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1. Introduction 

Photosynthetically Active Radiation (PAR, 400-700 nm) is the energy source to trigger 
photosynthesis. This process makes food and biomass production [1] and forest productivity 
possible [2], so it becomes essential for determining the impact of deforestation and climate 
change on agriculture [3]. Due to the scarcity of PAR data from direct measurements at ground 
meteorological stations, empirical models based on linear regressions have been developed for 
estimate PAR data [4], using other meteorological and climatic variables. In recent years, machine 
learning algorithms have been discovered as a useful tool for modelling meteorological and 
climatic data. Thus, Artificial Neural Networks (ANN) have been used for modelling PAR, with 
different meteorological variables as input [5]. Both procedures, multilinear regressions and 
ANN’s, have been used in this work for modelling PAR in Burgos (Spain) under all sky conditions 
attending to the sky clearness classification and in an hourly basis. The performance of the 
resulting models has been tested for PAR estimates at other locations. To this end, he experimental 
data obtained from the Surface Radiation Budget Network (SURFRAD) in the USA was used. 
This proves the good fit of the models developed in Burgos to the SURFRAD weather stations. 

2. Materials and method 

The meteorological ground-station located at the Higher Polytechnic School (EPS) of the 
University of Burgos and described in detail in previous works [6] provided the meteorological 
and radiative data necessary for the study. The following variables were measured: air 
temperature and pressure ( , ), horizontal global irradiance ( ) and . Data were 
recorded every 10 minutes and filtered according to conventional quality criteria [7]. Other 
necessary variables were derived from meteorological measurements, i.e., cosine of the solar 
azimuth ( ), clearness index ( ), horizontal diffuse fraction ( ), and sky’s clearness ( ) and 
brightness ( ). 

The experimental campaign took place from April 2019 to February 2021. Experimental data 
recorded at seven weather stations belonging to the SURFRAD network were also used. Figure 2 
shows the location of the weather station in Burgos and the location of the seven SURFRAD 
weather stations. The measurement campaign covered from January 2009 to December 2018 at 
each station, with a temporal resolution of 1 min. Ten-minute values were obtained by averaging 
the original ones. 
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Figure 1. Location of the Burgos meteorological station (a) and the seven SURFRAD stations (b). 

Each meteorological index (MI) described in Table 1 was determined both at the Burgos station 
and at each of the SURFRAD network stations. As explained above, , , , and  were 
obtained directly from experimental measurements.  was obtained from  data (

 ) and transformed into power units (  )  from the McCree’s conversion factor 
(  ) [8] . All other meteorological indices were calculated. 

Table 1. Meteorological indices (MI’s) measured and calculated in Burgos. 

MI MI Expression Ref. 

 global horizontal 
irradiance measured - 

 diffuse fraction  [9] 

 photosynthetically 
photon flux density measured - 

 photosynthetically 
active radiation  [8] 

 clearness index  [10] 

 air temperature measured - 

 Air pressure measured - 

 dew point 
temperature  [11] 

 cosine of the solar 
azimuth   [10] 

 sky’s clearness  [12] 

 sky’s brightness  [12] 

 
 is the average value of the orbital eccentricity of the Earth.  is the day of the 

year.  is the solar constant (1361.1 W/m2 [13]). 

a) b) 
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Sky conditions were classified as clear, partial, and overcast using the clearness index ( ) [14]. 
After that, a feature selection process was performed to select the most influent MI’s on  data 
using Pearson coefficient [15] [8] for each sky type. Once the most influential variables, according 
to each sky category, those with a Pearson’s coefficient greater than 0.5 were selected. PAR 
estimation models were developed for each of the three sky conditions (clear, partial and overcast 
skies), using both multilinear regressions (MLRs) and Artificial neural networks (ANNs) trained 
with the Levenberg-Marquardt Back-Propagation (LMBP) algorithm [16]. 

To study the goodness of fit of the models developed by means of MLRs and ANNs, the 
coefficient of determination ( ), the normalized root mean square error ( ) and the 
normalized mean bias error ( ) were used, Equations (1)-(3). 

 (1) 

 (2) 

 (3) 

where  is the number of the experimental data used for fitting the models,  are the 
modelled values of ,   is the experimental value of , 

3. Results and discussion 

Based on the experimental data from Burgos, the most influential meteorological indices for each 
type of sky were found using Pearson's correlation coefficient. The results obtained are shown in 
Table 2. 

Table 2. Pearson Coefficients, , based on sky conditions defined by  sky classification 
(clear, partial, and overcast). 

| | 
 interval [1-0.9] (0.9-0.7] (0.7-0.5] (0.5-0.3] (0.3,0] 
Clear   ,   ,   
Partial     , , ,  

Overcast   ,   ,   
 

From the results shown in Table 2, it can be observed that  is the meteorological index that 
has a very strong relationship with  for 3 skies types, coinciding with the results obtained by 
Ferrera-Cobos et al. [17]. Moreover,  also have a very strong or strong relationship with 
PAR, for the three sky conditions. 

The models developed through multilinear regression taking into account the Pearson’s 
coefficient presented in Table 2, are shown in Table 3. 
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Table 3. Multilinear regression models of PAR. 

Sky type Multilinear regression model  

Clear  0.990 3.27 

Partial  0.977 6.80 

Overcast  0.978 7.33 

 

By performing the PAR models using neural networks, very good fits have been obtained for the 
three sky types (Table 4). The best fit was obtained for clear skies, with a of 0.992 and a  

 of 3.01%. 

Table 4. Statistical results of the ANN models. 
Sky type    

Clear (ANN2) 0.992 3.01 -4.68 10-2 
Partial (ANN3) 0.977 6.80 4.06 10-3 

Overcast (ANN4) 0.978 7.28 -3.50 10-2 
 

The models calibrated for Burgos were applied to the data measured at the seven stations of the 
SURFRAD network. Such stations are widely distributed throughout the USA. Statistical results 
showed that both methods, MLR models and ANN’s, fitted well the SURFRAD experimental 
data, with  higher than 0.98 and  values lower than 10% for all locations and all sky 
conditions. The models for clear skies were the best fit at all weather stations, results are shown 
in Table 5. 

 

Table 5. Model fit values for MLR (left) and ANN (right) models for clear sky conditions. 

 MLR ANN 

USA Stations  
nRMSE 

(%) 
nMBE  

(%)  
nRMSE 

(%) 
nMBE  

(%) 
Bondville, 

Ilinois 
0.985 4.05 1.61 0.985 4.13 1.28 

Table 
Mountain, 
Boulder, 
Colorado 

0.993 4.50 3.30 0.992 4.67 3.13 

Desert Rock, 
Nevada 

0.994 5.50 4.87 0.994 5.77 4.77 

Fort Peck, 
Montana 

0.988 5.41 4.16 0.987 5.31 3.74 

Goodwin 
Creek, 

Missisippi 
0.985 4.25 2.37 0.984 4.46 2.06 
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Penn State, 
Univ. 

Pennsylvania 
0.987 3.77 1.20 0.986 4.02 0.95 

Sioux Falls, 
South Dakota 

0.991 5.44 4.49 0.990 5.36 4.03 

 

4. Conclusions  

The use of multilinear regressions and artificial neural networks is a very good technique to 
estimate PAR from different meteorological indices. The models obtained in Burgos for each sky 
type show very good fits. Moreover, these models are very well adapted to the seven locations in 
the USA, so it can be concluded that these models do not depend on the geographical location 
and that they are suitable for any sky condition. 
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