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Abstract. Laser milling is a relatively new micromanufacturing technique in 

the production of copper and other metallic components. This study presents 

multidisciplinary research, which is based on unsupervised connectionist 

architectures in conjunction with modelling systems, on the determination of 

the optimal operating conditions in this industrial process. Sensors on a laser 

milling centre relay the data used in this industrial case study of a machine-tool 

that manufactures copper components for high value micro-coolers. The two-

phase application of the connectionist architectures is capable of identifying a 

model for the laser-milling process based on low-order models such as Black 

Box. The final system is capable of approximating the optimal form of the 

model. Finally, it is shown that the Box-Jenkins algorithm, which calculates the 

function of a linear system from its input and output samples, is the most 

appropriate model to control these industrial tasks.    

1 Introduction 

Laser milling of cooper is a complicated process due to the high conductivity and 

high reflectivity of this metal. Laser milling, in general, consists of the controlled 

evaporation of waste material due to its interaction with high-energy pulsed laser 

beams. The operator of a conventional milling machine is aware at all times of the 

amount of waste material removed, but the same can not be said of a laser milling 

machine. A model that could predict the exact amount of material that each laser 

pulse is able to remove would contribute to the industrial use and development of this 

new technology. The one proposed in this paper is able to optimize the manufacturing 

process and to control laser milling to a level of accuracy that is required for the 

manufacture of micro-coolers. It has been developed using a combination of 

conventional and Artificial Intelligence (AI) models and is applied here to data taken 

from micromanufacturing laser milling of copper components.  
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Unsupervised neural networks can be used as a preliminary phase or step before a 

model is established. They are used to analyze the internal structure of the data sets in 

order to establish that they are sufficiently informative.  

The rest of the paper is organized as follows. Following the introduction, a two-

phase process is described to identify the optimal conditions for the industrial laser 

milling of copper components. The case study is then presented that outlines the 

practical application of the model. Finally, some of the different modelling systems 

are applied and compared, in order to select the best model in this case, before ending 

with a short conclusion that summarises the salient points of this work. 

2 Modelling the Laser Milling of Copper Components   

2.1. A First Phase using Connectionist Models 

Cooperative Maximum-Likelihood Hebbian Learning (CMLHL) [2] is applied in this 

study in order to analyse the internal structure of  the data set under study and to 

establish whether it  is “sufficiently informative”. In the worse case, the experiments 

have to be performed again. 

CMLHL is a Exploratory Projection Pursuit (EPP) method [1] [3], [4]. In general, 

EPP provides a linear projection of a data set, but it projects the data onto a set of 

basic vectors which help reveal the most interesting data structures; interestingness is 

usually defined in terms of how far removed the distribution is from the Gaussian 

distribution [5].  

One connectionist implementation is Maximum-Likelihood Hebbian Learning 

(MLHL) [4], [6]. It identifies interestingness by maximising the probability of the 

residuals under specific probability density functions that are non-Gaussian. An 

extended version is the CMLHL [2] model, which is based on MLHL [4],[6] but adds 

lateral connections [7], [2] that have been derived from the Rectified Gaussian 

Distribution [5].  

Considering an N-dimensional input vector ( x ), and an M-dimensional output 

vector ( y ), with 
ijW  being the weight (linking input j to output i), then CMLHL can 

be expressed [8], [9] as:  

1. Feed-forward step: 

ixWy

1j

jiji =
=

N

,  . (1) 

2. Lateral activation passing: 

( ) ( ) +−+=+ Aybτ(t)yty ii 1  . (2) 

3. Feedback step: 
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4. Weight change: 

( ) 1||.. −= p
jjiij eesignyW   . 

(4) 

Where:  is the learning rate,  is the "strength" of the lateral connections, b the 

bias parameter, p a parameter related to the energy function [2], [4], [6] and A  a 

symmetric matrix used to modify the response to the data [2]. The effect of this 

matrix is based on the relation between the distances separating the output neurons. 

2.2. Second Phase. 

The identification criterion evaluates which of the group of candidate models is best 

adapted to and which best describes the data sets collected in the experiment; i.e., 

given a model )( *M  its prediction error may be defined by equation (5); and a good 

model [8] will be that which makes the best predictions, and which produces the 

smallest errors when compared against the observed data. In other words, for any 

given data group tZ , the ideal model will calculate the prediction error ),(  t , 

equation (5), in such a way that for any one t=N, a particular 
N̂  (estimated 

parametrical vector) is selected so that the prediction error )ˆ,( Nt   in t=1,2,3…N, is 

made as small as possible. 

)|(ˆ)(),( **  tytyt −= . 
(5) 

The estimated parametrical vector ̂  that minimizes the error, equation (8), is 

obtained from the minimization of the error function (6). This is obtained by applying 

the least-squares criterion for the linear regression, i.e., by applying the quadratic 

norm 2

2

1
)(  = , equation (7). 
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The methodology of black-box structures has the advantage of only requiring very 

few explicit assumptions regarding the pattern to be identified, but that in turn makes 

it difficult to quantify the model that is obtained. The discrete linear models may be 

represented through the union between a deterministic and a stochastic part, equation 

(9); the term e(t) (white noise signal) includes the modelling errors and is associated 

with a series of random variables, of mean null value and variance . 
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The structure of a black-box model depends on the way in which the noise is 

modelled )( 1−qH ; thus, if this value is 1, then the OE (Output Error) model  is 

applicable; whereas, if it is different from zero a great range of models may be 

applicable; one of the most common being the BJ (Box Jenkins) algorithm. This 

structure may be represented in the form of a general model, where )( 1−qB  is a 

polynomial of grade nb, which can incorporate pure delay nk in the inputs, and 

)( 1−qA , )( 1−qC , )( 1−qD  and )( 1−qF  are autoregressive polynomials ordered as na, nc, 

nd, nf, respectively (10). Likewise, it is possible to use a predictor expression, for the 

on-step prediction ahead of the output )|(ˆ ty  (11). In Table 1, the generalized 

polynomial expressions are presented, as well as those that represent the polynomials 

used in the case of each particular model.   
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Table 1. Black-box model structures 

 

Procedure for Modelling the Laser Milling process. The identification procedure 

used to arrive at a parameterized model M, which will eventually be selected as the 

best from among those that modelled the laser milling characteristics on the basis of 

the variable measurements, is carried out in accordance with two fundamental 

patterns: a first pre-analytical and then an analytical stage that assists with the 

determination of the parameters in the identification process and the model 

estimation. The pre-analysis test is run to establish the identification techniques [8], 

[9], [10], [11], [12], [13], the selection of the model structure and its order estimation 

[14], [15], the identification criterion and search methods that minimize it and the 

specific parametrical selection for each type of model structure. 

A second validation stage ensures that the selected model meets the necessary 

conditions for estimation and prediction. Three tests were performed to validate the 
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model: residual analysis ))(ˆ,( tt  , by means of a correlation test between inputs, 

residuals and their combinations; final prediction error (FPE) estimate, as explained 

by Akaike [16]; and the graphical comparison between desired outputs and the 

outcome of the models through simulation one (or k) steps before. 

3 A Case Study: Laser Milling of Copper Components  

 

This multidisciplinary work sets out to study and identify the optimal conditions 

for laser milling of computer components in a micromanufacturing technique to 

produce micro-coolers that uses a commercial Nd:YAG laser with a pulse length of 

10μsto. Three parameters of the laser process can be controlled: laser power (u1). laser 

milling speed (u2) and laser pulse frequency (u3). The laser is integrated in a laser 

milling centre (DMG Lasertec 40). 

To simplify this industrial problem a test piece was designed and used in all of the 

laser milling experiments. It consisted on an inverted, truncated, pyramid profile that 

had to be laser milled on a flat metallic piece of copper. The truncated pyramid had 

angles of 135º, and a depth of 1 mm, but as the optimized parameters for the laser 

milling of the copper were not known at that point in time, both parameters showed 

errors, which are referred to, in this paper, as angle error (y1) and depth error (y2). A 

third parameter to be considered was the surface roughness of the milled piece (y3). 

This variable also had to be optimized, because the industrial process required a 

precise geometrical shape, but also a good surface roughness of the piece. We applied 

different modelling systems to achieve the optimal conditions of these three 

parameters. 

Table 2. Variables, units and values used during the experiments. All values are common to 

this laser milling process.  Output y(t), Input u(t). 

Variable (Units) Range 

o Angle error of the test piece, y1(t) -1 to 1 

o Depth error of the test piece, y2(t) -1 to 1 

o Surface roughness of the test piece (µm), y3(t) 0.8 to 15 

o Laser power in percent of the maximum power 

performed by the laser (%), u1(t). 

20 to 100 

o Laser milling speed  (mm/s), u2(t). 200 to 800 

o Laser pulse frequency (kHz), u3(t). 20 to 100 

 

The experimental design was performed on a Taguchi L25 with 3 input parameters 

and 5 levels, so as to include the entire range of laser milling settings that are 

controllable by the operator. Table 2 summarizes the input and output variables of the 

experiment. The experiment was performed on the test piece described above. After 

the laser milling, actual inverted pyramid depth, wall angle and surface roughness of 

the bottom surface were measured using optical devices. The two first measurements 

were compared with the nominal values in the CAD model, thereby obtaining the two 
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errors (y1 and y2). The test piece and the prototype were described in detail 

beforehand [17]. 

3.1. Application of the two phases of the modelling system  

The experiments have been organized into two phases. 

• Phase 1. Initial identification of the internal structure of the data set. 

Application of several unsupervised neural models. 

• Phase 2. Final identification of the model that best defines the dynamic of 

the laser milling process. 

 

Phase 1. Figure 1 shows the results obtained from the first two CMLHL projections. 

We can see how this method identifies a clear structure of five clusters ordered by 

speed and by frequency, which indicates that the data analysed is sufficiently 

informative. 
 

 
 

Fig 1. The first of two projections obtained by CMLHL 

Phase 2. Modelling the laser milling process. Figure 3, shows the results of output 

y1(t), angle error, y2(t), depth error and y3(t) surface roughness, respectively, for the 

different models. They show the graphic representations of the results, for ARX 

models, in relation to the polynomial order and the delay in the inputs; various delays 

for all inputs and various polynomial orders [na, nb1, nb2, nb3, nk1, nk2, nk3] were 

considered to arrive at the highest degree of precision, in accordance with the 

structure of the models that have been used; see Table 1. In Fig. 3, the X-axis shows 

the number of samples used in the validation of the model, while the Y-axis 

represents the range of output variables.  

Table 3 shows a comparison of the qualities of estimation and prediction of the 

models obtained, as a function of the model, the estimation method, and the 

indicators, which are defined as follows: 

• The percentage representation of the estimated model (expressed as so many  

percent “%”) in relation to the true system: the numeric value of the 

normalized mean error that is computed with one-step prediction (FIT1), 

with ten-step prediction (FIT10), or by means of simulation (FIT). Also 
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shown are the graphical representations of true system output and both the 

one-step prediction )|(ˆ
1 mty , the ten-step prediction )|(ˆ

10 mty , and the 

model simulation )|(ˆ mty . 

• The loss or the error function (V): the numeric value of the mean square 

error that is calculated from the estimation data set. 

• The generalization error value (NSSE): the numeric value of the mean 

square error that is calculated from the validation data set.  

• The average generalization error value (FPE): This is the numeric value of 

the FPE criterion that is calculated from the estimation data set. 
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Fig.3. Representation of measured output, simulated output and one-step-ahead prediction for 

three black–box models. The model generated by the ARX model for angle error, output y1(t), 

is shown in the upper row. On the left, measured output vs. simulated output, on the right, 
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measured output vs. one-step-ahead prediction. The ARX model for the output y2(t), depth 

error, is presented in row 2 and finally, the ARX model for output y3(t), surface roughness is 

shown in row 3. The validation data set was not used for the estimation of the model. The order 

of the structure of the model is [2 1 4 1 1 2 1] by model type. The solid line represents true 

measurements and the dotted line represents estimated output.  

It may be seen from Fig. 3 that the ARX model is capable of simulating and 

predicting the error behaviour of the laser milled piece as it meet the indicators and is 

capable of modelling more than 90% of the true measurements. This is also evident 

from Table 3. Tables 4, 5, 6 show the function and the parameters that define the laser 

milling process, on the basis of the ARX model. The tests were performed using 

Matlab and the System Identification Toolbox. 

Table 3. Indicator values for several proposed models 

Indicators and order  [na, nb1, nb2, nb3,  nk1, nk2, nk3 ] 

 Angle Error Depth Error Surface roughness 

Model [2 1 4 1 1 2 

1]  

[2 1 4 1 1 

3 1] 

[2 1 4 1 1 

2 1]  

[21 4 1 1 

3 1] 

[21 4 1 1 

2 1]  

[21 4 1 1 

3 1] 

Black-

box 
model, 

ARX 

model . 

FIT 92.13% 100% 85.98% 100% 89.11% 100% 

FIT1 85.77% 100% 62.96% 100% 88.09% 100% 

FIT10 85.77% 100% 62.96% 100% 88.9% 100% 

V 0.07 0.026 0.0197 0.018 0.249 0.363 

FPE 0.026 0.069 0.051 0.047 0.649 0.088 

NSSE 4.97exp-4 9.32exp-

31 

0.012 3.01exp-

28 

0.3549 2.64exp-

29 

Table 4. Function and parameters that represent the behaviour for angle error of the laser 

milled piece.  

Model ARX    [2 1 4 1 1 3 1] 

)()()()()()()()()( 3
1

32
1

21
1

11
1 tetuqBqtuqBqtuqBqtyqA kkk nnn

+++= −−−−−−−  

Parameters and polynomials. 

A(q) = 1 - 1.086 q-1 + 1.195 q-2                B2(q) = 0.003224 q-3 + 0.002786 q-4 + 

0.000898 q-5 + 0.004985 q-6 

B1(q)= 0.03113 q-1                                              B3(q) = 0.01438 q-1                                                  

 e(t) is white noise signal with variance 

0.119 

Table 5. Function and parameters that represent the behaviour for the depth error of the laser 

milled piece. 

Model ARX    [2 1 4 1 1 3 1] 
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1

32
1

21
1

11
1 tetuqBqtuqBqtuqBqtyqA kkk nnn

+++= −−−−−−−  

Parameters and polynomials. 

A(q) = 1 - 2.202 q-1 + 1.653 q-2                B2(q) = -0.006949 q-3 - 0.005614 q-4 - 

0.002545 q-5 - 0.008835 q-6 

B1(q)= -0.03203 q-1                                              B3(q) = -0.03237 q-1                                                  

 e(t) represents white noise signal with 

variance 0.082 

Table 6. Function and parameters that represent the behaviour for surface roughness of the 

laser milled piece. 

Model ARX    [2 1 4 1 1 3 1] 

)()()()()()()()()( 3
1

32
1

21
1

11
1 tetuqBqtuqBqtuqBqtyqA kkk nnn

+++= −−−−−−−  

Parameters and polynomials. 

A(q) = 1 + 0.1501 q-1 - 0.1302 q-2                                   B2(q) = -0.004364 q-3 - 0.005079 q-4 - 

0.008746 q-5 - 0.005709 q-6 

B1(q)= -0.0464 q-1                                              B3(q) = -0.01484 q-1                                                  

 e(t) is white noise signal with variance 

0.153 

4 Conclusions and Futures lines of Work 

We have presented an investigation to study and identify the most appropriate 

modelling system for laser milling of copper components. Several methods were 

investigated to achieve the best practical solution to this interesting problem. The 

study shows that the BJ model is best adapted to this case, in terms of identifying the 

best conditions and predicting future circumstances. 

It is important to emphasize that an important aspect of this research lies in the use 

of a two-phase model when modelling the laser milling process for copper 

components: a first phase, which applies projection methods to establish whether the 

data describing the case study is “sufficiently informative”. As a consequence, the 

first phase eliminates one of the problems associated with these identification 

systems, which is that of having no prior knowledge of whether the experiment that 

generated the data group may be considered acceptable and will present sufficient 

information in order to identify the overall nature of the problem. 

Future work will be focus on the study and application of other kinds of  materials 

of industrial interest, such as steel. 
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