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Abstract 

In retailing, the location problem is a fundamental strategic aspect. It is usually formalized as a multi-criteria optimization problem 
to choose the most appropriate spot. A relevant element in the selection is the adequacy of the commercial ecosystem in the vicinity 
of the location. To account for this criterion, there are different primary indices based on networks that formalize the quality of the 
available options with regard to the surrounding ecosystem. Previous research suggests that aggregating the different indices using 
a classifier can improve the quality of these metrics. In this paper, we compare different classifiers to assess their performance in 
that respect. The analysis has been performed in a context of transfer knowledge and information fusion using data from all the 
cities in Castile and Leon, Spain. Our results show that the random forest and generalized linear models obtain results significantly 
superior to other alternatives.
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1.Introduction 

Economic activity is not spatially homogeneously 
distributed (Krugman 1991). Understanding the pattern 
of this geographical distribution and the reasons behind 
it is a crucial issue in economics and management. This 
knowledge facilitates the optimization of location choices 
and the creation of suitable institutional policies by political 
and economic decision-makers.

While this problem is relevant to companies of all sizes 
and industries, it is particularly significant in the case of 
retailing. In retail stores, the choice of location is deemed 
the most crucial strategic decision, as competitors cannot 
imitate it exactly (Zentes, Morschett & Schramm-Klein 
2012). Furthermore, despite the growing importance of 
other distribution channels, in-store sales continue to be their 
primary source of revenue (Berman, Evans & Chatterjee 
2018). 

In retailing, there are numerous factors to consider when 
selecting the most suitable location from the available 
options. Some important considerations include, but are not 
limited to, the socioeconomic characteristics of the local 
population, population density, accessibility, and the size of 
the store.

Due to the multitude of factors affecting the decision, the 
location problem is commonly formalized as a Multi-Criteria 
Decision-Making (MCDM) problem (Çoban 2020; Shaikh, 
Memon, Prokop & Kim 2020). A significant determinant of 
the decision is the presence/absence of competitors and/or 
of complementary commercial activities in the neighboring 
area. In planned shopping centers, an adequate balanced 
tenancy is a fundamental element from the very initial design. 
However, in unplanned primary and secondary areas, it is 
also crucial to quantify the suitability of specific locations 
in terms of the commercial ecosystem, as it will also play a 
critical role. 

This assessment of the surrounding ecosystem and its 
effect on a particular retail store is not straightforward, 
since there are several mechanisms with opposing effects 
that can take place. For instance, a neighborhood with 
many competitors can decrease the local market power 
of an individual store; yet, at the same time, the presence 
of several competitors in the area may increase its overall 
appeal to potential customers, allowing them to compare 
and make more efficient choices (Konishi 2005). This would 
only account for the effect of businesses within the same 
industry. The impact of complementary businesses can be 
even more challenging to assess and quantify.
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In the literature, several quality indices have been 
proposed to quantify the interactions between business 
categories based on networks of the commercial structure 
(Jensen 2006; Sánchez-Saiz et al. 2022). These indices make 
various assumptions about the global and local commercial 
structure of a city, capturing complementary elements 
between them. Their use as inputs of different aggregation 
strategies has recently been shown to significantly improve 
predictive quality and to outperform the individual use of the 
different indices in location recommender systems (Ahedo, 
Santos & Galan 2021). However, the influence of the 
specific aggregation algorithm or classifier used has not yet 
been comparatively analyzed. Although there are numerous 
algorithms and out-of-the-box predictive strategies available 
for a wide range of problems, determining which one is most 
appropriate depends on the nature of the specific problem at 
hand (Wolpert 2002). 

In this paper, we comparatively assess the predictive 
capacity of various classification algorithms to determine 
the business category of a retail store based on the network-
based quality indices of the business in its neighborhood. 
The prediction of a high-performing classifier for different 
business categories can serve as an indicator of the 
attractiveness of the location for each of these activities, 
providing a quantitative decision-making tool. In particular, 
we have focused on solving the problem from the perspective 
of knowledge transfer and information fusion, by leveraging 
knowledge of the data and commercial structure of several 
cities and aggregating it through network consensus 
techniques. This approach generates a training dataset, from 

which the algorithms learn the patterns, which are then used 
to evaluate predictions on a test set from a different city.

The structure of this paper unfolds as follows: In the 
subsequent section, we impart a theoretical background 
pertaining to the retail location problem, examining it 
through the lens of a complex network perspective based on 
suitable commercial environments, and elucidate the various 
approaches in a comprehensive manner. Following this, we 
present the design of a computational experiment through 
which we empirically analyze whether aggregating different 
primary metrics, using various machine learning algorithms, 
enhances the capture of localization patterns. The results 
and discussions are subsequently provided, and ultimately, 
conclusions are drawn in the final section.

2.Theoretical background

2.1.  Primary metrics description 

The basic methodologies for identifying the suitability 
of locations based on the interactions between businesses 
are network-based and include Jensen, permutation, and 
rewiring (Jensen 2006, 2009; Gómez, Jensen & Arenas 2009; 
Sánchez-Saiz et al. 2022). These methodologies construct an 
interaction network of retail stores in which the nodes are the 
stores in the city and links are created between them if they 
are within a given proximity radius (typically 100 meters in 
previous research) (see Fig.  1). 

Figure 1 Interaction 
network between retail 
stores. The network 
is generated from the 
geolocation of the different 
shops. Each store is 
represented in this network 
as a node. An undirected 
link is created between 
two stores if they are 
both within a distance of 
less than a certain radius 
(typically 100 m). Each 
node keeps as a label the 
commercial category to 
which it belongs.
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Then, a second interaction network, in this case between 
the different business categories (bakeries, pharmacies, 
restaurants, etc.) is obtained from the first network. This 
second network is a weighted and signed graph, with high 
positive weights for categories that are likely to be nearby 

and negative weights for categories that do not typically 
coexist in the same neighborhood (see Fig.  2). The different 
methodologies (Jensen, permutation and rewiring) differ in 
their approach to deriving the second network from the first 
one.

Figure 2 Interaction 
network between business 
categories. It is used to 
calculate the attraction or 
repulsion between different 
commercial categories. 
These relationships can 
be either positive (green 
links in this simplified 
example) or negative 
(red links in the figure). 
The links representing 
the relationships are not 
only signed but weighted 
(thickness in the figure), and 
the weight determines the 
strength of the relationship 
(attraction or repulsion). 
Depending on the method 
used, these relationships 
may or may not be 
symmetrical. Note that 
only statistically significant 
relationships between 
categories are included in 
the network. In the cases 
where no relationship exists 
between the nodes, neither a 
positive nor a negative link 
is created.

In Jensen’s approach (Jensen 2006, 2009; Gómez, Jensen 
& Arenas 2009), the relationship between two categories is 
calculated differently depending on whether the commercial 
typology is analyzed with respect to itself or to a different 
category. In the first case, the intra-category coefficient 
defined according to (1) is calculated:

[1]

Where T is the set of all the stores in a given city, A 
is the set of the stores that belong to category A, and 
Ns(p,r) represents the number of stores in set S within a 
radius r from shop p. 

In the case of the inter-category coefficient, equation (1) 
is slightly modified to obtain (2). This second coefficient 
summarizes the relationship between business typologies A 
and B.

[2]

The coefficients previously defined to measure the 
interactions between different business categories have 
values higher than 1 when the empirical interaction is higher 
than expected, and values lower than 1 otherwise. Before 
constructing the final network, these inter- and intra-category 
coefficients are transformed by taking logarithms, thus 
converting values greater than one into positive interactions 
and values less than one into negative ones. The strength 
of the empirical interactions is then compared to different 
null models through Monte Carlo simulation to determine 
their statistical significance. For those interactions that are 
not statistically significant, the links are removed from the 
category network, which is equivalent to setting to zero their 
value in the matrix representation of the network.
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Jensen’s work (Jensen 2006, 2009; Gómez, Jensen 
& Arenas 2009) inspired the rewiring and permutation 
approaches (Sánchez-Saiz et al. 2022). Notwithstanding, 
they differ fundamentally in three elements:  (i) in both 
rewiring and permutation, the calculation of the interaction is 
based on the sum of the number of links joining the different 
categories in the primary network (stores network); (ii) the 
sign of the interaction is not obtained by taking logarithms, 
but from the value of the Z-score function (3); and (iii) the 
null model used to determine the statistical significance 
of the empirical relationships differs in each case. In the 
permutation method, the business structure of the city is 
fixed, and the business categories are permuted among the 
different locations; recall that the number of stores from 
each category is maintained. On the other hand, in the 

rewiring method, the local environment of each business (the 
number of neighbors it has, i.e., its degree) is maintained by 
disconnecting the links of each node of the primary network 
and rewiring them randomly (Sánchez-Saiz et al. 2022) (see 
Fig.  3).

In equation (3) xAB represents the empirical number of 
links obtained between retail stores from category A 
and retail stores from category B, and xAB

null
model and 

sAB
null

model correspond to the mean and the standard 
deviation of the null distribution of the number of links 
between these two categories.

[3]

Figure 3 To determine the 
statistical significance of the 
relationships, the empirical 
values are compared with 
different null models. In the 
permutation model (left), 
the commercial network is 
fixed, and it is the different 
commercial categories 
that are randomized by 
permuting their labels 
among the different nodes 
of the network. In the 
rewiring model (right), 
the number of links of 
each node (its degree) is 
maintained but each link is 
cut in two halves and the 
different ends are randomly 
paired.

Once the different relationships between commercial 
categories are known for any of the three methods, two 
alternative types of quality indices can be calculated to 
comparatively assess the suitability of different locations. 

In Jensen’s original formulation, it is assumed that the 
quality of a given location depends on how closely the 
proportion of stores in the neighborhood resembles the ideal 
distribution obtained in the business categories network. 
From this assumption, Jensen’s Quality Index of a particular 
location (x,y) for activity i is defined as follows (Jensen 
2006)

[4]

In equation (4) N denotes the total number of different 
business categories, neiij (x,y) indicates the number of 
neighbor stores from category j that exist around (x,y) (it 
is assumed that (x,y) belongs to category i), neiij is the 
average number of neighbors of category j that the stores 
of type i have, and aij=log(MAB ) is the corresponding value 
of the Jensen’s matrix of interactions between commercial 
categories. This quality index can be generalized directly to 
the permutation and rewiring methods by simply changing 
the source of the weighting factor aij. Instead of being taken 
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from Jensen’s matrix of interactions between business 
categories, the weighting factor can be taken from the 
permutation and rewiring matrices of interactions between 
categories, respectively. 

A different set of quality indices are the so-called Raw 
Quality Indices, which again can be calculated for Jensen, 
permutation and rewiring. The calculation of raw indices 
assumes that the quality of a given location is not given 
by its similarity to the ratio empirically found, but by the 
number of neighboring stores with which there is a positive 
interaction, and the absence of stores with which there is an 
empirically negative relationship. Formally:

[5]

Again, the calculation of the different raw quality indices 
only requires taking the weighting factors a_ij  from the 
corresponding matrix of each method. 

2.1. Succinct literature review and problem 
statement 

Research into the spatial organization of retail commercial 
activities has wielded significant influence over the location 
problem. The initial approach, focused on employing location 
data, business categories, and network analysis to determine 
quality indices regarding the optimal location for stores, has 
been successfully implemented in recommendation systems 
and decision-support tools (Jensen 2006, 2009). This 
methodology, coupled with the reformulation of modularity 
to facilitate the analysis of community structures in correlated 
and signed data networks (Gómez, Jensen & Arenas 2009), 
has been used in conjunction with metaheuristic optimization 
techniques as a recommendation system (Sánchez-Saiz, 
Galán & Santos 2014). Furthermore, it has supported 
decision-making tools for locating well-known food chains 
in New York, such as Starbucks, McDonald's, and Dunkin’ 
Donuts (Karamshuk, Noulas, Scellato, Nicosia & Mascolo 
2013). Proving its efficacy, it has positioned itself as a metric 
with a high predictive capacity, sometimes used together with 
other features obtained from Foursquare or other additional 
social networks such as Facebook (Lin et al. 2016) or Baidu  
(Xu et al. 2016; Chen, Chen & Chen 2020).

The work of Sánchez-Saiz et al. (2022) enlarges the set 
of metrics and indices designed to capture varying patterns 
within a robust core of business relationships, employing 
consensus techniques. In more recent research (Ahedo, 
Santos & Galán 2021; Ahedo, Santos & Galán 2023), various 
studies have demonstrated improvement in predictive 
accuracy by combining several indices via supervised 
learning models. However, the empirical identification of the 
best algorithms from a systematic predictive perspective has 
yet to be addressed.

In this research, we systematically analyze the predictive 
capacities of the most popular machine learning algorithms 
within scientific discourse, employing them as information 
fusion tools. This study is accomplished by cohesively 
integrating information gleaned from all established 
primary metrics in the literature above. Our methodology is 
empirically rooted, obtaining the results across the datasets 
of several cities.

3. Computational experiment design

3.1.  Dataset 

The experiments were conducted using retail store location 
data from the nine provincial capitals of Castile and Leon, an 
autonomous community located in northwestern Spain. The 
size of the cities ranged from the largest, with almost 300,000 
inhabitants, to the smallest, with approximately 40,000 
inhabitants, according to data from 2017, when the dataset 
was collected. The dataset used for the study was created 
from the Yellow Pages, taking business category and address 
information, and was subsequently georeferenced using the 
MapQuest Application, Open Street Map data, and Google 
Maps API. Importantly, it is publicly available at:  (Sánchez-
Saiz et al. 2021). In order to create the primary networks of 
interactions between retail stores for each city, a 100-meter 
radius was established. Then, to create the networks between 
retail categories, the different business typologies were 
categorized using the North American Industry Classification 
for Small Business (NAICS) to enable comparisons with 
previous research (Jensen 2006, 2009; Gómez, Jensen & 
Arenas 2009; Ahedo, Santos & Galan 2021; Sánchez-Saiz 
et al. 2022). Note that the NAICS classification system 
includes 68 different business categories.

3.2.  Performance metric and information 
fusion 

To calculate the comparative performance of the different 
algorithms, we use the Mean Reciprocal Rank (MRR) 
(Voorhees 1999; Radev, Qi, Wu & Fan 2002), which 
corresponds to the average of the reciprocal ranks of the 
results obtained for a number of instances Q:

[6]

The choice of the MRR as the performance metric in our 
experiment is based on the nature of the problem, as the 
predicted label for each location represents suitability but is 
not a binary answer. To clarify this idea, consider that the 
presence of a certain type of business at a given location 
shows that the site is suitable for that category, but it does 
not necessarily mean it is not suitable for other types of 
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businesses. Hence, to evaluate the algorithms, we aim for 
the empirically observed categories to be at the top of the 
recommendation ranking provided by the algorithm, but not 
necessarily the first (which would be measured by metrics 
such as accuracy).

In our analysis, given that the training data come from 
different cities, each with potential interaction particularities, 
a decision had to be made regarding how to combine the 
information coming from several sources. Specifically, 
to solve this information fusion problem we have used 
consensus network techniques, which were proposed 
precisely in the context of retailing networks. In particular, 
we use the consensus networks of relationships (Sánchez-
Saiz et al. 2022). In this type of aggregation, from the 
matrices/networks of significant interactions obtained in 
each city, a new matrix is created by combining all of them 
in the following way: for each pair of business relationships, 
the relationship in each city is analyzed, adding +1 for each 
city in which the relationship is found to be positive and 
statistically significant, -1 if the relationship is negative and 
statistically significant, and 0 otherwise. The resulting matrix 
(according to each of the three different methods: Jensen, 
rewiring, and permutation) is then used as a reference for 
calculating the quality indices.

Also relevant in consensus techniques is whether to use 
some kind of threshold such that, if the number of significant 
relationships does not reach a certain value, they are made 
zero in the consensus matrix. Importantly, although these 
threshold techniques can unveil the core of the network and, 
hence, the most important commercial relationships, previous 
work has shown that their application is counterproductive 
from a predictive perspective (Ahedo, Santos & Galan 
2021). Consequently, we have not used any thresholds in our 
analysis.

3.3.  Classifiers and hyperparameter
optimization

The calculation of the different quality indices yields a 
dataset with six quality indices for each commercial category 
(6 indices/category x 68 categories = 408 quality indices). 
Since, although preliminarily, it has been shown that the 
combined use of all of them allows taking advantage of their 
complementarity (Ahedo, Santos & Galan 2021), in this 
paper, we comparatively analyze the capacity of different 
supervised learning algorithms to combine in an aggregate 
form the information provided by all the quality indices 
taken together. Nowadays, it is not known which is the best 
classifier for the specific application context of our study, 
that is, for predictive use in general, and for knowledge 
transfer in particular. (Recall that by knowledge transfer 
we mean that data obtained in some cities is used to make 
predictions in other cities).

Our experiment design involves using data from eight 
cities as training set to make predictions (knowledge transfer) 
about the ninth city (test set). This structure is then rotated to 
obtain nine results for each classifier.

To select the appropriate hyperparameters for each model, 
which can have a significant impact on the algorithm's 
performance, we use 5-fold cross-validation. This method 
involves dividing the training data into five roughly 
equal parts, using four of them to train the algorithm with 
different combinations of the parameters, and evaluating the 
performance of the classifier on the data from the fifth part 
(validation set). This process is repeated five times, rotating 
the training and validation parts each time. The performance 
attained with each set of hyperparameters is then compared 
using the aggregated data from the five evaluations, and, 
eventually, the optimal hyperparameters are selected. 
Finally, the model is retrained on the entire training dataset 
and evaluated on the test set (see Annex 1 for more details).

Due to the exponential growth in computational time with 
the number of hyperparameters in a grid search strategy, we 
adopted a random grid search strategy. This search method 
has been shown to be more efficient, as similar optimization 
results are often obtained in much less computational time 
(Bergstra & Bengio 2012).

The classifiers used include most of the state-of-the-art 
algorithms for tabular datasets. Specifically, the following 
algorithms have been included in the analysis:

• Random Forest: The random forest algorithm is an
ensemble technique based on the bagging strategy —
bootstrap aggregation— (Breiman 2001). This tech-
nique combines the results of multiple weak classifiers,
typically deep and unpruned decision trees, which are
trained on different bootstrapped samples. In addition,
the algorithm also uses the random subspace method
in the training of each tree to decorrelate as much as
possible the different weak learners. This algorithm of-
ten performs well because it reduces variance, is
resistant to overfitting and correlation between
regressors, and can work with nonlinear patterns and
interactions (James, Witten, Hastie & Tibshirani
2013). The hyper-parameters optimized in the cross-
validation stage of our experiments have been the
number of predictors considered at each split of the
trees and the total number of trees.

• Naive Bayes: this is a probabilistic classifier based
on Bayes’ theorem. Despite being a very basic algo-
rithm that makes the restrictive assumption that, given a
class, each feature is independent of any other, it has
been shown to generate good classification results
(Kupervasser 2014). Moreover, given its training sim-
plicity, it is often used as a benchmark algorithm. In
this algorithm, the only hyperparameter tuned in the
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cross-validation process has been the Laplace parame-
ter.

• Deep Learning: We used a classifier based on a
multi-layer feedforward artificial neural network
and trained with stochastic gradient descent using
back-propagation. This neural network is suitable for
tabular data as opposed to other types of deep neural
network algorithms such as Convolutional Neural Net-
works and Recurrent Neural Networks more oriented
to image processing or temporal data. However, despite 
its extraordinary performance, one of the problems of
this type of classifier is the number of optimization pa-
rameters to adjust, which can make the search much
more intensive than in other algorithms. In our case, to
make the results comparable in training time with the
rest of the algorithms, we have focused on optimizing
just the number of layers and neurons in each layer,
testing with configurations between 2 and 5 layers and
a number of neurons between 5 and 200.

• Gradient boosting machine (GBM): this is a classifier
that, like the random forest, uses an ensemble technique,
in this case, boosting (Friedman 2001). Specifically, the
idea is to improve the classification of a weak learner
(also often regression and/or classification trees) by
using successive additional classifiers that refine the
errors produced by previous learners. There are different
versions of the technique. In our case, we have used
the algorithm described in Hastie et al.(2009) and
implemented in the h2o R package (H2O. ai 2020).
Although this algorithm generally produces outstanding
results with tabular data, it has quite a few
hyperparameters to optimize, which renders it difficult to
use. In the process, the maximum depth of the trees, the
number of trees, the learning rate, and the learning rate
annealing have been tuned in the validation set.

• Generalized Linear Model (GLM): this is a family of
regression and classification techniques that
generalize linear regression models for outcomes
following exponential distributions. To do so, it
relates the target variable to the model through a link
function and allows the magnitude of the variance
of each observation to be a function of its predicted
value (Hastie, Tibshirani & Friedman 2009). In our
case, the response variable is modeled as a
multinomial distribution. The optimization process of
the hyperparameters using the validation set is
performed employing the regularization variables.
The alpha values have been analyzed in the range
0-1, hence considering ridge regression and the
Lasso in the extreme values, and elastic nets in the
intermediate cases (Tibshirani 1996; Zou & Hastie
2005). As for the lambda value, it is optimized with the

training data for each alpha value. GLMs have been 
used previously to try to combine indices with good 
results (Ahedo, Santos & Galán 2023).

• Stacking: apart from boosting and bagging, there is a
third ensemble technique for combining different clas-
sifiers known as stacked generalization or stacking
(Wolpert 1992). Unlike the other strategies, which use
the same type of classifier for combination, stacking
consists of combining different classifiers to generate
an aggregate classifier as accurate as possible. The
process is organized in two hierarchical levels, a first
level in which different base classifiers are trained, and
a second level in which another classifier acts as a me-
ta-learner trying to learn when to use one classifier or
another, or when to combine several classifiers to make
the final classification (in our case the meta-learner
is a GLM model). This type of strategy is often qua-
si-optimal (Matlock, De Niz, Rahman, Ghosh & Pal
2018; Ghasemian, Hosseinmardi, Galstyan, Airoldi &
Clauset 2020; Martin, Ahedo, Santos & Galan 2022).
However, depending on the number and type of base
classifiers, its computational cost can be very high. To
make the analysis comparable and fair with the other
techniques, we have equalized the computation time
(one hour of parallel execution on each of the eight
cores for each dataset) and limited the number of base
classifiers to fifteen.

• Along with the classification algorithms, we have also
used the six quality indices based on non-aggregated
networks separately to quantify the improvement ob-
tained, if any, when using a classifier that combines
them together. These are Quality Jensen (QJ), Quali-
ty Permutation (QP), Quality Rewiring (QR), Quality
Jensen Raw (QJR), Quality Permutation Raw (QPR)
and Quality Rewiring Raw (QRR).

4. Results and discussion

4.1.  Computational results

The results of the analysis are presented in Fig.  4. The 
data shows a significant degree of variation depending on the 
city analyzed. This is not unexpected, as the predictability 
of each city is influenced by factors such as the commercial 
organization and geographical specialization of that city, 
which, in turn, are often determined by the city's size. Smaller 
cities, for example, tend to be less commercially specialized 
and, as a result, tend to be less predictable (Sánchez-Saiz et 
al. 2022).



12
Dirección y Organización
Ahedo et al. / Dirección y Organización 83 (2024) 5-17
https://doi.org/10.37610/0njk0c03

It is also observed that there are several algorithms —
especially the random forest, the generalized linear model, 
and the gradient boosting machine— that improve the results 
obtained by the primary quality indices. However, the results 
in Fig.  4 may be misleading since the observations in each 
case are not independent but paired (the same cities are used 
for each algorithm). This may cause significant differences 

between the algorithms to be visually blurred as the overlap 
in the performance ranges may not be due to the algorithm 
itself but to the influence of the particular city. Therefore, we 
used the Friedman test to better analyze whether there are 
significant differences between the algorithms. This test is 
a non-parametric alternative to ANOVA when the data are 
paired. The results are shown in the following table:

Figure 4 Comparative 
performance of the 
different algorithms. 
Each dot represents the 
MRR obtained for each 
city. The algorithms and 
metrics analyzed are Deep 
Learning, Random Forest, 
Naive Bayes, Stacking, 
Generalized Linear Model 
(GLM), Gradient boosting 
machine (GBM), Quality 
Jensen (QJ), Quality 
Permutation (QP), Quality 
Rewiring (QR), Quality 
Jensen Raw (QJR), Quality 
Permutation Raw (QPR) 
and Quality Rewiring Raw 
(QRR).

Table 1 Friedman test 
results.

From Table 1, it can be concluded that there are significant 
differences between at least two of the algorithms. However, 
these results are incomplete without trying to identify 
the algorithms between which significant differences in 
performance exist. To do so, we have performed post-hoc 
comparisons between the different algorithms using pairwise 
Wilcoxon rank-sum tests to compare between group levels, 
with corrections for multiple testing and paired data. Given 
the relatively small number of cities, we used the correction 

proposed by Benjamini & Yekutieli (2001) based on the 
false discovery rate, a less restrictive condition than the 
corrections based on the family-wise error rate. The results 
are presented in Fig.  5. The p-value has been rounded to the 
second decimal place. Cells colored in grey are comparison 
values that show no significant differences. Cells colored in 
the red-white-green range are p-values that show differences 
at the 0.1, 0.05, and lower significance levels.
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The results reveal significant differences between 
the random forest and all the primary metrics, clearly 
demonstrating that its use, which allows to aggregate all 
of them, is an effective strategy to improve prediction. In 
the case of GLMs, the difference found with the best of 
the primary techniques is only significant at the 0.1 level. 
The Naive Bayes results are poor since the independence 
hypothesis is violated in this problem. The results for 
stacking, Deep learning, and GBM are relatively modest in 
our analysis. However, this may be due to the experimental 
setup in which training time limits have been imposed on the 
problem.

4.2.  Discussion and Managerial Implications 
of the Results

Navigating the retail location decision-making process 
requires a comprehensive, multi-criteria approach. One 
relevant aspect is adequately quantifying the commercial 
ecosystem, without forgetting many others, such as 
population density, the size of the location, access, the socio-
economic level of the neighborhood, etc. This research 
presents important advancements in extracting more accurate 
quantitative insights, thereby capturing the complexities of 
this commercial dimension with greater precision.

Managers should consider several key takeaways from 
our findings when dealing with location decisions. Firstly, 
engaging deeply with data on commercial interactions and 

utilizing existing and new quality indices to evaluate this 
crucial dimension is vital to better capture commercial 
patterns. The integration and information fusion of these 
quality indices through algorithms, such as Random Forest 
and GLM, stands out as a viable strategy to enhance spatial 
suitability assessments, particularly regarding balanced 
tenancy. Utilizing models capable of effectively integrating 
information allows for significantly improving metrics 
without the need for additional data, which is normally costly 
to obtain, by simply exploiting information more efficiently.

However, while our results are promising, managers must 
exercise caution when applying these insights to different 
contexts or cities. It is imperative to validate the relevance 
and accuracy of the quality indices and geolocated data for 
their specific region or city. It is ideal to utilize data from the 
city in which the evaluation will be addressed to capture the 
cultural and commercial specificities that the location might 
have. But if this is not possible, and data transferred from 
other cities are used, the transferability of data and insights 
between cities needs to be carefully scrutinized, ensuring 
alignment in critical aspects such as culture, demographics, 
consumption patterns, and market dynamics.

This research not only represents a significant step towards 
more accurately quantifying and evaluating the commercial 
ecosystem in location problems but also underscores the 
necessity for managers to adopt a data-informed, quantitative 
approach when maneuvering through complex, multi-criteria 
decision-making processes. It offers a foundational roadmap 

Figure 5 P-values of 
the pairwise Wilcoxon 
rank-sum tests comparing 
the performance of each 
pair of the algorithms. 
The algorithms and 
metrics analyzed are Deep 
Learning, Random Forest, 
Naive Bayes, Stacking, 
Generalized Linear Model 
(GLM), Gradient boosting 
machine (GBM), Quality 
Jensen (QJ), Quality 
Permutation (QP), Quality 
Rewiring (QR), Quality 
Jensen Raw (QJR), Quality 
Permutation Raw (QPR) 
and Quality Rewiring Raw 
(QRR).
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for managers, enabling more informed strategic planning 
and decision-making in retail location.

5. Conclusions

The location problem is complex, as it has multiple 
dimensions. One of the dimensions that is not easy to 
quantify, but is considered relevant in the decision, is the 
adequacy of the existing commercial ecosystem to the 
activity to be located. Different proposals and quality indices 
based on networks of commercial interactions try to evaluate 
this aspect. Previous work suggests that it is possible to 
improve the performance of the different primary indices 
by using them together as inputs in a classifier. In addition, 
since obtaining and processing data for new cities is usually 
more expensive than running computational experiments 
on previously obtained data, in this contribution we have 
explored the combination of quality indices in the context 
of transfer knowledge, i.e., using data from other cities to 
evaluate the effect on another city, which is assumed to be 
unknown only at the global level.

Our results comparing different algorithms show 
significant differences between the random forest and the 
GLM with the rest of the primary indices, thus making 
their results a better proxy of the suitability of the different 
location alternatives. Hence, the use of different quality 
indices aggregated by means of GLM or random forests 
in location recommendation systems and/or multi-criteria 
decision tools improves the evaluation of spatial fitness with 
respect to balanced tenancy. 

However, our work has also some limitations. Although 
there are very few papers using extensive geolocated data 
from other cities, the number of observations in our datasets 
is relatively low for the power of some tests to capture 
statistically significant differences. In addition, in our 
experiments, by design, computational limits have been 
set to the training and optimization of the hyperparameters 
of the algorithms. This may favor algorithms with simpler 
optimization processes such as random forest and GLM. 
Other algorithms such as DL, stacking, or GBM may improve 
their performance with extended training and optimization 
times. 

Notwithstanding the above, our results are relevant and 
show that using specific algorithms to aggregate individual 
quality indices results in significant improvements, as very 
high mean reciprocal ranks are obtained in a robust and 
straightforward manner.

A pivotal future research path for this work involves 
exploring the relationship between model accuracy and 
computational cost to understand the efficiency of each 

aggregation approach for this problem. The objective is 
to scrutinize not only the precision of different algorithms 
and combinations of quality indices but also to evaluate the 
efficiency ratio, considering the improvement in accuracy 
relative to computational cost. Such an analysis could unveil 
crucial insights into whether marginal improvements in 
accuracy justify potentially high computational costs.

Moreover, exploring model interpretability and 
recommendation explainability, alongside investigating the 
dynamics and evolution of commercial ecosystems within 
cities over time, could be foundational in enhancing the 
practical application of location recommendation systems. 
Implementing dynamic machine learning approaches that 
adapt to changes in input data and developing methods 
that allow users to comprehend the rationale behind 
model recommendations might be vital for maintaining 
model relevance and accuracy over time and ensuring 
the practical adoption of these tools in decision-making. 
Additionally, a deeper analysis of knowledge transfer 
between divergent cities could provide insights into the 
limits and opportunities of knowledge transfer approaches 
in this domain, investigating how city characteristics impact 
transfer efficacy and developing methods to adapt models to 
new cities efficiently.
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Annex 1

Algorithm Grid Search strategy Other parameters

Deep Learning Architectures for the 'hidden' layers were tested, including [5, 5, 5, 5, 5], [10, 10, 10, 
10], [50, 50, 50], [100, 100, 100], and [200, 200]

epochs=10; rho=0.99; rate=0.005;

GBM

The 'max_depth' of the trees was tested at various levels: 4, 6, 8, 12, 16, and 20, while 
the number of trees ('ntrees') was explored at 3000 and 10000. The learning rate 
('learn_rate') was evaluated at 0.02 and 0.05,

learn_rate_annealing = 0.99; stopping_rounds = 5; 
stopping_tolerance = 1e-4; stopping_metric = "AUC";

GLM

Optimizing the alpha parameter, which controls the balance between L1 and L2 
regularization. The grid was defined to explore a sequence of alpha values ranging 
from 0 to 1, incremented by 0.01, thus ensuring a detailed search across the entire 
plausible spectrum of the elastic net mixing parameter.

Random Forest

The 'ntrees' parameter was tested at 200, 500, 750, and 1000 to identify the optimal 
number of trees in the forest. 'mtries' was varied from 10 to 100 in increments of 10 
to determine the best number of variables randomly sampled as candidates at each 
split. 'max_depth' was explored from 10 to 30 (inclusive) with a step of 10, while 
'min_rows' was adjusted from 1 to 3 to optimize the minimum number of observa-
tions per leaf. Additionally, 'nbins', representing the number of bins for the histo-
gram to build, was varied between 20 and 30 in steps of 10. Lastly, 'sample_rate' was 
evaluated at 0.55, 0.632, and 0.75 to assess different fractions of the training data to 
be used for learning.

Naive Bayes The laplace parameter was crafted to explore a sequence of laplace values spanning 
from 0 to 10, discretized into 50 equidistant steps




