorganism; I is the UV-C intensity; t is time; and D

is the received UV-C dose. The UV-C dose (energy per unit area) is the product of UV-C intensity (power per unit area) by exposure time (s):

D
mJ
cm2

� �
¼ I mW=cm2
� � � t sð Þ ð4Þ

As the UV-C may be harmful for human health, all safety regulations must be strictly complied when these technologies are applied. All

workers exposed to risks from radiation receive all necessary information and training relating to the outcome of the risk assessment (including

the use of personal protective equipment in accordance with UNE-EN 170). (Spanish Standardization Association, 2020). Even more, it is rec-

ommended to use a specific electronic safety device in order to increase the safety protection by switching off the light if a human enters the

room while the disinfection is in progress.

4 | CONTROL ARCHITECTURE FOR UV-C DISINFECTION

The proposed control architecture is shown in Figure 2. It is composed by the EGBNN, the movement planner, a module to estimate the UV-C, a

speed controller, the pure pursuit controller, a map, and an auxiliary map. The EGBNN generates the list of way-points where the robot should go,

goals. These way-points are tracked by the pure pursuit controller. On the other hand, the UV-C estimation module uses the radiation diagram to

estimate the radiation dose will be received by the environment, it updates the map and compute the UV-C percentage that feeds the speed con-

troller, UV%.

F IGURE 1 Kinematic model of a differential robot in the Cartesian space.
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The speed controller adjusts the speed of the robot to ensure the required UV-C dosage is administered. It generates the speed target vsc that

is followed by the pure pursuit controller. In turn, the pure pursuit controller governs the movement of the robot providing the references for the

longitudinal speed vref , and angular speed wref .

The EGBNN uses the neural activity to determine the different weights between each of the neuronal connections. These weights are crucial

because they influence the route the robot will follow. In addition, the orientation of the robot is also considered. However the neural activity is

not the only information considered to decide the next cell. A movement planner has been included in the architecture to improve the perfor-

mance of the algorithm.

The EGBNN, considering the current position pc and the surrounding neural activity, estimates the next position pn. This information is sent

to the movement planner which studies the obstacles in the environment and the destination, and it provides a sequence of future movements to

avoid the obstacles in an organized way, movplan.

To improve the performance of the algorithm, the movement planner does not receive the map but the auxiliary map. This auxiliary map con-

tains the obstacles in the map and the cells previously disinfected, the latter are also considered as obstacles by the movement planner. This

approach helps the algorithm to avoid cells previously disinfected.

4.1 | Disinfection approximation

Different microorganisms can be deactivated by adjusting the radiation dose. We have tested the approach with SARS-COV-2 as an example, due

to its worldwide relevance. Experiments have found that the required dose to make inactive the SARS-CoV-2 virus is between 108 and 250J=m2

(Biasin et al., 2021; Derraik et al., 2020; Sabino et al., 2020; Sellera et al., 2021). In this work the applied dose is 500J=m2 to ensure a higher reduc-

tion. In addition, we successfully tested this UV-C lamp to disinfect a hospital room in a previous work (Sierra Garcia et al., 2021).

A circular radiation profile has been determined following the inverse square law previously described in (2). The radiation emitted by each

lamp in this scenario is approximately IUV ¼550μW=cm2 at a distance of 1m. The retention time varies with the power of the UV-C lamp used; in

this case, the retention time necessary is around 90 s. However, if the power of the lamp were smaller, a larger retention time would be needed.

It must be noted that the area under the robot does not receive radiation, so its disinfection is not considered. Anything between the light

source and the target will block UV-C rays. Similarly, there may be specks of dust that cause shadows, which may mean that not all microorgan-

isms are receiving the expected dose. However, these effects are considered out of the scope of the proposed model.

The UV-C radiation percentage estimation is obtained during the execution of the algorithm. A grid map is created to store the dosage at each

cell while the robot moves. At the end of the algorithm, it is possible to know what cells receive the highest dose. This information is used in the

speed controller to ensure that the final dose is within the appropriate range.

The disinfection process is simulated using the cell matrix with the proposed UV-C distribution and the real characteristics of the disinfection

lamp. Each cell is 0:1�0:1 m, to have better precision for posterior analysis. It should be noted that this approach has certain limitations:

• The proposed radiation profile has no distance limitation.

• The existence of obstacles is not considered. Therefore, according to this model, the radiation goes through the existing walls in the map.

• The absorption coefficients of each material are not considered.

Figure 3 shows the dose received by using the proposed UV distribution model and the specifications of the disinfection lamp.

F IGURE 2 System architecture diagram.
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4.2 | Speed and pure pursuit controller

There are two robot controllers, as shown in Figure 2. On the one hand, a path-tracking controller (called pure pursuit controller), and a speed

controller that calculates the linear velocity in order to constantly follow a point in front of the robot.

Based on the principles of path tracking algorithms, the Pure Pursuit technique calculates the correct angular velocity for tracking, allowing a

robotic agent to move from its current position to a predefined point ahead of the robot. On the other hand, the linear speed is governed by the

speed control mechanism, which makes it easy to continuously search for the designated point in front of the robot.

The Pure Pursuit approach involves a geometry-based methodology to determine the necessary arch that will guide the vehicle towards a

chosen reference point. In particular, this way-point is spatially located at a distance in front of the current position of the vehicle. The process

consists of establishing an arc that connects the current position of the vehicle and the destination point; the arc length defines the look ahead

distance and serves as the third constraint, along with the origin and destination points, creating a single path (Coulter, 1992).

Way-points are defined by coordinates x y θ½ �, which are used to obtain the robot velocity. The so called anticipation distance measures the

distance from the current location at which the angular velocity is to be calculated. A small anticipation distance will cause the robot to move

quickly towards the next point of the path, but the robot may surpasses that way-point causing oscillations. On the other hand, a large anticipa-

tion distance might result in larger curvature near the corners. In principle there is no theoretical limitation regarding the number of points. The

limits are only determined by the memory of the hardware used to run the algorithm.

The information provided by the proposed coverage algorithm is used to estimate the speed of the robot at each section of a cell. Based on

the UV-C percentage matrix, the lamp model, and the dose required for disinfection, a speed value is obtained using (5). The speed controller

adjusts the speed of the robot to ensure the total required dosage Dreq is given, considering the power of the lamp and the surrounding obstacles.

If the robot finds many obstacles in the way, the effective power would decrease, so the controller reduces the robot speed to guarantee the

required dosage by enlarging the retention time.

vsc x,yð Þ¼ ρ �UV% x,yð Þ IUV
Dreq x,yð Þ
� �

ð5Þ

where vsc is the reference for the linear velocity of the robot in m=s; ρ is a positive parameter; UV% is the estimated maximum percentage of the

dose received, considering the position of the robot and its eight neighbouring cells; IUV is the lamp radiation power in mW=cm2; and Dreq is the

required radiation dose in mJ=cm2. This dose is a function that depends on the location and can be set to different values to deal with other

agents and different textures.

The IUV value is based on the specifications of the UV-C distribution model. Specifically, a value of 0:55 mJ=cm2 for the lamp is used, given by

the tests performed in (Fischer et al., 2020).

F IGURE 3 Dose received in an empty map, at the end of the disinfection process, with the UV distribution model proposed and lamp
power IUV ¼550μW=cm2.
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4.3 | Enhanced GBNN CCPP

The GBNN algorithm has been modified to include the UV-C distribution information and the interaction with the movement planner, to make it

more efficient. In this section we present the implementation of the enhanced CCPP strategy. Detailed information on the GBNN can be found in

(Luo & Yang, 2008; Sun et al., 2018). The variables that define the problem are listed in Table 1.

Keeping in mind that the main task of the robot is to guarantee the disinfection of all regions, the path for complete coverage is built dynami-

cally. Regarding the GBNN, a grid is drawn in the space to be covered, forming cells. A series of flags f k, lð Þ are defined for each neural position

k, lð Þ. The value of the flag indicates the current state of the cell according to whether it has been visited or not, regardless the disinfection status

of it. The value 0 means non-visited, 1 indicates visited, 2 means that it is an obstacle, and 3 refers to a deadlock.

It is assumed that the positions of the obstacles are previously known by the robot. To initialize the algorithm, the flag state of each neuron is

initialized to 0 if the cell is empty, and to 2 if there is an obstacle. Similarly, the external input of each neuron is updated with a value of

100 or�100, and the neuronal activity with 1 or �1, following the previous criteria. This way, negative values are associated to cells with obsta-

cles, rewarding movement towards areas of high neuronal activity.

The coverage phase is described in Algorithm 1. The external inputs Ii are the source of information about the environment. These external

inputs Ii are defined as:

• Ii¼þE, if the cell is not visited.

• Ii¼0, if the cell is visited.

• Ii¼�E, if the cell is an obstacle.

The time evolution of the neural activity is given by (6), defined in (Sun et al., 2018).

xi tð Þ¼ f
Xk
j¼1

wij �max xj t�1ð Þ,0� �þ Ii

 !
ð6Þ

where xi tð Þ is the activity of the i-neuron at t; xj t�1ð Þ is the activity of the neighbour neuron j at t�1, which is laterally connected with the i-neu-

ron, and the index k corresponds to the connections between the neuron i and its neighbouring neurons.

The function f að Þ :ℝ!ℝ is defined in (7), being max a,0½ � :ℝ!ℝ the biggest value between a and 0.

f að Þ¼
�1, a<0

βa, 0≤ a<1, β >0

1, a≥1

8><
>: ð7Þ

TABLE 1 Variables and parameters of the disinfection problem.

Variable Definition

kc, lcð Þ Current position

kp , lpð Þ Previous position

kn , lnð Þ Next position

Nx Map size on the x-axis

Ny Map size on the y-axis

N k, lð Þ Set of the discretized workspace k, lð Þ,1≤ k ≤Nx ,1≤ l≤f Nyg
N r k, lð Þ Neighbouring neurons N m,nð Þ jm� k�1,k,kþ1ð Þ, n� l�1, l, lþ1ð Þf , m,nð Þ≠ k, lð Þg
N rnd k, lð Þ Non-diagonal Neighbouring neurons N m,nð Þ j m,nð Þ� k�1, lð Þ, kþ1, lð Þ, k, l�1ð Þ, k, lþ1ð Þf gf g
x k, lð Þ Neural activity at position k, lð Þ
Δθ k, lð Þ Angular difference between the central cell and the cell at position k, lð Þ
I k, lð Þ External input to neuron N k, lð Þ
f k, lð Þ State flag in neuron N k, lð Þ
r0 Receptive field radius of a 2D neural network

E Positive constant for the external inputs

c Positive constant for the path selection strategy

UV% k, lð Þ Approximate disinfection percentage in neuron N k, lð Þ

RODRIGO ET AL. 7 of 26
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The global propagation of the neural activity is only produced by positive neural activities, as they are the only ones that can affect other neu-

rons. On the other hand, the negative neural activities only have a local effect. Regarding the calculation of the weight connection wij, the further

the neighbouring neuron is from the central neuron, the smaller the influence it will have on it. The weight wij of neurons i and j is defined in (8),

where j qi�qj j is the Euclidean distance between vectors qi and qj in the state space and α is a positive constant.

wij ¼ e�α qi�qjj j2 , 0 < j qi�qj j ≤ r0
0, j qi�qj j > r0

(
ð8Þ

Accordingly, for non-visited regions, the external excitation input (Ii¼þE), where
Pk

j¼1wij �max xj t�1ð Þ,0� �þE�1, makes the neural activity

to be 1. On the contrary, for regions with obstacles, the external inhibitory input (Ii¼�E), where
Pk

j¼1wij �max xj t�1ð Þ,0� ��E <0, guarantees that

the neural activity is �1. When the neuron is covered, its external input Ii is equal to 0.

As the algorithm selects the cells with largest neural activity, non-visited regions attract the robot, and it moves to non-visited areas until all

regions have been visited. In each algorithm iteration the next cell is computed from the neural activity or from the sequence of movements

ALGORITHM 1 Enhanced GBNN Algorithm

1. Compute neural activity by Equation (6).

2. N r kc, lcð Þ N m,nð Þ j m� kc�1,kc,kcþ1ð Þ ^ n� lc�1, lc, lcþ1ð Þf ^ m,nð Þ≠ kc, lcð Þg
N rnd kc, lcð Þ N m,nð Þ j m,nð Þ� kc�1, lcð Þ, kcþ1, lcð Þ, kc, lc�1ð Þ, kc, lcþ1ð Þf gf g

3. if movplan¼¼; then
if deadlock¼¼ true then

kn, lnð Þ argmax
m,nð Þ � N r pcð Þ

x m,nð Þþ c 1�Δθ m,nð Þ
π

� 	n o
else

kn, lnð Þ argmax
m,nð Þ � N rnd pcð Þ

x m,nð Þþc 1�Δθ m,nð Þ
π

� 	n o
end-if

movplan checkMovPlanner kc, lc,kn, lnð Þ
end-if

4. if movplan!¼; then
kn, lnð Þ,movplan

� � execMovPlanner kc, lc,movplan
� �

end-if

5. kp kc; lp lc

kc kn; lc ln.

6. if 9 k, lð Þ, 8g � k�1,k,kþ1f g ^ 8h � l�1, l, lþ1f g,
s.t f g,hð Þ¼1

then

I k, lð Þ 0.

end-if

7. f kp, lpð Þ 1.

Update UV% matrix

8. if 9 k, lð Þ, 8m � k�1,k,kþ1f g ^ n � l�1, l, lþ1f g,
m≠ k,n≠ l, 1≤m≤Nx,1≤ n≤Ny , s.t.

1≤ f m,nð Þ≤2, or
x m,nð Þ< x k, lð Þ

then

f k, lð Þ 3.

deadlock true

else

deadlock false

end-if

9. Go to 1 (Until disinfection is complete)

8 of 26 RODRIGO ET AL.
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provided by the movement planner. If in a matrix of 3 � 3 cells all its cells have been visited then the I of the center neural in the matrix is reset.

After this check, the UV% matrix and the map are updated and the existence of deadlocks is evaluated.

To execute the algorithm a 2D Cartesian space discretized into square or rectangular cells is used (Figure 4). The decay factor of the radiation

intensity as a function of distance from the source is also shown.

In this case, according to the specifications of the model used to approximate the UV distribution, the cells have a square shape of 1�1 m.

This cell size has been considered because the computational complexity grows with the number of cells in the map (Luo & Yang, 2008).

In a map, there are M¼Nx�Ny neurons. Then, if Nx¼N and Ny ¼N, the map has N2 neurons. All neurons are connected to 8 neurons. Thus,

there are 8�N2 neuron connections. Therefore, the algorithm complexity is O N2
� 	

.

5 | INTERACTION BETWEEN THE GBNN AND THE MOVEMENT PLANNER

The coverage task should perform the shortest path and turn as little as possible to prevent excessive energy consumption. Thereby, the next

position denoted by pn is calculated from the current position, pc, by (9).

pn ¼ argmax
m,nð Þ � N r pcð Þ

x m,nð Þþc 1�Δθ m,nð Þ
π

� �
 �
ð9Þ

Where x m,nð Þ is the neural activity of neuron in the cell m,nð Þ, c is a positive constant, N r pcð Þ denotes the neighbourhood of the current posi-

tion pc, and the term Δθ m,nð Þ� 0,2π½ � corresponds to the angle of rotation between the current and the possible next moving direction to the cell

m,nð Þ. In this work a value c¼ 0,1½ � is considered.
The procedure to compute Δθ is shown in Figure 5 and formalized by (10), where atan2 denotes the four-quadrant inverse tangent function.

Δθ pnð Þ¼Δθn¼ θc�θn¼ jatan2 ypc �ypp ,xpc �xpp

� 	
�atan2 ypn �ypc ,xpn �xpc

� �j ð10Þ

It should be noted that diagonal movements are disabled to achieve an organized path according to the selected motion strategy. Their use is

only allowed for getting out from deadlock situations. When performing diagonal movements the robot tends to leave spaces without

disinfecting. Then, the robot should return to these areas with the consequent waste of time and energy that would suppose. Thus, these move-

ments are disabled for standard movements. This is formalized in the step 3 of the Algorithm 1, if the deadlock is false the diagonal cells are not

included in the neighbourhood set N rnd.

Once the next cell is computed, the movement is not directly executed but the GBNN requests to the movement planner whether there

exists a prerecorded optimum movement sequence considering the state of the map. This is formalized in the Algorithm 1 in the step 3 by

F IGURE 4 2-D neural network architecture.

RODRIGO ET AL. 9 of 26
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movplan checkMovPlanner kc, lc,kn, lnð Þ. This prerecorded movement sequence movplan is obtained by the movement planner whose architecture is

shown in Figure 6.

First from the auxiliary map the neighbourhood cells to the current are extracted. This 9 � 9 matrix is binarized and serialized. If there is an

obstacle in a cell it receives an 1 and 0 in other case. After the binarization, the content of the matrix is serialized from top to bottom and from left

to right, without considering the central cell to obtain a byte which univocally identifies the obstacle pattern in the environment. In the Figure 6

an example of the serialization can be observed.

The obstacle pattern obspat together with the vector to the next cell vn¼ kn�kc, ln� lcð Þ are used as index to access to 3 different lookup

tables which stores the optimum sequences of movements. Only one lookup table is accessed at the same time, this is managed by the sig-

nal patterntype.

To follow the motion technique used, be it spiral or boustrophedon, the overall coverage trend is considered to move from top to bottom and

from left to right, thus optimizing the full coverage path, reducing repetition and clutter. When selecting the next point to move, it is important to

consider the need to perform specific movements on certain occasions. These events are:

• The need for specific turns when following the boustrophedon strategy;

• the need to avoid corners without making a diagonal movement during a deadlock situation;

• the need to get around obstacles in a certain way.

For each one of these 3 event types, the relation between the obstacle pattern, the vector to the next cell, and the optimum sequence of

movements, obspat, v
!

n

� 	
!movplan, is stored in a different lookup table: Bous denotes the table for the boustrophedon motion, Obs denotes the

F IGURE 5 Path selection strategy - next position Pn calculation.

F IGURE 6 Movement planner architecture.

10 of 26 RODRIGO ET AL.
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table to avoid obstacles, and Diag refers to the table to perform diagonal movements. First the Obs table is checked, if there is not match then the

Bous table only if the motion type is boustrophedon, and finally the Diag table only if there is a deadlock.

If the movement planner provides a sequence of movement, then this sequence is executed in the step 4 Algorithm 1. In each iteration of

algorithm in the step 4 a movement is extracted from the sequence. This is formalized by kn , lnð Þ,movplan
� � execMovPlanner kc, lc,movplan

� �
. When

the sequence is empty movplan¼¼; and the step 3 is again executed.

The obstacle patterns can be seen as a series of templates used to check the environment. These templates are used to decide the sequence

of movements necessary to continue. Figure 7.a shows one of the many possible cases where the robot has to abandon the general movement

trend and go around an obstacle.

Something similar happens when generating the boustrophedon movement since it is not a turn that occurs naturally using neural network

behaviour. This situation can be observed in Figure 7b.

In the case of boustrophedon motion, the robot has to follow a specific motion pattern. To do it, different motion templates have been

designed as shown in Figure 8. They are stored in the Bous table.

To facilitate following a path efficiently in environments with different obstacle patterns, obstacle templates are used. These templates force

the robot to adopt a specific path without considering the neural network behaviour. In Figure 9 the most common situations that have occurred

in the maps used for testing are shown. They are stored in the Obs table.

In cases where these diagonal movements are needed and there are obstacles, considering the size of the robot, an L-shaped movement is exe-

cuted to go around the obstacle instead of the diagonal movement. In Figure 10, the most common cases appear. They are stored in the Diag table.

These templates force the robot to adopt a specific path without considering the neural network behaviour during the GBNN algorithm pro-

cess. The coverage is considered to be achieved moving top to bottom and left to right, thus optimizing the route, reducing repetition and clutter.

The templates are defined as a matrix of 3 � 3 cells that surrounds the robot; thus, there are 28¼256 different templates. This number of tem-

plates, that can be easily handled by the algorithm, covers all possible cases, even for more complicated environments and different obstacle

shapes.

Another important feature to perform the complete coverage is the auxiliary obstacle map. This map is not part of the neural network but it

contributes to increase the use of templates. In this map, the cells that have been previously disinfected are stored as if they were obstacles. A

delay of 3 samples is used to analyse the map. This way the previously disinfected cells are managed as if they were obstacles by the obstacle

avoidance strategy. In Figure 11 the auxiliary obstacle map is shown.

F IGURE 7 Movement with templates.

F IGURE 8 Boustrophedon motion templates.

RODRIGO ET AL. 11 of 26
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6 | SIMULATION RESULTS AND DISCUSSION

In the proposed testing scenarios, the initial position is p 2,2, π2
� �

, and the parameters of the model α,β,ρ0,c,E½ � are set to 2,0:6,7,0:1,100½ �. The
speed controller uses the tuning parameter ρ≈1:54; IUV ¼5:5W=m2 is for the lamp used; Dreq¼500 J=m2 is the reference value to achieve disin-

fection; and dLA¼0:2 is the anticipation distance for the pure pursuit controller. The sample time for simulation is dt¼0:1ms.

F IGURE 9 Obstacle template.

F IGURE 10 Diagonal movement templates.

12 of 26 RODRIGO ET AL.
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The computer used for the tests is an Intel(R) Core(TM) i7-8750H CPU @ 2:20GHz with a 2201MHz clock; 1536KB cache; and 6 processors.

The operating system is Microsoft Windows 10 Education N.

6.1 | Improvement obtained by the movement planner and the speed controller

Different metrics have been used to asses the effectiveness of the navigation algorithm of the mobile robot (Munoz-Ceballos & Suarez-

Rivera, 2022). Table 2 shows the metrics used to analyse the performance algorithm, and the values of the variables once the simulation of the

disinfection process has finished. A comparison is done with the GBNN algorithm and three cases: results obtained without using the movement

planner (WMP), without the speed controller (WVC), or without considering any of both previous options (WMP & WVC). These results are sum-

marized in Table 2. The ratio between travelled area versus available area is shown in the last row, called excess travel area (11). Nevertheless, the

ratio scanned area versus available area has not been included because all cells are visited, so this value would be 100% in all cases.

taex¼AreaTraveled�AreaAvailable
AreaAvailable

�100 ð11Þ

The comparative analysis confirms how the actions implemented by the Enhanced GBNN algorithm lead to an improvement in the disinfec-

tion with UV-C radiation. It can be seen how the speed controller is able to maximize the dose within the desired threshold. Besides, it is also

shown how, through the use of the movement planner, a more efficient path can be obtained, avoiding unnecessary movements, as well as a bet-

ter distribution of the radiation received by the environment.

It would be desirable to maximize the percentage of cells with a UV-C radiation dose in the expected range, that is, (12).

DN¼0:9Dreq <D<1:1Dreq ð12Þ

where DN is the desired dose range and D is the final UV-C dose received. Therefore, DH is the percentage of dose over this threshold, and DL is

the percentage of dose below it.

It should be noted that maximizing the areas that are within the desired range will avoid degradation of the surrounding materials and unnec-

essary energy consumption, ensuring a more reliable environment disinfection.

Most of the surface is found to be within the expected dosage range when using the enhanced GBNN algorithm. However, the areas closer

to the walls are below the expected value. Besides, areas near blocking situations exceed this threshold, resulting in wasted energy and unneces-

sary deterioration of the materials. This negative effect is amplified when neither the movement planner nor the speed controller are used, as can

be seen in Table 2.

Figure 12 shows how the robot manages to disinfect each of the zones by using a boustrophedon movement. Indeed, the number of deadlock

situations is reduced when the enhanced algorithm is used, Figure 12b.

F IGURE 11 Updating the auxiliary obstacle map while the robot is moving [Medium complexity map, nGBNN¼172].

RODRIGO ET AL. 13 of 26
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Figure 13 shows the path followed in each case to complete the disinfection process with UV-C radiation. It is possible to observe how when

the enhancement is not implemented, Figure 13a, there are many more unnecessary movements. The areas where the robot finds a deadlock can

be distinguished. In these conditions, the algorithm relies on the neural activity of the environment to be able to find areas to visit. These deadlock

situations will produce a negative effect in terms of excess of dose received.

As said before, in Figure 14 it can be seen that there are some peaks due to the deadlocks. In these cases, the speed regulator is not able to

fully reduce the radiation peaks; though, the controller maintains the received dose within the appropriate range in the rest of areas. However, it

is interesting to remark that even with some remaining deadlocks, the enhanced algorithm achieves a reduction of 44% in the maximum dose. In

addition, it may be noted that near the walls the received dosage is lower than elsewhere in the room.

6.2 | Evaluation with multiple radiation dosages

We have also tested the algorithm in a map with four regions with different Dreq values each one: 400, 500, 600, and 700 J=m2. As it is possible

to observe in Figure 15, although the UV dose distribution has a similar shape to the surface of Figure 14, in this case the dosage levels are differ-

ent according to the four regions in the map, each one requiring a specific dose.

TABLE 2 Metrics used to analyse the disinfection process.

Metric Definition Enhanced GBNN WMP WVC WMP & WVC

trobot Disinfection process time 02 :17 :47 02 :23 :38 02 :14 :14 02 :20 :13

nGBNN Algorithm iterations 1334 1578 1334 1578

ngoals Number of goals 405 652 405 652

drobot Distance covered 1371:75m 1708:51m 1336:52m 1667:98m

rrobot Radians rotated 933:93 rad 1480:35 rad 875:93 rad 1412:64 rad

vav Average speed 0:17m=s 0:20m=s 0:17m=s 0:2m=s

Dmax Maximum dose 1021:20 J=m2 1242:60 J=m2 1664:16 J=m2 1834:13 J=m2

Dmin Minimum dose 292:24 J=m2 310:18 J=m2 153:21 J=m2 132:64 J=m2

DN Desired dose range 73:24% 51:81% 38:39% 22:20%

DH Excess dose range 16:27% 40:23% 40:02% 54:30%

DL Shortage dose range 10:49% 7:96% 21:59% 23:50%

taex Excess travel area 25:16% 55:89% 21:95% 52:19%

F IGURE 12 Path generated by the GBNN algorithm to guarantee the complete disinfection of the environment.
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F IGURE 13 Path followed by the robot at the end of the disinfection process with boustrophedon motion.

F IGURE 14 Dose received considering the UV-C distribution model described in Figure 4 and assuming a lamp power IUV ¼550μW=cm2

using the enhanced GBNN algorithm.

F IGURE 15 Dose received considering a map with 4 different Dreq values: 400, 500, 600 and 700 J=m2.
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6.3 | Evaluation in different scenarios

6.3.1 | Test 1: Empty map

First, an empty map is used. This space is a working environment free of obstacles but surrounded by walls. In Figure 16, the paths involved are

reasonably simple and without further complications. The robot moves from the outside to the inside using spiral motion until it reaches the cen-

tre of the map. On the other hand, with boustrophedon movements, the robot moves around the environment in a zigzag way.

In Figure 17, it can be noted how there is a higher dose coverage overlap in the mid zone, using boustrophedon motion. However, in the case

of using spiral motion, the dose received in the map centre decreases in the same way as in the edges. This phenomenon is explained because this

point is the last one to be visited, and therefore the robot will have to go slower in this area. Something similar happens at the last point visited

with boustrophedon motion, but it is less visually evident.

The paths followed by the robot in each situation are shown in Figure 18. They are two routes, which do not present any problems during

the entire journey. It is important to highlight the different speed settings used in each case. The robot that uses spiral motion has a gradual

increase as it moves closer to the central point. For the other robot, the speed presents a more uniform profile during the path.

F IGURE 16 GBNN path for Test 1, generated by complete coverage path planning.

F IGURE 17 UV % estimated during the complete coverage path planning of Test 1.

16 of 26 RODRIGO ET AL.
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Figure 19 shows a very uniform dose distribution. It is possible to see where the robot passed since the disinfection is lower, forming a kind

of lane. The disinfection is lower closer to the walls, and the peaks that appear are caused when the robot turns. Figure 20 shows a very uniform

dose distribution. It is possible to see where the robot passed since the disinfection is lower, like in the previous case. The disinfection is lower,

closer to the walls too.

Lastly, in Figure 21, it is confirmed that the radiation received is mostly inside the expected range. It is evident where the robot has passed

because the dose received is lower. Similarly, near the walls, the desired dose is not reached.

F IGURE 18 Robot path for Test 1.

F IGURE 19 DUV received with spiral motion for Test 1.

F IGURE 20 DUV received with boustrophedon motion for Test 1.

RODRIGO ET AL. 17 of 26
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6.3.2 | Test 2: Low complexity map

In this workspace, the robot must access different corridors. This map makes the disinfection work harder if it is compared with the previous

scenario.

In Figure 22, it can be seen that in both cases the behaviour is similar when returning to the initial corridor. However, with spiral motion it

seems to be a bit more chaotic (although it only takes 4 more iterations to complete the map).

In Figure 23, it can be perceived that the path generated by the algorithm using boustrophedon motion obtains a more balanced dose distri-

bution. The peak that appears using spiral motion should be corrected by the speed control. This overshoot of radiation is caused because the

robot needs to pass again through a previously visited area. This type of problem increases as the complexity of the maps grows.

The real routes pursued by the robots are shown in Figure 24.

Figure 25 details the final dose received in the workspace once the complete coverage path planning is completed. A higher amount of the

dose received appears in the area with deadlock situations. Even though the speed controller manages to reduce the final dose, there are still

peaks in that area as expected in Figure 23. In the case considering boustrophedon motion (Figure 26), the dose received is more uniform, show-

ing the typical peaks of each turn. As in the previous case, it is also worth mentioning the section where a deadlock appears whose received dose

is higher than in the rest of the regions.

Lastly, in Figure 27, it can be seen that more areas exceed the threshold for the path generated by spiral motion. In both cases, there are areas

below the expected threshold due to the influence of contours on disinfection. A dose drop will always be observed near obstacles.

6.3.3 | Test 3: Medium complexity map

On this occasion, considering the distribution of obstacles on the map, the need to escape deadlock situations has been more frequent, indepen-

dently of the motion used. In Figure 28, it can be seen that both paths are very similar.

F IGURE 21 DUV received categorized into thresholds for Test 1.

F IGURE 22 GBNN path for Test 2, generated by complete coverage path planning.

18 of 26 RODRIGO ET AL.
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F IGURE 23 UV % estimated during the complete coverage path planning of Test 2.

F IGURE 24 Robot path for Test 2.

F IGURE 25 DUV received with spiral motion for Test 2.

RODRIGO ET AL. 19 of 26
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In Figure 29, when using spiral motion, minor excesses of radiation can be detected spread over the map. On the other hand, the robot that

uses boustrophedon motion has a very specific area where all the excess dose is located. Although the speed controller will attempt to reduce it,

in Figure 32, it can be shown that this region has the highest concentration considering the rest of the map.

The paths followed by each robot are shown in Figure 30. Both routes, each with a different motion technique, achieve to cover the whole

space. However, neither succeeds in covering the entire workspace without having to pass through previously visited areas. It is remarkable the

knot that originates in the upper left of the map when spiral motion is used.

F IGURE 26 DUV received with boustrophedon motion for Test 2.

F IGURE 27 DUV received categorized into thresholds for Test 2.

F IGURE 28 GBNN path for Test 3, generated by complete coverage path planning.
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F IGURE 29 UV % estimated during the complete coverage path planning of Test 3.

F IGURE 30 Robot path for Test 3.

F IGURE 31 DUV received with spiral motion for Test 3.
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In Figure 31, it can be appreciated that the areas which receive more radiation are those registered in Figure 29. The speed controller can

smooth these regions but does not achieve a perfect accuracy.

Similarly, Figure 32 shows an equivalent result. Even though the excessive amount of radiation seen in Figure 29 was reduced, the problem is

the same as with spiral motion. The speed control reduces the dose received in that area, but it exceeds the desired quantity. This fact is

enhanced as the map complexity grows.

Analysing the Figure 33, in both cases the expected threshold is exceeded by a similar percentage. However, with boustrophedon motion

case is possible to be closer to the expected dose.

F IGURE 32 DUV received with boustrophedon motion for Test 3.

F IGURE 33 DUV received categorized into thresholds for Test 3.

F IGURE 34 GBNN path for Test 4, generated by complete coverage path planning.
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6.3.4 | Test 4: High complexity map

This map has a significant number of rooms. In Figure 34, the different paths followed by each robot appear. In both cases, it can be seen that the

robot passes into a particular room and disinfects it. In this environment, the true potential of the proposed algorithm is tested.

In Figure 35, it can be seen that in both situations, there are some unwanted peaks. This effect is due to the increase in deadlock situations,

besides the number of turns needed to move around the proposed environment. The peaks are higher in the robot that uses spiral motion.

In Figure 36, the path covered by both robots can be seen on the map. Although both routes are similarly complex, it is a fact that the robot

with spiral motion uses fewer turns to perform the disinfection. The speed in both cases is also similar. Although when using boustrophedon, the

speed is higher, as is usual in all the tests done.

Due to the complexity of the map, in Figures 37 and 38, it is evident that the speed controller is not able to smooth the received dose in an

expected way. This result is manifested in a large number of peaks, which appear mainly due to the need to make a large number of turns to disin-

fect the environment and deadlocks situations.

In contrast to Figure 35, after simulating the system, the speed controller has performed better than the spiral case, and we see higher peaks

with boustrophedon motion.

F IGURE 35 UV % estimated during the complete coverage path planning of Test 4.

F IGURE 36 Robot path for Test 4.
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In the Figure 37 the same occurs. Similarly, the undesired effect of the turns is visible. On this route, the number of turns is greater, and they

are also closer turns, which causes higher peaks. Also, the unwanted effect of deadlock situations can be seen quite well in the 2D graph.

The radiation excess is higher than in previous cases, as shown in Figure 39. Once the complexity of the map is increased, reaching the

desired radiation is not a problem. The trouble comes from the regions that exceed this threshold. This effect is quite noticeable in deadlock

escape routes.

7 | CONCLUSIONS AND FUTURE WORKS

The use of UV-C radiation in combination with mobile robotics expands the capabilities of disinfection of this technique. For this purpose, in this

work a complete coverage path planning algorithm for UV-C disinfection based on boustrophedon and spiral movements is proposed.

F IGURE 37 DUV received with spiral motion for Test 4.

F IGURE 38 DUV received with boustrophedon motion for Test 4.

F IGURE 39 DUV received categorized into thresholds for Test 4.
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A path is obtained using neuronal activity, starting from a known environment. To do so, the GBNN algorithm, adapted to the requirements

of disinfection by UV radiation, has been developed. An approximate model has been used to infer the dose received.

This approach gives a representative and useful demonstration of the results obtained with the boustrophedon and spiral motion techniques.

Remarkably, the proposed speed controller can adjust the speed of the robot so that the dosage is within the desired range under normal

conditions.

The algorithm has been testing in different scenarios. It is applicable to all disinfection robots and allows maximizing their utilization. Further-

more, the use of this algorithm makes a larger number of cells the desired radiation dose. Specifically, it has been observed that 229% more cells

receive the required dose; the maximum dose of radiation is 44% lower, which ensures less damage to surrounding materials; the distance trav-

elled is 17% less, which saves energy and, finally, the number of iterations is 15% less.

As future lines of work we can highlight the simulation of 3D environments instead of 2D; the simulation of other radiation patterns; consid-

eration of materials with different absorption coefficients; and the extension of the algorithm to manage a fleet of mobile robots.
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