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Abstract. A novel connectionist method to feature selection is proposed in this pa-
per to identify the optimal conditions to perform drilling tasks. The aim is to ex-
tract information from complex high dimensional data sets. The model used is 
based on a family of cost functions which maximizes the likelihood of identifying a 
specific distribution in a data set. It employs lateral connections derived from the 
Rectified Gaussian Distribution to enforce a more sparse representation in each 
weight vector. The data investigated is obtained from the sensors allocated in a 
robot used to drill and build industrial warehouses. It is hoped that in classifying 
this data related with the strength, the water volume for refrigerating, speed and 
time of each sample, it will help in the search of the best conditions to perform the 
drilling of reinforce concrete slabs.  This would produce a great saving for the 
company which owns the drilling robot. 

1. Introduction 

Feature extraction includes interesting tasks as space dimensionality reduc-
tion, feature construction, sparse representations and feature selection. All 
these techniques are commonly used as preprocessing in the field of ma-
chine learning. These areas have been tackled by researchers for many 
years and there has always been a great interest in feature extraction. The 
number of applications with very large input spaces which need space di-
mensionality reduction for efficiency and efficacy of the predictors is al-
ways increasing. These applications include very different areas as pattern 
recognition (e.g. handwriting recognition), speech processing, vision, text 
processing and recent ones as bioinformatics (DNA microarrays, etc.), and 
so on. 

 
In this paper, we propose a method which is closely related to factor analy-
sis. It is an unsupervised connectionist model based on the Negative Feed-
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back Artificial Neural Network [1], which has been extended by the com-
bination of two different techniques. Firstly by the selection of a cost func-
tion from a family of cost functions [2, 3] which identify different distribu-
tions. This method is called Maximum-Likelihood Hebbian learning [2, 3]. 
Secondly, competitive lateral connections [4] obtained from the Rectified 
Gaussian Distribution [5] were added to the Maximum-Likelihood method 
by Corchado et al. [2, 3] which enforced a greater sparsity in the weight 
vectors. 
 
The Negative Feedback Artificial Neural Network has been linked to the 
statistical techniques of Principal Component Analysis [6] and Factor 
Analysis [7]. Lateral connections were introduced to the basic Maximum-
likelihood network for the identification of different filters from video im-
ages [3, 4]. This paper reviews and proposes a method called Cooperative 
Maximum-Likelihood Hebbian Learning (CMLHL) [8, 9] to identify struc-
ture in a data set obtained from the sensors allocated in a robot used to drill 
and build industrial warehouses.  
 
One of the biggest demands on present industrial field is the storage of 
goods in suitable places. So for this reason it is necessary to build up big 
warehouses for auto-carrier storage. Up to now, the drilling of slabs of re-
inforced concrete, which is necessary to place shelves on the mentioned 
warehouses, has been made manually by workers. This is a disadvantage 
due to the possible human errors which may produce a big economical 
loss. This is the main reason to design a robot that can carry out the men-
tioned operation raising the accuracy of the drilling tool. The robot must be 
capable of setting up the position of the bits and their diameters, to suck in, 
to filter and to recirculate the water for drilling, to test the tool conditions 
during automatic changing when it is required. In this way, it is easier to 
achieve a better assembly quality, decreasing the drilling execution time 
and achieving a less tool wear. All these factors imply an increase of the 
drilling instruments duration and the elimination of corrections. Finally 
this means the saving of a lot of money and time. 
 
In order to identify the best conditions, we use an unsupervised connec-
tionist method which can find sparse representations of the data which are 
more structured than those found by some other contemporary statistical 
techniques as Principal Component Analysis. It is also providing some 
global ordering. 
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This paper is organised as follows: from section 2 to 5 we introduce some 
statistical and connectionist techniques. Then we describe the problem and 
the data set. We finally show the results, conclusions and future work. 

2. Principal Component Analysis 

Principal component analysis (PCA) [10, 11] is a statistical method which 
aims to find the orthogonal basis which maximizes the variance of the pro-
jection of the data for a given dimensionality of basis. This usually means 
finding the direction which accounts for most of the data’s variance; this 
becomes the first principal component. The next component is the direc-
tion from the remaining data which contains the most variance and is or-
thogonal to the previous basis vector.   
 
This technique can be used as a dimension reduction technique which pre-
serves as much information as possible in the remaining dimensions. If we 
consider only the largest eigenvalues corresponding to the principal com-
ponents we can also find those components that contain most information, 
which may provide an insight into the structure of the data.  

 

3. The Negative Feedback Neural Network 

 
First we introduce the Negative Feedback Network [1], which is the basis 
of the Maximum-Likelihood model. Feedback is said to exist in a system 
whenever the output of an element in the system influences in part of the 
input applied to that particular element. It is used in this case to maintain 
the equilibrium on the weight vectors.  
 
Consider an N-dimensional input vector, X, and a M-dimensional output 
vector, Y , with Wij being the weight linking input j to output i and let η be 
the learning rate. 
 
The initial situation is that there is no activation at all in the network. The 
input data is fed forward via weights from the input neurons (the X-values) 
to the output neurons (the Y-values) where a linear summation is per-
formed to give the activation of the output neuron. This can be expressed  
as: 
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The activation is fed back through the same weights and subtracted from 
the inputs (where the inhibition takes place): 
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After that simple Hebbian learning is performed between input and out-
puts: 
 

ijij yeW η=∆  (3) 

 
                                                                                                     

The effect of the negative feedback is to stabilise the learning in the net-
work. Because of that it is not necessary to normalise or clip the weights to 
get convergence to a stable solution. 

 
This network is capable of finding the principal components of the input 
data in a manner that is equivalent to Oja’s Subspace algorithm [6], and so 
the weights will not find the actual Principal Components but a basis of the 
Subspace spanned by these components. 
 

Writing the algorithm in this way gives a model of the process which al-
lows in general to envisage different models [2, 3, 4, 8] which would oth-
erwise be impossible.  

   
A method similar to PCA is Factor Analysis. Factor analysis (FA) is a 
multivariate technique whose goal is to represent a set of variables in terms 
of an underlying smaller set of variables called factors.  
 
Its origins date back to the turn of the century to work by [12] concerned 
with understanding intelligence and the technique was developed for ana-
lysing the scores of individuals on a number of aptitude tests. Factor analy-
sis has been developed mainly by psychologists and most applications 
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have been in the areas of psychology and the social sciences though others 
include medicine, geography and meteorology, for example. It attempts to 
explain the data set in terms of a smaller number of underlying factors. 
However Factor Analysis begins with a specific model and then attempts 
to explain the data by finding parameters which best fit this model to the 
data.  

4.  A Neural Exploratory Projection Pursuit Version 

Exploratory Projection Pursuit (EPP) [13, 14] is a recent statistical method 
which is focused on solving the difficult problem of identifying structure 
in complex high dimensional data. It does this by projecting the data onto a 
low dimensional subspace in which the search for structure is done by eye. 
However not all projections will reveal the data's structure equally well. 
There is an index that measures how “interesting” a given projection is, 
and then represent the data in terms of projections that maximise that in-
dex. 
 
Now “interesting” structure is usually defined with respect to the fact that 
most projections of high-dimensional data onto arbitrary lines through 
most multi-dimensional data give almost Gaussian distributions [15]. 
Therefore to identify “interesting” features in data, it is necessary to look 
for those directions onto which the data-projections are as far from the 
Gaussian as possible.  
 
Corchado et al. [2, 3] presented a neural version of EPP in which the learn-
ing rule is given by: 
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Where T denotes the transpose of a vector.  It is expected [2, 3] that for 
leptokurtotic residuals (more kurtotic than a Gaussian distribution), values 
of p<2 would be appropriate, while for platykurtotic residuals (less kurtotic 
than a Gaussian), values of p>2 would be appropriate. 

 
 

Therefore the network operation is: 
Feedforward:  (Eq. 1)                                                     
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Feedback: (Eq. 2)                                                                   
Weight change: (Eq. 4)                                                            

 
By maximising the likelihood of the residual with respect to the actual dis-
tribution, there is a matching of learning rule to the pdf of the residual.  

 
This method has been linked to the standard statistical method of Explora-
tory Projection Pursuit (EPP) [2, 3, 13, 14, 15].  EPP also gives a linear 
projection of a data set but chooses to project the data onto a set of basis 
vectors which best reveal the interesting structure in the data; interesting-
ness is usually defined in terms of how far the distribution is from the 
Gaussian distribution. To identify interestingness, it is necessary to maxi-
mise the probability of the residuals under specific pdfs which are non-
Gaussian.   

5.  Cooperative Maximum Likelihood Hebbian Learning 

 
The Rectified Gaussian Distribution (RGD) [5] is a modification of the 
standard Gaussian distribution in which the variables are constrained to be 
non-negative, enabling the use of non-convex energy functions.  
Lateral connections [5, 4] have been derived from the RGD and based on 
the cooperative distributions [5]. 
 
More formally, the standard Gaussian distribution is defined by: 
 

( ) ( ) ,1 yy EeZp β−−=  (5) 
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2
1  

(6) 

 
              

The quadratic energy function E(y) is defined by the vector b and the 
symmetric matrix A. The parameter β=1/T is an inverse temperature. 
Lowering the temperature concentrates the distribution at the minimum of 
the energy function.  
One advantage of this formalisation is that it allows to visualise regions of 
high or low probability in terms of energy and hence to view movement to 
low energy regions as movement to regions of high probability. 
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The quadratic energy function E(y)  can have different types of curvature 
depending on the matrix A. Not all energy functions can be used in the 
Rectified Gaussian Distribution. The sorts of energy function that can be 
used are only those where the matrix A has the property: 
 

0Ayy T > for all Ni0y i ...1,: =>y  (7) 

    
where N is the dimensionality of y. This condition is called co-positivity. 
This property blocks the directions in which the energy diverges to nega-
tive infinity. 
 
The cooperative distribution in the case of N variables is defined by: 
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where δij is the Kronecker delta and i and j represent the identifiers of out-
put neuron. 
To speed learning up, the matrix A can be simplified [7] to: 
 

( )( )( )NjiA ijij /2cos −−= πδ  (10) 

 
The matrix A is used to modify the response to the data based on the rela-
tion between the distances between the outputs. The outputs are thought of 
as located on a ring (“wraparound”).  

  
The modes of the Rectified Gaussian are the minima of the energy func-
tion, subject to non-negativity constraints. The modes of the distribution 
characterize much of its behaviour at low temperature. It is possible to use 
what is probably the simplest algorithm, the projected gradient method, 
consisting of a gradient step followed by a rectification: 

 

( ) ( ) ( )[ ]+−+=+ Ay1 btyty ii τ  (11) 
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where the rectification [ ]+
 is necessary to ensure that the y-values keep to 

the positive quadrant. If the step size τ is chosen correctly, this algorithm 
can provably be shown to converge to a stationary point of the energy 
function [16]. In practice, this stationary point is generally a local mini-
mum. 
The mode of the distribution can be approached by gradient descent on the 
derivative of the energy function with respect to y. This is: 
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which is used as in  Equation 11. 
The final neural architecture will be shown to be an architecture which can 
find the independent factors of a data set but do so in a way which captures 
some type of global ordering in the data set.  
The standard Maximum-Likelihood Network is used, but now with lateral 
connections (which acts after the feed forward but before the feedback).  
Then the final network is defined as follows: 

Feedforward:    (Eq.1)                                      
Lateral Activation Passing:     

( ) ( )[ ]+−+=+ Aybtyty ii τ)(1  (13) 

  
Feedback:          (Eq. 2)           
Weight change: (Eq. 4)                                                 
Where the parameter τ  represents the strength of the lateral connec-

tions. 
 

6.  Problem and Data Description  

 
The purpose of the multidisciplinary work presented in this paper is the 
study of the best conditions for drilling reinforced concrete slabs, using a 
pneumatic drill with diamond bits, allocated in a robot.  
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In this work we have applied different unsupervised neural architectures in 
order to obtain the optimal conditions; the ones which cause least wear of 
the bits and provide the best result in less time. This will help the drilling 
company to save a lot of money. 

 
The experiments are based on a data set obtained from a test done with re-
inforced concrete with steel bars. The data set has been collected under dif-
ferent circumstances, on the tool and also on the material to be drilled, in 
order to identify the optimal conditions in each case. 

 
We have studied several variables and their response in a discrete range of 
values: 
 

Variable (Units) Range 
� Applied strength (N). 

 
65, 80.5, 96, 11.5 

� Refrigerating volume water of the 
tool (l/min), which avoids its over-
heating and evacuate the waste. 

 

2, 3, 4, 5 

� The speed of turn (r.p.m). 
 

1000, 2000, 3000,4000 

� The drilling time (s). 
 

80 different times. 

Table 1. Variables, units and values used during the experiments. All these values 
have been chosen for been quite common for this drilling task.   
 
The data set was obtained from the drilling of reinforced concrete test 
tubes with steel bars. The number of samples taken were relatively small, 
80 samples. This is due to the high cost of the diamond bits. 
 

7.  Application to the Drilling Robot Data Set  

 
The model presented above has been used to identify the optimal drilling 
conditions under different situations as: 

• The bit faces only a concrete slab. 
• The bit faces mainly the concrete slab and a small portion of a 

steal bar. 
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• The bit faces mainly a steal bar and the concrete slab. 
 

Figure 1 shows results obtained using Cooperative Maximum Likelihood 
Hebbian Learning (CMLHL) and Principal Component Analysis. We can 
see that both methods have identified four different clusters.  
 

 
Fig. 1. Principal Component Analysis (left figure) and Cooperative Maximum 
Likelihood Hebbian Learning (right figure). CMLHL method identifies a projec-
tion which spreads the data out more than PCA. 

Both methods have performed an initial classification attending to the 
speed factor. It is easy to affirm that CMLHL (Fig.1.- right figure) is pro-
viding a more sparse representation than PCA (Fig.1.-left figure). For a 
better understanding, we have studied the internal structure of the four 
clusters provided by CMLHL.  
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After studying each subcluster we have noted a second classification. It is 
based on the strength applied and drilling time of each sample, which are 
decisive parameters. We have noticed that the ordinate axe (Fig 2.) in this 
case is related to the strength and that the coordinate axe (Fig 2.) is related 
to the applied time. 
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Once the results have been globally analyzed, we can state that the lower 
wear of the diamond bits take place in each cluster for subcluster one and 
two. The best conditions are related to subcluster 2 of cluster four (parame-
ters: strength 80.5 N; 4000 r.p.m; time between 300 and 700 seconds and a 
medium volume) as we can see in Fig.2d.  Of course, these results are rela-
tives to the range of values used on the test, but in other hand quite com-
mon ones for this drilling task. 

 
We would like to point out some interesting facts: The best conditions are 
not the ones related with the biggest values of strength. We have noticed 
that the use of a small refrigerating volume may produce an extreme 
warming of the bit and so for a bad elimination of the waste. In the oppo-
site case, the use of an excessive amount of it may produce the breaking of 
the labs in a wrong way. 

8. Conclusions 

 
In this paper we have presented an ongoing multidisciplinary research in 
which we have showed an application of the CMLHL to a civil engineer-
ing problem and we have compared the method with a classical statistic 
method. We have identified the best conditions in a typical range of values 
and using a relatively quite small amount to samples. 
 
Future work will be focus on the development of a product life manage-
ment system which will record all the measures in a collaborative way. 
This will allow us the applications of artificial neural networks for differ-
ent tasks related to the ones presented above and more important, to solve 
problems in real time.     
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