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1. Introduction  

In the last decades, an increase in the global warming has been registered which is causing real 
global climate change. To mitigate the causes and their effects, the European Commission has 
stablished the European Green Deal [1], in which climate neutrality is promoted by 2050. To 
achieve this objective, the efficient use of resources is encouraged. In addition, to reduce the 
energy dependence and greenhouse gas emissions, the use of renewable energy sources are 
proposed [2, 3]. 

The cost of electricity generated from utility-scale solar Photovoltaic (PV) installations has been 
notably reduced since 2010 and, nowadays, is getting closer to be a real competitive alternative 
to conventional electricity sources [4]. Building Integrated PV facilities (BIPV) highlights in the 
technology market due to their potential saving in costs and relatively good efficiency. In addition 
to the energy performance benefits, BIPV also offers to architects alternatives to conventional 
construction materials that can be used to modify the visual appearance of a building facade [5]. 
Nevertheless, BIPV production is highly dependent on weather conditions [6] and the building 
surrounding area, especially when PV modules are installed in vertical position. 

Contrary to sloped and horizontal surfaces, vertical PV panel receive less solar radiation, aspect 
that is increased in the summer months, when the sun reaches the highest solar altitude. In large 
cities with high building density, the amount of solar radiation that a PV panel receives is even 
lower [7]. However, this can be compensated since these installations can cover large extensions 
of the façades.  

Another relevant aspect regarding the amount of energy that can be generated by BIPV on the 
facade is its orientation, being able to obtain several generation peaks distributed throughout the 
day. This aspect helps to homogenate the total energy production [8]. In addition, those facades 
located with a north orientation will have lower production, because the Sun's position rarely is 
in the North quadrant of the northern hemisphere. 

The performance of PV panels is also affected by outdoor weather conditions such as Vertical 
Solar global irradiance (RaGV), air temperature (T), wind speed (WS), wind direction (WD), and 
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relative humidity (RH) [6]. Accurate meteorological data is crucial for any building energy 
simulation model [9]. 

This study proposed a model based on Artificial Neural Networks (ANN) to predict the electricity 
generated by a BIPV system, using different meteorological variables as input. The model was 
applied to a vertical PV installation placed in Astudillo (Castilla y León, Spain) that has an annual 
mean daily energy of 16.04 . Figure 1 shows the location of the experimental facility and 
the annual mean daily global irradiance (MJ/m2) 

 

Figure 1. Average distribution of the energy in Castilla y Leon (own source). 

2. Materials and method 

The experimental data for the study was recorded in the experimental facility located in Astudillo, 
(Palencia) and shown in Figure 2-A. The following variables are recorded: temperature, T, wind 
speed and direction, WS and WD, relative humidity, RH, and RaGV on four vertical planes facing 
north (RaGVN), south (RaGVS), east (RaGVE) and west (RaGVW). The PV production on 
facades was obtained from the measurement of the electrical output of four vertical PV panels 
facing the four cardinal points (Figure 2-B). The experimental campaign ran from April 1st to 
December 31th, 2016 and data was registered every 10 minutes. 

64



XII National and y III International  

Conference on Engineering Thermodynamics 

 

3 
 

 

Figure 2. Pyranometers and commercial vertical PV panels available in the weather station (Astudillo) 
facing to cardinal orientations. 

This research proposes a model to predict the power production of BIPV systems from 
meteorological data for the south orientation. The technique implemented in this procedure was 
an Artificial Neural Network (ANN). ANN techniques split the dataset into three subsets: training, 
validation, and test. The training set serves to tune the weighted matrix ( ), throughout 
the Levenberg-Marquardt algorithm [10], that was implemented in this study following a prior 
publication [11]. The validation set is used to evaluate the performance of the model proposed by 
the training process. This tuning process involves the training set and the validation set by an 
interanion process, that it is over when the performance of the ANN reaches the desired quality. 
The dataset was randomly splitted, according to the following ratios: training set (70%), validation 
set (15%), and testing set (15%). Besides, the architecture of the ANN has one single hidden layer 
and one single output, as shown in Figure 3. 

 

Figure 3. Architecture of the ANN. are the matrix of weights, and the circles represents the 
neurons. 

The design of the ANN must be adapted to the process to be modeled. But, so far, there is no 
standardized procedure to establish the most effective number of neurons [12]. Therefore it is 
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compulsory to carry out an iterative process. Nine ANNs were programmed (ANN1 to ANN9). 
In the input layer, each neuron is a meteorological variable (T, WS, WD, RH, or Ra). For each 
ANN, the best number of neurons in the hidden layer is unknown, but it is generally accepted that 
the number of neurons should not exceed the number of neurons of the previous layer [13]. So, if 
the input has three meteorological variables and, consequently, three neurons, the number of 
neurons of the hidden layer can be one, two, or three. If the layer input has two meteorological 
variables, the hidden layer can have one or two neurons, and so on. Finally, the number of neurons 
of each ANN corresponds to the hit performance over the testing set, i.e., the part of the dataset 
which is unused during the training process. 

The goodness-of-fit analysis was conducted by the Mean Bias Error (MBE) and the Root Mean 
Square Error (RMSE) [14] [15], defined in Equations (1) and (2), respectively. As previously 
stated, the 15% of the dataset was used as testing set and the remaining data to train the model. 
The RMSE grades the performance of the ANNs, as links the deviation of the predicted values 
versus the experimental data. MBE summarizes the bias of the model that can either over-estimate 
or under-estimate the prediction. 

                                                                                    

(1) 

                                                                                     

(2) 

 

3. Results and discussion 

This study compared 9 ANNs that differs in the input variables and the number of neurons in the 
hidden layer, as described in Table 1. It is observed that the RMSE of the ANN varies widely 
with the input. The best performance was achieved by the ANN6, which depended on RaGVS, T 
and RH. It does not use the complete set of available meteorological variables. Therefore, 
introducing more variables does not necessarily imply better estimation quality, as the goodness 
indices RMSE and MBE calculated by ANN8 and ANN9 show. The ANN1, which was based 
only on irradiance values, shown an acceptable agreement, with a RMSE of 14%.  

Table 1. Performance indices of each programmed Artificial Neural Network.   

ANN  ANN1  ANN2  ANN3  ANN4  ANN5  ANN6  ANN7  ANN8  ANN9  

INPUTS  RaGVS  RaGVS 
-T  

RaGVS 
-RH  

RaGVS 
-WS  

RaGVS 
-WD  

RaGVS 
-T-RH  

RaGVS 
-T-WS  

RaGVS 
-T-WD  

RaGVS 
-T-RH-

WS  

RMSE (%)  13.5  11.2  10.2  13  13  9.9  10.5  11  10.5  

MBE (%)  0.3  0.2 0.05  0.2  0.1  -0.01  0.2  0.2  0.1  

Number of 
neurons  1  2  2  2  2  3  3  2  2  

66



XII National and y III International  

Conference on Engineering Thermodynamics 

 

5 
 

The scatter plot shown in Figure 4 compares the PV production values obtained by the best 
performing model (ANN6) versus the measured ones for the south oriented PV module. The 
testing set (15% of the dataset) was used for this plot as the ANN predictions are independent of 
the fitting process. The shape of the plot shreds evidence that the ANN6 had relatively low 
dispersion as the scattering points fits with the straight line. In consequence, ANN6 prediction is 
applicable with confidence for the experimental facility in Astudillo, Palencia. 

 

Figure 4: PV production of the south oriented vertical panel predicted by ANN6 model vs. experimental 
data. 

4. Conclusions 

This study evaluated the performance of nine ANNs to estimate the electricity production of a 
BIPV system from meteorological data that are generally accessible from ground-based 
meteorological stations. Solar irradiance was proved to be the most adequate input variable to 
predict PV production with a simple ANN. However, the accuracy of this simple model was 
notably improved with the inclusion of the temperature and relative humidity. Wind speed and 
direction were less relevant as their statistical indicators highlighted. Indeed, all reviewed ANN 
structures shown good performance as the  and  kept relatively low. Besides, the 
largest number of neurons does not lead to a better performance.  
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