Evaluation of a green pressurized reaction media (subW-CO₂) and pressurized microwave-assisted reaction for furfural production from corn stover and its derivatives sugars

3^{er} Encuentro Ibérico de Fluidos Supercríticos A.E. Illera¹*, H. Candela¹, P. Barea¹, A. Bermejo-López², Ó. Benito-Román¹, R. Melgosa¹, S. Beltrán¹, M.T. Sanz¹

¹Department of Biotechnology and Food Science, University of Burgos, Pl. Misael Bañuelos s/n, 09001 Burgos, Spain ²Department of Chemical Engineering, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain *Corresponding author: aeillera@ubu.es

CORN STOVER AND ITS DERIVATIVES SUGARS

Corn stover is a **lignocellulosic biomass** with a valuable **CORN STOVER (CS) COMPOSITION**

Component

FURFURAL FROM HEMICELLULOSE

- Furfural is considered one of the top value-added chemicals derived from biomass.
- ✓ It is the dehydration product of pentoses (xylose and

In corn production, residues constitute **50** % of the total weight: **Corn rachis and corn stover**

carbohydrates composition.		
delle in the delle		
ALL ALL ADVAL		
Corp stover (leaves and stoms)		

Corn stover (lea	aves and stems)
------------------	-----------------

	Xylans	25 ± 3
Hemicellulose	Arabinans	4.1 ± 0.5
	Acetyl	4.2 ± 0.2
Cellulose	Glucans	41.4 ± 4
	Total lignin	18.7 ± 3
	Protein	3.2 ± 0.2
	Ash	2.7 ± 0.4

arabinose in corn stover).

✓ C₅ polysaccharides are first hydrolyzed from the hemicellulose to then produce furfural.

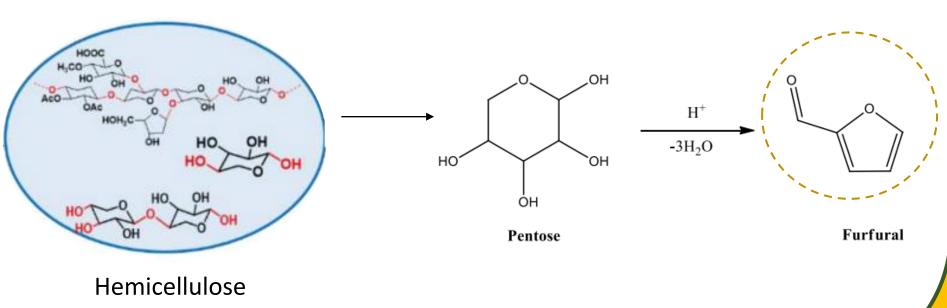
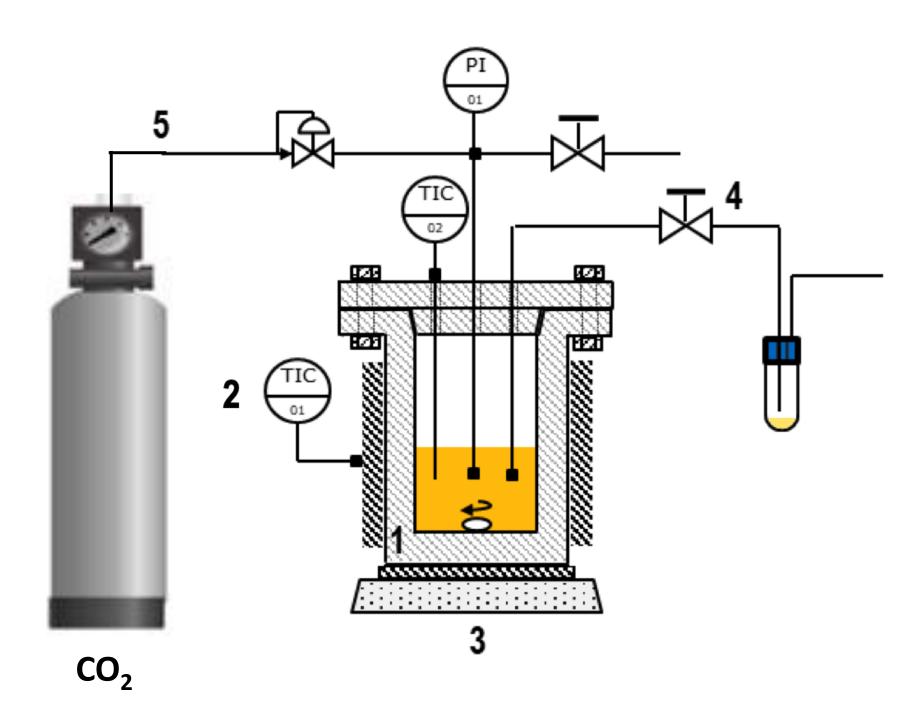



Figure 1. Furfural production from hemicellulose.

Two green technologies were proposed to **produce furfural** from **xylose and corn stover** with a **Lewis acid catalyst** only using **water as reaction medium**

> Xylose load: 11g/L Corn stover load: 5 % (w/w) CrCl₃ as catalyst (2% w/xylose weight)

SubW-CO₂ SYSTEM

MW SYSTEM

g/100g dry-CS

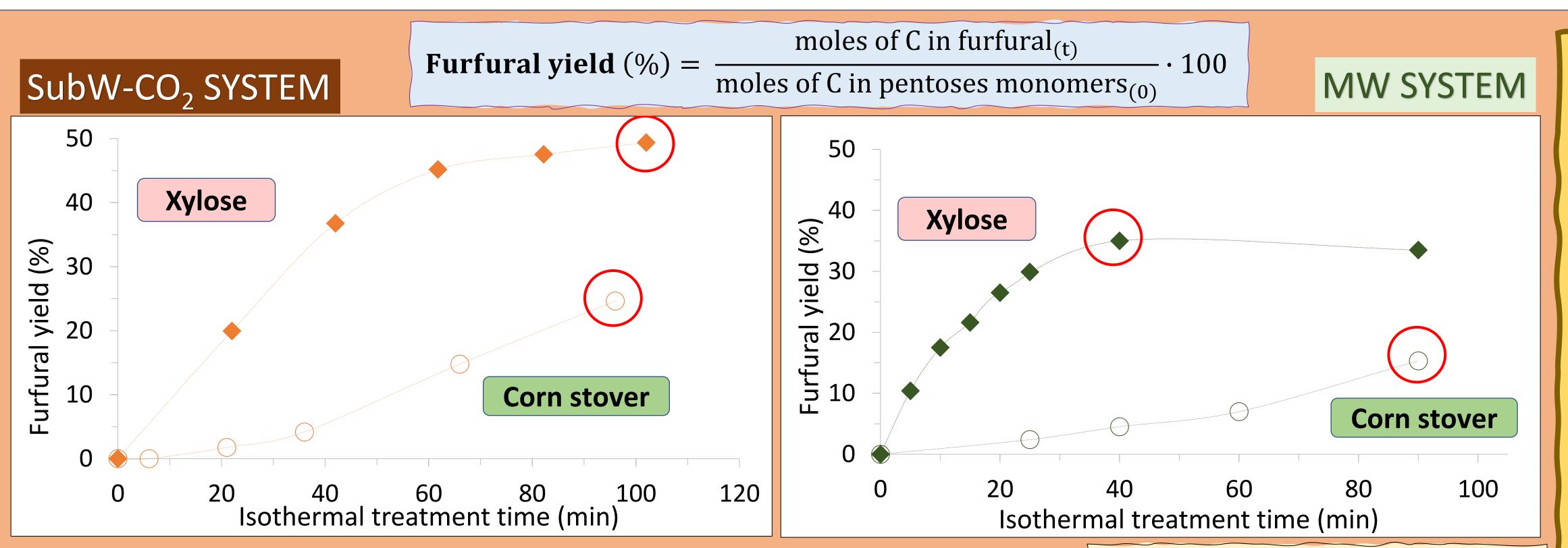

PRESSURIZED MW SYSTEM

Figure 2. Diagram of the laboratory-scale subcritical water equipment. 1: pressure vessel; 2: heating jacket; 3: magnetic stirring; 4: sample valve; 5: pressurized gas system.

Volume	200 mL	Volume	30 mL
Pressure	50 bar	Pressure	10 bar
Temperature	180 °C	Temperature	180 °C
Time	120 minutes	Time	5-90 minutes

Figure 3. Microwave (MW) equipment.

CONCLUSIONS

- Both technologies showed their viability to produce furfural.
- Corn stover produced less furfural than xylose due to its more complex matrix.
- subW-CO₂ produced the highest furfural yield from xylose (50 %) and corn stover (25 %) when compared to MW.
- The presence of CO₂ was a key parameter for furfural production,

- Xylose yielded more furfural than corn stover.
- Corn stover required more time than xylose to produce furfural.
- In corn stover, hemicellulose needs to first be hydrolyzed into pentoses to then produce furfural.

Highest furfural yield values				
Substrate	MW	subW		
Xylose	35 %	50 %		
Corn stover	15 %	25 %		
MW technology produced lower furfural yield than subW-CO ₂				

 The main difference between the two technologies is the use of CO₂ as pressurizing agent in the subW system.
Dissolved CO₂ formed carbonic acid in water, which acted as a Brønsted acid, favouring furfural production. acting as a Brønsted acid.subW-CO2producedlessdegradation products than MW.

Subcritical water pressurized by CO₂ showed to be an effective combination for the production of furfural from xylose and corn stover.

References

Acknowledgements

[1] Luo, Y., Zheng, L., Li, X., Liu, X., Fan, J., Clark, J.H., Hu, C. Catalysis Today, 319, 14-	This work was supported by the Agencia Estatal de Investigación (AEI), Ministerio de Ciencia e
24, 2019.	Innovación (MICINN) and Next Generation UE [grant numbers PID2022-136385OB-I00, PID2020-
[2] Li, H.Y., Xu, L., Liu, W.J., Fang, M.Q., Wang, N. Asian-Australasian Journal of	116716RJ-I00, TED2021-129311B-I00 and PDC2022-133443-I00] and the Junta de Castilla y León
Animal Sciences, 27(2), 194–200, 2014.	(JCyL) and the European Regional Development Fund (ERDF) [grant number BU027P23]. Benito
[3] Alonso-Riaño, P.; Illera, A. E.; Amândio, M. S. T.; Xavier, A. M. R. B.; Beltrán, S.;	Román post-doctoral contract was funded by AEI through project PID2020–116716RJ-I00. R.
Teresa Sanz, M. Sep Purif Technol, 309, 2023.	Melgosa contract was funded by a Beatriz Galindo Research Fellowship [BG20/00182]. P. Barea
[4] Choudhary, V., Mushrif, S.H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N.S.,	predoctoral contract was funded by JCyL and the European Social Fund (ESF) by ORDEN
Frenkel, A.I., Sandler, S.I., Vlachos, D.G. J. Am. Chem. Soc., 135,10,3997-4006, 2013.	EDU/1868/2022, de 19 de diciembre. H. Candela contract was funded by TED2021-129311BI00.

